JP2001082229A - Compression self-ignition gasoline internal combustion engine - Google Patents

Compression self-ignition gasoline internal combustion engine

Info

Publication number
JP2001082229A
JP2001082229A JP26452099A JP26452099A JP2001082229A JP 2001082229 A JP2001082229 A JP 2001082229A JP 26452099 A JP26452099 A JP 26452099A JP 26452099 A JP26452099 A JP 26452099A JP 2001082229 A JP2001082229 A JP 2001082229A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
internal combustion
combustion engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26452099A
Other languages
Japanese (ja)
Other versions
JP3791256B2 (en
Inventor
Koji Hiratani
康治 平谷
Akihiro Iiyama
明裕 飯山
Tomonori Urushibara
友則 漆原
Kazuya Hasegawa
和也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP26452099A priority Critical patent/JP3791256B2/en
Priority to DE60015885T priority patent/DE60015885T2/en
Priority to EP00119930A priority patent/EP1085191B1/en
Priority to US09/661,408 priority patent/US6425367B1/en
Publication of JP2001082229A publication Critical patent/JP2001082229A/en
Application granted granted Critical
Publication of JP3791256B2 publication Critical patent/JP3791256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To spread an operable range as improvement of suction filling efficiency and fuel consumption is achieved, in a compression self-ignition gasoline internal combustion engine. SOLUTION: A valve timing being minus overlap at which the closing timing of an exhaust valve is the middle of an exhaust stroke and the opening timing of a suction valve is the middle of a suction stroke and an exhaust valve and a suction valve are both closed is provided. During a time (a setting range S1 of a fuel injection timing) starting from an exhaust valve closing timing during a minus overlap period and ending to an exhaust top dead center, first fuel injection by a fuel injection valve is effected in a small injection amount T1, and during a suction stroke right after a suction valve opening timing (a setting range S2 of a fuel injection timing), second fuel injection by a fuel injection valve is effected as a remaining injection amount T2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃焼室に直接燃
料を噴射する燃料噴射弁を備え、ピストンの圧縮作用に
より燃焼室内の混合気を自己着火して燃焼させる圧縮自
己着火ガソリン内燃機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression self-ignition gasoline internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber, and self-igniting and burning an air-fuel mixture in the combustion chamber by a compression action of a piston.

【0002】[0002]

【従来の技術】一般のガソリン内燃機関では、燃費削減
のため混合気のリーン化には、点火プラグによる火花点
火と火炎伝播による燃焼が不安定化することから、自ず
と限界があり、また、リーン燃焼時には、排気浄化のた
めの触媒が、いわゆる量論比での燃焼時ほど浄化作用、
特にNOxの還元作用を発揮できないという問題があ
る。
2. Description of the Related Art In a general gasoline internal combustion engine, there is a limit in leaning an air-fuel mixture to reduce fuel consumption because spark ignition by a spark plug and combustion by flame propagation become unstable. At the time of combustion, the catalyst for purifying exhaust gas has a purifying action as the combustion at the so-called stoichiometric ratio,
In particular, there is a problem that the reducing action of NOx cannot be exhibited.

【0003】この問題を解決するものとして、ピストン
の圧縮作用により自己着火燃焼させることにより、リー
ン燃焼と低エミッションを図った高圧縮比の圧縮自己着
火ガソリン内燃機関が知られている(例えば特開平7−
332141号公報参照)。
As a solution to this problem, there has been known a compressed self-ignition gasoline internal combustion engine having a high compression ratio which achieves lean combustion and low emission by performing self-ignition combustion by the compression action of a piston (for example, Japanese Patent Application Laid-Open No. HEI 9-103572). 7-
332141).

【0004】このような圧縮自己着火ガソリン内燃機関
として、燃焼室に直接燃料を噴射する、いわゆる筒内直
接噴射式のガソリン内燃機関が提案されているが、この
場合、筒内の燃料と空気とを均質に混ぜるように、単純
に噴射時期を吸気行程に設定しただけでは、燃焼安定性
に問題があり、運転可能範囲が狭くなるという問題があ
る。
[0004] As such a compression self-ignition gasoline internal combustion engine, a so-called direct injection type gasoline internal combustion engine in which fuel is directly injected into a combustion chamber has been proposed. If the injection timing is simply set to the intake stroke so as to mix the fuel uniformly, there is a problem in combustion stability and a problem that the operable range is narrowed.

【0005】[0005]

【発明が解決しようとする課題】ところで、通常のガソ
リン内燃機関では、図10(a)に示すように、排気弁
の閉時期EVCと吸気弁の開時期IVOが共にピストン
上死点TDC付近となって所定のバルブオーバラップ
(O/L)が設定されている。
In a normal gasoline internal combustion engine, as shown in FIG. 10 (a), both the closing timing EVC of the exhaust valve and the opening timing IVO of the intake valve are both close to the piston top dead center TDC. Thus, a predetermined valve overlap (O / L) is set.

【0006】これに対し、図10(b)に示したもの
は、吸気弁および排気弁のバルブタイミングを、排気弁
の閉時期EVCが排気行程途中で、吸気弁の開時期IV
Oが吸気行程途中となって排気弁および吸気弁が共に閉
じている、いわゆるマイナスオーバラップ(マイナスO
/L)となるバルブタイミングを有するものである。
On the other hand, in FIG. 10B, the valve timing of the intake valve and the exhaust valve is determined by changing the valve closing timing EVC during the exhaust stroke and the valve opening timing IV.
O is in the middle of the intake stroke, and the exhaust valve and the intake valve are both closed.
/ L).

【0007】すなわち、図10(a)に示すバルブタイ
ミングに対し、排気弁の閉時期EVCが進角されて排気
行程途中となっており、同時に排気弁の開時期EVOが
遅角されてピストン下死点BDCに近い時期となってい
る。吸気弁については、その開時期IVOが、排気弁の
閉時期EVC〜ピストン上死点TDCまでの期間と、ピ
ストン上死点TDC〜吸気弁の開時期IVOまでの期間
とがほぼ等しくなるように遅角されている。また、吸気
弁の閉時期IVCは、同時に進角されてピストン下死点
BDCに近い時期となっている。このとき、ピストン上
死点TDC付近におけるバルブオーバラップは存在せ
ず、マイナスO/Lが存在する。
That is, the exhaust valve closing timing EVC is advanced with respect to the valve timing shown in FIG. 10A, and the exhaust stroke is in the middle of the exhaust stroke. At the same time, the exhaust valve opening timing EVO is retarded and the piston lowering timing is reduced. It is near the dead center BDC. The opening timing IVO of the intake valve is set so that the period from the closing timing EVC of the exhaust valve to the piston top dead center TDC is substantially equal to the period from the piston top dead center TDC to the opening timing IVO of the intake valve. It has been retarded. The closing timing IVC of the intake valve is advanced at the same time and is close to the piston bottom dead center BDC. At this time, there is no valve overlap near the piston top dead center TDC, and minus O / L exists.

【0008】このようなマイナスO/Lの期間を設ける
と、筒内に排気されなかった燃焼ガスが密閉され、圧縮
されるので、もともと高温の燃焼ガスは、この圧縮作用
により、さらに高温となり、このマイナスO/L期間中
に燃料を噴射することで、噴射された燃料は残留燃焼ガ
スで気化が促進されて、単に吸気行程中に燃料噴射する
場合に比べ、燃焼性が向上すると考えられる。
[0008] When such a period of minus O / L is provided, the combustion gas that has not been exhausted into the cylinder is sealed and compressed, so that the originally high-temperature combustion gas becomes even higher due to this compression action. It is considered that by injecting fuel during this minus O / L period, the injected fuel is promoted to vaporize by residual combustion gas, so that the combustibility is improved as compared with the case where fuel is simply injected during the intake stroke.

【0009】しかしながら、単に、マイナスO/L期間
中に、必要な燃料の総噴射量全量を噴射すると、筒内温
度が上昇するので、吸気充填効率が低下し、燃費も悪化
するという問題がある。
However, simply injecting the total required fuel injection amount during the minus O / L period increases the in-cylinder temperature, so that there is a problem that the intake charging efficiency is reduced and the fuel efficiency is also deteriorated. .

【0010】そこで、この発明は、圧縮自己着火ガソリ
ン内燃機関として、吸気充填効率および燃費の向上を達
成しつつ、運転可能範囲を拡げることを目的としてい
る。
Accordingly, an object of the present invention is to expand the operable range of a compression self-ignition gasoline internal combustion engine while improving the intake charging efficiency and fuel efficiency.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、燃焼室に直接燃料を噴射する燃
料噴射弁を備え、ピストンの圧縮作用により燃焼室内の
混合気を自己着火して燃焼させる圧縮自己着火ガソリン
内燃機関において、排気弁の閉時期が排気行程途中で吸
気弁の開時期が吸気行程途中となって排気弁および吸気
弁が共に閉じているマイナスオーバラップとなるバルブ
タイミングを有し、このマイナスオーバラップ期間中に
前記燃料噴射弁による第1回目の燃料噴射を行うととも
に、吸気行程中に前記燃料噴射弁による第2回目の燃料
噴射を行う構成としてある。
According to a first aspect of the present invention, a fuel injection valve for directly injecting fuel into a combustion chamber is provided. In a compression self-ignition gasoline internal combustion engine that ignites and burns, the exhaust valve closes during the exhaust stroke, the intake valve opens during the intake stroke, and the exhaust valve and the intake valve are both closed. The fuel injection valve has a valve timing, and performs the first fuel injection by the fuel injection valve during the minus overlap period, and performs the second fuel injection by the fuel injection valve during the intake stroke.

【0012】このような構成の圧縮自己着火ガソリン内
燃機関によれば、マイナスオーバラップ期間中には、燃
焼室に排気されなかった高温の燃焼ガスが密閉され、こ
の燃焼ガスがピストンにより圧縮されてさらに高温とな
る。このような雰囲気の中に第1回目の燃料噴射を行う
ことで、噴射された燃料は高温に晒され改質が進む。こ
のとき燃料は、分子の鎖が切れてラジカルを形成した
り、燃焼ガス中に残っている僅かな酸素と結合しアルデ
ヒド程度まで反応が進む。このような燃料の改質によ
り、着火性の悪いガソリン燃料においても着火性が向上
し、安定した圧縮自己着火運転が実現する。ピストンが
排気上死点に達した後の吸気行程に第2回目の燃料噴射
を行うことで、充分な負荷が得られるものとなる。
According to the compressed self-ignition gasoline internal combustion engine having such a configuration, during the minus overlap period, the high-temperature combustion gas that has not been exhausted into the combustion chamber is sealed, and this combustion gas is compressed by the piston. It is even hotter. By performing the first fuel injection in such an atmosphere, the injected fuel is exposed to a high temperature and reforming proceeds. At this time, the fuel breaks the molecular chains to form radicals, or combines with a small amount of oxygen remaining in the combustion gas, and the reaction proceeds to the extent of aldehyde. Such reforming of the fuel improves the ignitability even with gasoline fuel having poor ignitability, and realizes a stable compression self-ignition operation. By performing the second fuel injection during the intake stroke after the piston reaches the exhaust top dead center, a sufficient load can be obtained.

【0013】マイナスオーバラップ期間中に全ての燃料
を噴射してしまうと、燃料の改質が進みすぎ、さらには
この時期に熱発生を起こしてしまう場合があり、このよ
うな場合には、燃料から仕事として取り出せる効率が悪
くなり、燃費の悪化を招くとともに吸気充填効率の低下
を招く。
[0013] If all the fuel is injected during the minus overlap period, the reforming of the fuel may proceed too much, and furthermore, heat may be generated at this time. As a result, the efficiency with which the fuel can be taken out of the work becomes poor, which leads to a deterioration in fuel efficiency and a decrease in intake charge efficiency.

【0014】請求項2の発明は、請求項1の発明の構成
において、低負荷運転条件において、第1回目の燃料噴
射時期を排気弁の閉時期直後に設定してある。
According to a second aspect of the present invention, in the configuration of the first aspect, the first fuel injection timing is set immediately after the closing timing of the exhaust valve under the low load operation condition.

【0015】上記構成によれば、排気弁が閉じた直後、
すなわち吸気弁および排気弁が共に閉じている時期の初
期に、第1回目の燃料噴射を行うことで、低負荷運転時
での燃料の改質時間が長くとれ、より高度に改質する。
According to the above configuration, immediately after the exhaust valve is closed,
That is, by performing the first fuel injection at the beginning of the period when both the intake valve and the exhaust valve are closed, the fuel reforming time at the time of low load operation can be lengthened and the fuel reforming can be performed at a higher level.

【0016】請求項3の発明は、請求項1または2の発
明の構成において、中負荷から圧縮自己着火運転が可能
な高負荷側の運転条件において、第1回目の燃料噴射時
期を排気弁の閉時期直後から排気行程上死点の間に設定
してある。
According to a third aspect of the present invention, in the configuration of the first or second aspect of the present invention, the first fuel injection timing of the exhaust valve is set under an operating condition on a high load side where a compression auto-ignition operation from a medium load is possible. It is set between immediately after the closing timing and the top dead center of the exhaust stroke.

【0017】中負荷から圧縮自己着火運転が可能な高負
荷側の運転条件においては、燃料の改質効果が低負荷運
転条件程必要ないことから、第1回目の燃料噴射は、排
気弁閉時期直後に行う必要がなく、排気弁閉時期直後か
ら排気上死点までの、どこに設定してもよい。排気上死
点を過ぎると、改質効果がなくなり、燃焼安定性および
燃費が悪化する。
[0017] Under operating conditions on the high load side where compression auto-ignition operation from a medium load is possible, the effect of reforming the fuel is not as required as in the low load operating condition. It does not need to be performed immediately, and may be set anywhere from immediately after the exhaust valve closing timing to the exhaust top dead center. After the top dead center of the exhaust gas, the reforming effect is lost, and the combustion stability and the fuel consumption deteriorate.

【0018】請求項4の発明は、請求項1ないし3のい
ずれかの発明の構成において、高負荷運転条件におい
て、第1回目の燃料噴射を行わず、第2回目の吸気行程
中での燃料噴射の際に、必要とする燃料の総噴射量全量
を噴射する構成としてある。
According to a fourth aspect of the present invention, in the configuration of any one of the first to third aspects of the present invention, the fuel injection during the second intake stroke is not performed under the high load operation condition without performing the first fuel injection. At the time of injection, the total amount of fuel required is injected in the total amount.

【0019】高負荷運転時には、必要とする燃料の総噴
射量が多く、着火性が高いため、マイナスオーバラップ
期間中に燃料を噴射する必要がなく、吸気行程にて必要
燃料量を全て噴射する。
At the time of high load operation, since the required total fuel injection amount is large and the ignitability is high, there is no need to inject fuel during the minus overlap period, and all the necessary fuel amount is injected during the intake stroke. .

【0020】請求項5の発明は、請求項1ないし4のい
ずれかの発明の構成において、吸気行程中での燃料噴射
時期を、吸気弁開時期直後に設定してある。
According to a fifth aspect of the present invention, in the configuration of any one of the first to fourth aspects, the fuel injection timing during the intake stroke is set immediately after the intake valve opening timing.

【0021】吸気行程の早い時期に燃料を噴射すること
で、噴射された燃料が吸気を冷却し、吸気充填効率を向
上させる。
By injecting the fuel early in the intake stroke, the injected fuel cools the intake air and improves the charging efficiency of the intake air.

【0022】請求項6の発明は、請求項1,2,3,5
のいずれかの発明の構成において、吸気行程中での燃料
噴射量を、第1回目と第2回目の各噴射量を合わせた総
噴射量のうちの半分以上としてある。
The invention of claim 6 is the invention of claims 1, 2, 3, 5
In any one of the aspects of the invention, the fuel injection amount during the intake stroke is at least half of the total injection amount obtained by combining the first and second injection amounts.

【0023】吸気行程での第2回目の燃料噴射量を多く
することで、噴射された燃料が吸気を冷却し、吸気充填
効率を向上させる。
By increasing the second fuel injection amount in the intake stroke, the injected fuel cools the intake air and improves the intake charge efficiency.

【0024】請求項7の発明は、請求項1,2,3,
5,6のいずれかの発明の構成において、低負荷運転条
件において、第1回目の噴射量割合を、第2回目の噴射
量と合わせた総噴射量のうちの15〜45%に設定して
ある。
According to a seventh aspect of the present invention, there is provided the first, second, third and third aspects.
In the configuration of the invention according to any one of the fifth and sixth aspects, the first injection amount ratio is set to 15 to 45% of the total injection amount combined with the second injection amount under the low load operation condition. is there.

【0025】図4に示すように、第1回目の噴射量割合
が15%を下回ると、燃焼安定性および燃費が共に悪化
し、45%を上回ると、燃焼安定性は良くなるものの、
燃費が悪化する。
As shown in FIG. 4, when the first injection amount ratio is less than 15%, the combustion stability and fuel consumption are both deteriorated. When the injection amount ratio is more than 45%, the combustion stability is improved.
Fuel economy deteriorates.

【0026】請求項8の発明は、請求項7の発明の構成
において、低負荷から圧縮自己着火運転が可能な高負荷
側の運転条件において、第1回目の噴射量割合を、負荷
の上昇とともに減少するよう設定してある。
According to an eighth aspect of the present invention, in the configuration of the seventh aspect of the present invention, the first injection amount ratio is increased along with the load increase under a high load side operating condition under which the compression self-ignition operation can be performed from a low load. It is set to decrease.

【0027】負荷の上昇に伴って、必要とする燃料の総
噴射量が増加し着火性が向上するので、第1回目の噴射
量を負荷の上昇とともに減少させる。仮に、第1回目の
噴射量を負荷の上昇とともに増加させると、着火性が向
上しすぎ、ノッキング強度が高まったり、吸気行程中の
第2回目の噴射量が減少して吸気充填効率が悪化し、燃
費が悪化してしまう。
[0027] As the load increases, the required total injection amount of fuel increases and the ignitability improves. Therefore, the first injection amount is reduced as the load increases. If the first injection amount is increased with an increase in the load, the ignitability is excessively improved, the knocking intensity is increased, or the second injection amount during the intake stroke is reduced, and the intake charging efficiency is deteriorated. , The fuel economy will deteriorate.

【0028】請求項9の発明は、請求項1,2,3,
5,6,7,8のいずれかの発明の構成において、燃焼
安定度を検出する安定度検出手段を設け、この安定度検
出手段が、燃焼が不安定になったことを検出したとき
に、第1回目の噴射量割合を増加させるよう設定してあ
る。
[0028] The ninth aspect of the present invention relates to the first, second, third and third aspects.
In the configuration of any one of the inventions of 5, 6, 7, and 8, a stability detecting means for detecting the combustion stability is provided. When the stability detecting means detects that the combustion becomes unstable, The setting is made so as to increase the first injection amount ratio.

【0029】上記構成によれば、燃焼が不安定になった
ときに、第1回目の噴射量割合を増加させることで、着
火性が向上し燃焼が安定化する。
According to the above configuration, when the combustion becomes unstable, the ignitability is improved and the combustion is stabilized by increasing the first injection amount ratio.

【0030】請求項10の発明は、請求項1,2,3,
5,6,7,8,9のいずれかの発明の構成において、
ノッキングの強度を検出するノッキング強度検出手段を
設け、このノッキング強度検出手段が、ノッキング強度
が所定値を超えたことを検出したときに、第2回目の噴
射量割合を増加させるよう設定してある。
[0030] The invention of claim 10 is the invention of claims 1, 2, 3,
In the configuration of any of the inventions of 5, 6, 7, 8, and 9,
Knocking strength detecting means for detecting the knocking strength is provided, and when the knocking strength detecting means detects that the knocking strength exceeds a predetermined value, the setting is made so as to increase the second injection amount ratio. .

【0031】上記構成によれば、ノッキング強度が所定
値を超えたときに、第2回目の噴射量割合を増加させる
ことで、筒内温度が低下し、ノッキング強度が低下す
る。
According to the above configuration, when the knocking intensity exceeds a predetermined value, the in-cylinder temperature is reduced and the knocking intensity is reduced by increasing the second injection amount ratio.

【0032】請求項11の発明は、請求項1,2,3,
5,6,7,8,9,10のいずれかの発明の構成にお
いて、ノッキングの強度を検出するノッキング強度検出
手段を設け、このノッキング強度検出手段が、ノッキン
グ強度が所定値を超えたことを検出したときに、第1回
目の噴射時期を遅角させるよう設定してある。
[0032] The invention of claim 11 is the invention of claims 1, 2, 3,
In the configuration of any one of the fifth, sixth, seventh, eighth, ninth and tenth aspects, a knocking intensity detecting means for detecting the knocking intensity is provided, and the knocking intensity detecting means detects that the knocking intensity exceeds a predetermined value. When it is detected, the first injection timing is set to be retarded.

【0033】上記構成によれば、第1回目の噴射時期を
遅角させることで、発熱量が低下し筒内温度が低下して
ノッキング強度が低下する。
According to the above configuration, by delaying the first injection timing, the calorific value decreases, the in-cylinder temperature decreases, and the knocking strength decreases.

【0034】[0034]

【発明の効果】請求項1の発明によれば、第1回目の燃
料噴射を、排気弁と吸気弁とが共に閉じているマイナス
オーバラップ期間中に行って燃料の改質を行うことで、
着火性が向上して安定した運転が得られ、運転可能範囲
を拡げることができる。また、吸気行程にて第2回目の
燃料噴射を行うようにすることで、この2回目に噴射さ
れた燃料により吸気が冷却されて吸気充填効率が向上
し、燃費も向上する。
According to the first aspect of the present invention, the first fuel injection is performed during the minus overlap period in which the exhaust valve and the intake valve are both closed to reform the fuel.
The ignition performance is improved, stable operation is obtained, and the operable range can be expanded. Further, by performing the second fuel injection in the intake stroke, the intake air is cooled by the fuel injected this second time, the intake filling efficiency is improved, and the fuel consumption is also improved.

【0035】請求項2の発明によれば、低負荷運転条件
において、第1回目の燃料噴射時期を排気弁の閉時期直
後に設定したため、燃料の改質が確実に進み、着火性を
より向上させることができる。
According to the second aspect of the invention, the first fuel injection timing is set immediately after the closing timing of the exhaust valve under low load operation conditions, so that the reforming of the fuel proceeds reliably and the ignitability is further improved. Can be done.

【0036】請求項3の発明によれば、中負荷から圧縮
自己着火が可能な高負荷側の運転条件においては、燃料
の改質効果が低負荷運転条件程必要ないことから、第1
回目の燃料噴射は、排気弁閉時期直後に行う必要がな
く、第1回目の燃料噴射時期を排気弁の閉時期直後から
排気行程上死点の間に設定することで、着火性の向上を
図ることができる。
According to the third aspect of the present invention, the fuel reforming effect is not as required as the low load operation condition under the high load operation condition where the compression self-ignition can be performed from the medium load.
It is not necessary to perform the second fuel injection immediately after the exhaust valve close timing, and by setting the first fuel injection timing from immediately after the exhaust valve close timing to the top dead center of the exhaust stroke, the ignitability is improved. Can be planned.

【0037】請求項4の発明によれば、高負荷運転条件
においては、第1回目の燃料噴射を行わず、第2回目の
吸気行程での燃料噴射の際に、必要とする燃料の総噴射
量全量を噴射するようにしたため、必要とする燃料総噴
射量が多く、着火性が高い高負荷運転時での燃料噴射制
御に最適なものとなる。
According to the fourth aspect of the present invention, under high load operation conditions, the first fuel injection is not performed, and the total fuel injection required during the second fuel injection in the intake stroke is performed. Since the entire amount is injected, the required total fuel injection amount is large, and the fuel injection control is optimal for high-load operation with high ignitability.

【0038】請求項5の発明によれば、吸気行程での燃
料噴射時期を、吸気弁開時期直後に設定したため、噴射
された燃料が吸気を冷却し、吸気充填効率を向上させる
ことができる。
According to the fifth aspect of the present invention, since the fuel injection timing in the intake stroke is set immediately after the intake valve opening timing, the injected fuel cools the intake air, and the intake charge efficiency can be improved.

【0039】請求項6の発明によれば、吸気行程での燃
料噴射量を、第1回目と第2回目の各噴射量を合わせた
総噴射量のうちの半分以上としたため、第2回目にて噴
射された燃料による吸気の冷却効果が高まり、吸気充填
効率を向上させることができる。
According to the sixth aspect of the present invention, the fuel injection amount in the intake stroke is made at least half of the total injection amount of the first and second injection amounts. The effect of cooling the intake air by the injected fuel is enhanced, and the intake air charging efficiency can be improved.

【0040】請求項7の発明によれば、低負荷運転条件
において、第1回目の噴射量割合を、第2回目の噴射量
と合わせた総噴射量のうちの15〜45%に設定したた
め、燃焼安定性および燃費を共に良好に維持することが
できる。
According to the invention of claim 7, the ratio of the first injection amount is set to 15 to 45% of the total injection amount combined with the second injection amount under the low load operation condition. Both combustion stability and fuel economy can be maintained well.

【0041】請求項8の発明によれば、低負荷運転条件
から圧縮自己着火が可能な高負荷側の運転条件におい
て、第1回目の噴射量割合を、負荷の上昇とともに減少
するよう設定したため、負荷の上昇に伴って必要とする
総噴射量が増加し着火性が向上する上記運転条件での燃
料噴射制御に最適なものとなる。
According to the eighth aspect of the present invention, the first injection amount ratio is set so as to decrease as the load increases under the high load side operating condition where the compression ignition can be performed from the low load operating condition. This is optimal for fuel injection control under the above-mentioned operating conditions in which the required total injection amount increases with an increase in the load and the ignitability improves.

【0042】請求項9の発明によれば、燃焼安定度を検
出する安定度検出手段が、燃焼が不安定になったことを
検出したときに、第1回目の噴射量割合を増加させるよ
う設定したため、着火性が向上し、燃焼を安定化させる
ことができる。
According to the ninth aspect of the present invention, when the stability detecting means for detecting the combustion stability detects that the combustion becomes unstable, the first injection amount ratio is set to be increased. As a result, the ignitability is improved, and the combustion can be stabilized.

【0043】請求項10の発明によれば、ノッキング強
度を検出するノッキング強度検出手段が、ノッキング強
度が設定された所定の許容範囲を超えたことを検出した
ときに、第2回目の噴射量割合を増加させるよう設定し
たため、この増加した噴射燃料により筒内温度が低下
し、ノッキング強度を低下させることができる。
According to the tenth aspect of the present invention, when the knocking intensity detecting means for detecting the knocking intensity detects that the knocking intensity exceeds a predetermined allowable range, the second injection amount ratio is set. Is set to increase, the in-cylinder temperature is reduced by the increased injected fuel, and the knocking strength can be reduced.

【0044】請求項11の発明によれば、ノッキングの
強度を検出するノッキング強度検出手段が、ノッキング
強度が所定値を超えたことを検出したときに、第1回目
の噴射時期を遅角させるよう設定したため、その分発熱
量が低下し筒内温度が低下してノッキング強度を低下さ
せることができる。
According to the eleventh aspect of the present invention, when the knocking intensity detecting means for detecting the knocking intensity detects that the knocking intensity exceeds a predetermined value, the first injection timing is retarded. Because of the setting, the calorific value decreases accordingly, the temperature in the cylinder decreases, and the knocking strength can be reduced.

【0045】[0045]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0046】図1は、この発明の第1の実施の形態を示
す圧縮自己着火ガソリン内燃機関の全体構成図で、シリ
ンダブロック1内にはピストン3が上下可能に収容さ
れ、シリンダヘッド5には、吸気ポート7を吸気用カム
9によって開閉する吸気弁11と、排気ポート13を排
気用カム15によって開閉する排気弁17とがそれぞれ
設けられている。
FIG. 1 is a diagram showing the overall configuration of a compression self-ignition gasoline internal combustion engine showing a first embodiment of the present invention. A piston 3 is housed in a cylinder block 1 so as to be vertically movable. An intake valve 11 that opens and closes the intake port 7 with an intake cam 9 and an exhaust valve 17 that opens and closes an exhaust port 13 with an exhaust cam 15 are provided.

【0047】シリンダヘッド5の吸気ポート7の近傍に
は、燃焼室19にガソリン燃料を噴射する燃料噴射弁2
1が取り付けられている。燃料噴射弁21による燃料噴
射動作は、吸気弁11および排気弁17の各開閉時期信
号V、機関の負荷信号Lの入力を受けるマイクロコンピ
ュータなどからなるコントロールユニット25によっ
て、噴射時期および噴射量が制御される。
Near the intake port 7 of the cylinder head 5, a fuel injection valve 2 for injecting gasoline fuel into the combustion chamber 19 is provided.
1 is attached. The fuel injection operation of the fuel injection valve 21 is controlled by a control unit 25 including a microcomputer or the like that receives the input / output timing signals V of the intake valve 11 and the exhaust valve 17 and the load signal L of the engine. Is done.

【0048】吸気用カム9および排気用カム15は、吸
気弁11および排気弁17が、前記図10(b)に示し
たようなマイナスオーバラップ(マイナスO/L)期間
が発生するバルブタイミングを有するよう動作する。す
なわち、排気弁17の閉時期が排気行程途中で吸気弁1
1の開時期が吸気行程途中となって排気弁17および吸
気弁11が共に閉じている状態のバルブタイミングを有
するよう動作する。また、本ガソリン内燃機関は、圧縮
自己着火運転を可能とするために、圧縮比12以上の比
較的高圧縮比に設定してあり、負荷は、吸気量をほぼ一
定として燃料の噴射量によって行うようになっている。
The intake cam 9 and the exhaust cam 15 determine the valve timing at which the intake valve 11 and the exhaust valve 17 generate a minus overlap (minus O / L) period as shown in FIG. Operate to have. That is, the closing timing of the exhaust valve 17 is changed during the exhaust stroke.
The opening timing of 1 is in the middle of the intake stroke, and the exhaust valve 17 and the intake valve 11 are operated so as to have a valve timing in which both are closed. Further, the gasoline internal combustion engine is set to a relatively high compression ratio of 12 or more in order to enable the compression self-ignition operation, and the load is performed by the fuel injection amount while keeping the intake air amount substantially constant. It has become.

【0049】図2は、吸気弁11および排気弁17の開
閉時期、負荷と燃料噴射時期の設定可能範囲S1,S2
の関係、負荷と燃料噴射量T1,T2との関係をそれぞれ
示したものである。排気弁17は、EVOで開きEVC
で閉じ、吸気弁11は、IVOで開きIVCで閉じ、E
VCとIVOとの間が、吸気弁11および排気弁17が
共に閉じているマイナスO/L期間となる。そして、燃
料噴射弁21によ燃焼室19への燃料噴射は、マイナス
O/L期間中に、第1回目としてS1で示す負荷によっ
て異なる設定可能範囲で行い、吸気弁11が開弁し始め
る吸気行程の初期に第2回目としてS2で示す設定可能
範囲で行っている。
FIG. 2 shows the relationship between the opening / closing timing of the intake valve 11 and the exhaust valve 17, the relationship between the load and the settable ranges S 1 and S 2 of the fuel injection timing, and the relationship between the load and the fuel injection amounts T 1 and T 2. Each is shown. The exhaust valve 17 is opened by EVO and
, The intake valve 11 is opened by IVO, closed by IVC, and E
A period between VC and IVO is a minus O / L period in which both the intake valve 11 and the exhaust valve 17 are closed. The fuel injection into the combustion chamber 19 by the fuel injection valve 21, in the minus O / L period, carried out at different settable range by the load indicated by S 1 as the first, the intake valve 11 starts to open doing a configurable range shown by S 2 as the second beginning of the intake stroke.

【0050】マイナスO/L期間が設定されることで、
燃焼室19内には排気されなかった燃焼後のガスが密閉
され、この状態でピストン3が上昇して燃焼ガスが圧縮
される。もともと高温であった燃焼ガスは、この圧縮作
用によりさらに高温となり、このような高温雰囲気中
に、第1回目として燃料を噴射することで、噴射された
燃料は、改質が進む。このとき燃料は、分子の鎖が切れ
ラジカルを形成したり、燃焼ガス中に残っている僅かな
酸素と結合してアルデヒド程度まで反応が進む。このよ
うな燃料の改質により、着火性の悪いガソリン燃料にお
いても、着火性が向上し、安定した圧縮自己着火運転が
実現できる。
By setting the minus O / L period,
The post-combustion gas that has not been exhausted is sealed in the combustion chamber 19, and in this state, the piston 3 rises and the combustion gas is compressed. The combustion gas, which was originally high in temperature, becomes even higher due to this compression action, and the injected fuel is injected into such a high-temperature atmosphere for the first time, so that the injected fuel is reformed. At this time, the reaction of the fuel proceeds to the extent of the aldehyde by breaking the chains of the molecules to form radicals or combining with the slight oxygen remaining in the combustion gas. Such fuel reforming improves the ignitability even for gasoline fuel with poor ignitability, and realizes a stable compression self-ignition operation.

【0051】ところで、ガソリン自己着火燃焼を低負荷
運転条件で実現する場合、マイナスO/L期間中の燃料
噴射量が少なすぎると、燃料の改質が進まず、着火性が
悪化し燃焼が不安定となって燃費が悪化する。逆に、噴
射量が多すぎると、燃料の改質は充分で燃焼は安定する
が、燃焼の改質が進みすぎ、さらにはこの時期に熱発生
が起こり、このような場合には、燃料から仕事として取
り出される効率が悪くなり、燃費の悪化を招く。
By the way, when realizing gasoline self-ignition combustion under low load operation conditions, if the fuel injection amount during the minus O / L period is too small, the reforming of the fuel does not proceed, the ignitability deteriorates, and the combustion becomes poor. It becomes stable and fuel efficiency deteriorates. Conversely, if the injection amount is too large, the reforming of the fuel will be sufficient and the combustion will be stable, but the reforming of the combustion will proceed too much, and furthermore, heat will be generated at this time. Efficiency of taking out work becomes poor, leading to poor fuel economy.

【0052】このようなことから、マイナスO/L期間
中に、燃料を噴射する場合、燃焼の安定性および燃費を
考慮すると、噴射時期および噴射量共に最適値が存在す
る。
Thus, when fuel is injected during the minus O / L period, there are optimum values for both the injection timing and the injection amount in consideration of the stability of the combustion and the fuel consumption.

【0053】図3は、低負荷運転条件での第1回目の燃
料噴射時期と燃焼安定性および燃費との関係を示してい
る。これによれば、排気弁17の閉時期(EVC)初期
のAで示す範囲に燃料を噴射することで、燃焼安定性、
燃費共に良好となっていることがわかる。
FIG. 3 shows the relationship between the first fuel injection timing under low load operation conditions, combustion stability, and fuel efficiency. According to this, by injecting the fuel into the range indicated by A at the beginning of the closing timing (EVC) of the exhaust valve 17, combustion stability,
It can be seen that both fuel economy is good.

【0054】図4は、低負荷運転条件での、第1回目と
第2回目とを合わせた総噴射量に対する第1回目の噴射
量割合と燃焼安定性および燃費との関係を示している。
これによれば、総噴射量のうちの15〜45%を第1回
目に噴射することで、燃焼安定性、燃費共に良好とする
ことができる。15%を下回ると、燃焼安定性および燃
費が共に悪化し、45%を上回ると、燃焼安定性は良く
なるものの、燃費が悪化してしまう。
FIG. 4 shows the relationship between the ratio of the first injection amount to the total injection amount of the first and second injections, combustion stability, and fuel efficiency under low load operation conditions.
According to this, by injecting 15 to 45% of the total injection amount for the first time, it is possible to improve both combustion stability and fuel efficiency. If it is less than 15%, both the combustion stability and the fuel efficiency deteriorate, and if it exceeds 45%, the combustion stability is improved but the fuel efficiency is deteriorated.

【0055】低負荷運転条件で、第2回目として吸気行
程中に燃料噴射を行うことで、低負荷運転としての充分
な負荷が得られる。この燃料噴射は吸気行程初期に行う
ことで噴射された燃料が吸気を冷却し、吸気充填効率が
向上する。第2回目の噴射量は、図2に示されているよ
うに、負荷の上昇に伴って増加させる。
By performing the fuel injection during the intake stroke as the second time under the low load operation condition, a sufficient load for the low load operation can be obtained. This fuel injection is performed in the early stage of the intake stroke, so that the injected fuel cools the intake air, and the intake charge efficiency is improved. The second injection amount is increased as the load increases, as shown in FIG.

【0056】一方、中負荷から圧縮自己着火運転が可能
な高負荷側の運転条件では、第1回目と第2回目とを合
わせた総噴射量が増加し、着火性がもともと高いため、
マイナスO/L期間中に噴射する燃料量は極めて少ない
量が最適となる。図5は、第1回目と第2回目とを合わ
せた総噴射量に対する第1回目の噴射量割合と燃焼安定
性および燃費との関係を示している。これによれば、燃
焼安定性と燃費とが共に良好となるのは、第1回目の噴
射量割合が5〜20%程度である。5%を下回ると燃焼
安定性および燃費が共に悪化し、15%を上回ると、燃
焼安定性は良くなるものの、燃費が悪化してしまう。
On the other hand, under the operating conditions on the high load side where the compression self-ignition operation is possible from the medium load, the total injection amount including the first and second injections increases and the ignitability is originally high.
An extremely small amount of fuel is optimally injected during the minus O / L period. FIG. 5 shows the relationship between the ratio of the first injection amount to the total injection amount of the first and second injections and the combustion stability and fuel efficiency. According to this, both the combustion stability and the fuel efficiency are good when the first injection amount ratio is about 5 to 20%. If it is less than 5%, both the combustion stability and the fuel efficiency deteriorate. If it exceeds 15%, the combustion stability is improved but the fuel efficiency is deteriorated.

【0057】そして、ここでの噴射量は、図2に示すよ
うに、負荷の上昇とともに減少させることで、負荷の上
昇に伴って総噴射量が増加し着火性が向上する上記運転
条件での第1回目の噴射量制御に最適なものとなる。仮
に、この時期の噴射量がゼロの場合には、着火性が安定
せず燃費が悪化する。高負荷になるに従って僅かに噴射
することで、着火性が安定し燃費が向上する。逆に、こ
の時期の噴射量を増加させると、着火性が向上しすぎ、
ノッキング強度が高まったり、吸気行程中の第2回目の
噴射量がその分減少して吸気充填効率が低下し、燃費が
悪化してしまう。
Then, as shown in FIG. 2, the injection amount is reduced as the load increases, so that the total injection amount increases as the load increases and the ignitability is improved. This is optimal for the first injection amount control. If the injection amount at this time is zero, the ignitability will not be stable and the fuel efficiency will deteriorate. By slightly injecting as the load becomes higher, the ignitability is stabilized and the fuel efficiency is improved. Conversely, if the injection amount at this time is increased, the ignitability will be excessively improved,
The knocking intensity is increased, and the second injection amount during the intake stroke is reduced correspondingly, so that the intake charging efficiency is reduced and the fuel consumption is deteriorated.

【0058】また、上記した中負荷から圧縮自己着火運
転が可能な高負荷側の運転条件においては、燃料の改質
効果が低負荷ほど必要ないため、噴射時期は、排気弁閉
時期の初期とする必要がなく、排気弁閉時期(EVC)
から排気上死点(TDC)までの間の、どの位置に設定
してもよい。排気上死点を過ぎると、改質効果が足りな
くなり、燃焼安定性および燃費が悪化する。
Further, under the above-mentioned operating conditions on the high load side where the compression self-ignition operation can be performed from the medium load, the fuel reforming effect is not required as much as the low load, so that the injection timing is the same as the initial timing of the exhaust valve closing timing. No need to perform, exhaust valve closing timing (EVC)
The position may be set at any position from to the top dead center (TDC) of the exhaust gas. After the top dead center of the exhaust gas, the reforming effect becomes insufficient, and the combustion stability and fuel efficiency deteriorate.

【0059】図6は、中負荷から圧縮自己着火運転が可
能な高負荷側の運転条件での第1回目の燃料噴射時期と
燃焼安定性および燃費との関係を示している。これによ
れば、排気弁17の閉時期(EVC)初期から排気上死
点(TDC)までのBで示す範囲のどの位置で燃料を噴
射しても、燃焼安定性、燃費共に良好で、排気上死点を
過ぎると燃焼安定性、燃費共に悪化していることがわか
る。
FIG. 6 shows the relationship between the first fuel injection timing, the combustion stability, and the fuel efficiency under the high load side operating conditions that enable the compression self-ignition operation from the medium load. According to this, even if fuel is injected at any position in the range indicated by B from the initial closing timing (EVC) of the exhaust valve 17 to the exhaust top dead center (TDC), both combustion stability and fuel efficiency are good, and exhaust It can be seen that after the top dead center, both combustion stability and fuel efficiency have deteriorated.

【0060】高負荷運転条件では、総燃料噴射量が多
く、着火性が高いため、マイナスO/L期間中に燃料を
噴射する必要がなく、吸気行程中に必要燃料量の全てを
噴射する。
Under the high load operation condition, the total fuel injection amount is large and the ignitability is high, so that it is not necessary to inject fuel during the minus O / L period, and all the necessary fuel amount is injected during the intake stroke.

【0061】低負荷運転条件および、中負荷から圧縮自
己着火運転が可能な高負荷側の運転条件での第2回目の
燃料噴射量は、総噴射量の半分以上とする。これによ
り、第2回目にて噴射された燃料による吸気の冷却効果
が高まり、吸気充填効率が向上する。
The second fuel injection amount under the low load operation condition and the high load operation condition under which the compression self-ignition operation can be performed from the medium load is set to half or more of the total injection amount. Thus, the effect of cooling the intake air by the fuel injected at the second time is enhanced, and the intake charge efficiency is improved.

【0062】このように、マイナスO/L期間中に、燃
料の総噴射量全量を噴射せずに第1回目として少量噴射
した後、吸気行程中に第2回目として噴射したり、ある
いは吸気行程中のみの1回の噴射として、燃料噴射時期
および噴射量を最適に制御することで、特別な部品や制
御を追加することなく、吸気充填効率および燃費の向上
が図れ、安定した運転が全運転域にわたって得ることが
できる。
As described above, during the minus O / L period, after the first small amount of fuel is injected without injecting the total amount of fuel, the second time is injected during the intake stroke, or By controlling the fuel injection timing and injection amount optimally as a single injection only during the middle, the intake filling efficiency and fuel efficiency can be improved without adding any special parts or control, and stable operation is achieved in all operations Can be obtained over a range.

【0063】図7は、この発明の第2の実施の形態を示
す圧縮自己着火ガソリン内燃機関の全体構成図である。
この実施の形態は、前記図1のシリンダブロック1に、
燃焼安定度を検出する安定度検出手段としての安定度セ
ンサ27と、ノッキング強度を検出するノッキング強度
検出手段としてのノッキング強度センサ29をそれぞれ
装着している。負荷に応じた燃料の噴射時期および噴射
量は、第1の実施の形態と基本的に同様とする。安定度
センサ27としては、機関回転数を検出する回転数セン
サ、燃焼室内の圧力を検出する燃焼圧センサあるいは機
関の振動を検出する振動センサなどでよい。
FIG. 7 is an overall configuration diagram of a compression self-ignition gasoline internal combustion engine showing a second embodiment of the present invention.
In this embodiment, the cylinder block 1 shown in FIG.
A stability sensor 27 as a stability detecting means for detecting combustion stability and a knocking strength sensor 29 as a knocking strength detecting means for detecting knocking strength are mounted. The fuel injection timing and injection amount according to the load are basically the same as those in the first embodiment. The stability sensor 27 may be a rotation speed sensor that detects the engine rotation speed, a combustion pressure sensor that detects the pressure in the combustion chamber, or a vibration sensor that detects vibration of the engine.

【0064】図8は、安定度センサ27による燃料噴射
制御動作を示すフローチャートである。まず、安定度セ
ンサ27により燃焼安定度を検出し(ステップ80
1)、この検出した燃焼安定度が設定値を超えて悪くな
った場合、つまり燃焼が不安定となった場合には(ステ
ップ803)、マイナスO/L期間中の第1回目の燃料
噴射量を増加させ(ステップ805)、これに伴い吸気
行程中の第2回目の燃料噴射量を減少させる(ステップ
807)。マイナスO/L期間中の噴射量を増加させる
ことで、燃料の改質度が高まって着火性が向上し、安定
した燃焼が得られる。
FIG. 8 is a flowchart showing the fuel injection control operation by the stability sensor 27. First, the combustion stability is detected by the stability sensor 27 (step 80).
1) If the detected combustion stability becomes worse than the set value, that is, if the combustion becomes unstable (step 803), the first fuel injection amount during the minus O / L period Is increased (step 805), and the second fuel injection amount during the intake stroke is decreased accordingly (step 807). By increasing the injection amount during the minus O / L period, the degree of fuel reforming is increased, the ignitability is improved, and stable combustion is obtained.

【0065】図9は、ノッキング強度センサ29による
燃料噴射制御動作を示すフローチャートである。まず、
ノッキング強度センサ29がノッキングの強度を検出し
(ステップ901)、検出したノッキング強度がノッキ
ング強度の限界を超えた場合には、マイナスO/L期間
中の第1回目の燃料噴射動作において、その噴射量を減
少させるとともに(ステップ905)、噴射時期を最大
で排気上死点まで遅角させる(ステップ907)。第1
回目の噴射量の減少に伴って吸気行程中の第2回目の燃
料噴射量を増加させる(ステップ909)。これにより
燃焼室19内の温度が低下し、ノッキング強度が低下す
る。
FIG. 9 is a flowchart showing the fuel injection control operation by knocking intensity sensor 29. First,
Knocking intensity sensor 29 detects the knocking intensity (step 901), and when the detected knocking intensity exceeds the limit of the knocking intensity, the injection is performed in the first fuel injection operation during the minus O / L period. The amount is decreased (step 905), and the injection timing is retarded up to the exhaust top dead center at the maximum (step 907). First
With the decrease in the second injection amount, the second fuel injection amount during the intake stroke is increased (step 909). As a result, the temperature in the combustion chamber 19 decreases, and the knocking strength decreases.

【0066】このように、上記第2の実施の形態では、
安定度センサ27およびノッキング強度センサ29によ
り、燃焼安定度およびノッキング強度をそれぞれ制御で
きるので、機関の過渡的な負荷変化にも素早く対応で
き、応答性のよい運転が可能となる。また、燃料噴射弁
21の劣化や燃焼室19内のカーボン付着などに起因す
る微妙な運転状態の変化、すなわち内燃機関が経時変化
にも、燃焼安定度およびノッキング強度が逐次制御され
るので、容易に対応して安定した圧縮自己着火運転が可
能となる。
As described above, in the second embodiment,
Since the combustion stability and the knocking intensity can be controlled by the stability sensor 27 and the knocking intensity sensor 29, respectively, it is possible to quickly respond to a transient load change of the engine and to achieve a responsive operation. In addition, the combustion stability and the knocking intensity are sequentially controlled even when the operation state is minutely changed due to deterioration of the fuel injection valve 21 or carbon adhesion in the combustion chamber 19, that is, even if the internal combustion engine changes over time. Accordingly, stable compression self-ignition operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す圧縮自己着
火ガソリン内燃機関の全体構成図である。
FIG. 1 is an overall configuration diagram of a compression self-ignition gasoline internal combustion engine showing a first embodiment of the present invention.

【図2】図1の圧縮自己着火ガソリン内燃機関における
吸気弁および排気弁の開閉時期、負荷と燃料噴射時期の
設定可能範囲との関係、負荷と燃料噴射量との関係をそ
れぞれ示した説明図である。
FIG. 2 is an explanatory diagram showing the opening / closing timing of an intake valve and an exhaust valve, the relationship between a load and a settable range of a fuel injection timing, and the relationship between a load and a fuel injection amount in the compression self-ignition gasoline internal combustion engine of FIG. 1; It is.

【図3】図1の圧縮自己着火ガソリン内燃機関における
低負荷運転条件での第1回目の燃料噴射時期と燃焼安定
性および燃費との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing a relationship between a first fuel injection timing, combustion stability and fuel efficiency under a low load operation condition in the compression self-ignition gasoline internal combustion engine of FIG. 1;

【図4】図1の圧縮自己着火ガソリン内燃機関における
低負荷運転条件での、第1回目と第2回目とを合わせた
総噴射量に対する第1回目の噴射量割合と燃焼安定性お
よび燃費との関係を示す説明図である。
FIG. 4 shows the ratio of the first injection amount to the total injection amount of the first and second injections, the combustion stability, and the fuel efficiency under the low-load operation condition in the compression self-ignition gasoline internal combustion engine of FIG. It is explanatory drawing which shows the relationship.

【図5】図1の圧縮自己着火ガソリン内燃機関における
中負荷から圧縮自己着火運転が可能な高負荷側の運転条
件での、第1回目と第2回目とを合わせた総噴射量に対
する第2回目の噴射量割合と燃焼安定性および燃費との
関係を示す説明図である。
FIG. 5 is a graph showing a second relationship with respect to the total injection amount of the first and second injections under the operating conditions on the high load side capable of performing the compression self-ignition operation from the medium load in the compression self-ignition gasoline internal combustion engine of FIG. FIG. 9 is an explanatory diagram showing a relationship between a second injection amount ratio, combustion stability, and fuel efficiency.

【図6】図1の圧縮自己着火ガソリン内燃機関における
中負荷から圧縮自己着火運転が可能な高負荷側の運転条
件での、第1回目の燃料噴射時期と燃焼安定性および燃
費との関係を示す説明図である。
FIG. 6 shows the relationship between the first fuel injection timing, combustion stability, and fuel efficiency under high load operating conditions under which compression auto-ignition operation is possible from a medium load in the compression self-ignition gasoline internal combustion engine of FIG. FIG.

【図7】この発明の第2の実施の形態を示す圧縮自己着
火ガソリン内燃機関の全体構成図である。
FIG. 7 is an overall configuration diagram of a compression self-ignition gasoline internal combustion engine showing a second embodiment of the present invention.

【図8】図7の圧縮自己着火ガソリン内燃機関における
安定度センサを用いた燃料噴射制御動作を示すフローチ
ャートである。
FIG. 8 is a flowchart showing a fuel injection control operation using a stability sensor in the compression self-ignition gasoline internal combustion engine of FIG. 7;

【図9】図7の圧縮自己着火ガソリン内燃機関における
ノッキング強度センサを用いた燃料噴射制御動作を示す
フローチャートである。
FIG. 9 is a flowchart showing a fuel injection control operation using a knocking intensity sensor in the compressed self-ignition gasoline internal combustion engine of FIG. 7;

【図10】排気弁および吸気弁の開閉時期を示すバルブ
タイミング図で、(a)は排気弁の閉時期と吸気弁の開
時期が共にピストン上死点付近となって所定のバルブオ
ーバラップ(O/L)が設定されているもの、(b)は
排気弁および吸気弁が共に閉じているマイナスオーバラ
ップ(マイナスO/L)期間が設定されているものであ
る。
FIG. 10 is a valve timing chart showing the opening / closing timing of the exhaust valve and the intake valve. FIG. 10 (a) shows a state in which both the closing timing of the exhaust valve and the opening timing of the intake valve are near the piston top dead center, and a predetermined valve overlap ( O / L) is set, and (b) shows a case where a minus overlap (minus O / L) period in which both the exhaust valve and the intake valve are closed is set.

【符号の説明】[Explanation of symbols]

3 ピストン 11 吸気弁 17 排気弁 19 燃焼室 21 燃料噴射弁 27 安定度センサ(安定度検出手段) 29 ノッキング強度センサ(ノッキング強度検出手
段)
Reference Signs List 3 piston 11 intake valve 17 exhaust valve 19 combustion chamber 21 fuel injection valve 27 stability sensor (stability detection means) 29 knocking intensity sensor (knocking intensity detection means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 330 F02D 41/04 330E 335 335D 335E 41/22 330 41/22 330B 335 335B 45/00 345 45/00 345B 368 368D F02M 45/02 F02M 45/02 (72)発明者 漆原 友則 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 長谷川 和也 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G023 AA02 AA05 AA06 AA18 AB05 AC04 AD03 AG05 3G066 AA02 AB02 AD12 BA01 BA14 BA17 CC01 CD25 CD26 CD28 DA01 DA04 DB08 DB09 DC00 DC09 DC17 3G084 BA13 BA15 CA03 CA04 DA02 DA10 DA38 EA11 EC02 EC03 FA18 FA21 FA25 FA33 FA38 3G301 HA04 JA02 JA22 JA25 KA08 KA09 LB04 MA11 MA19 MA26 NA08 NE04 NE08 NE12 PA17Z PC01Z PC06Z PC08Z PE01Z PE03Z PE04Z PE10Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/04 330 F02D 41/04 330E 335 335D 335E 41/22 330 41/22 330B 335 335B 45/00 345 45/00 345B 368 368D F02M 45/02 F02M 45/02 (72) Inventor Tomonori Urushihara 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Kazuya Hasegawa Takaracho, Kanagawa-ku, Yokohama, Kanagawa No. 2 F-term in Nissan Motor Co., Ltd. (reference) 3G023 AA02 AA05 AA06 AA18 AB05 AC04 AD03 AG05 3G066 AA02 AB02 AD12 BA01 BA14 BA17 CC01 CD25 CD26 CD28 DA01 DA04 DB08 DB09 DC00 DC09 DC17 3G084 BA13 BA15 CA03 CA04 DA11 EC10 EC03 EA FA18 FA21 FA25 FA33 FA38 3G301 HA04 JA02 JA22 JA25 KA08 KA09 LB04 MA11 MA19 MA26 NA08 NE04 NE08 NE12 PA17Z PC01Z PC06Z PC08Z PE01Z PE03Z PE04Z PE10Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室に直接燃料を噴射する燃料噴射弁
を備え、ピストンの圧縮作用により燃焼室内の混合気を
自己着火して燃焼させる圧縮自己着火ガソリン内燃機関
において、排気弁の閉時期が排気行程途中で吸気弁の開
時期が吸気行程途中となって排気弁および吸気弁が共に
閉じているマイナスオーバラップとなるバルブタイミン
グを有し、このマイナスオーバラップ期間中に前記燃料
噴射弁による第1回目の燃料噴射を行うとともに、吸気
行程中に前記燃料噴射弁による第2回目の燃料噴射を行
うことを特徴とする圧縮自己着火ガソリン内燃機関。
In a compression self-ignition gasoline internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber and self-igniting and burning an air-fuel mixture in the combustion chamber by a compression action of a piston, an exhaust valve close timing is set. During the exhaust stroke, the opening timing of the intake valve is in the middle of the intake stroke, and the exhaust valve and the intake valve are both closed. A compressed self-ignition gasoline internal combustion engine which performs a first fuel injection and performs a second fuel injection by the fuel injection valve during an intake stroke.
【請求項2】 低負荷運転条件において、第1回目の燃
料噴射時期を排気弁の閉時期直後に設定したことを特徴
とする請求項1記載の圧縮自己着火ガソリン内燃機関。
2. The compression self-ignition gasoline internal combustion engine according to claim 1, wherein the first fuel injection timing is set immediately after the exhaust valve closes under low load operation conditions.
【請求項3】 中負荷から圧縮自己着火運転が可能な高
負荷側の運転条件において、第1回目の燃料噴射時期を
排気弁の閉時期直後から排気行程上死点の間に設定した
ことを特徴とする請求項1または2記載の圧縮自己着火
ガソリン内燃機関。
3. The method according to claim 1, wherein the first fuel injection timing is set immediately after the closing timing of the exhaust valve to the top dead center of the exhaust stroke under the operating conditions on the high load side where the compression self-ignition operation is possible from the medium load. 3. The compressed self-ignition gasoline internal combustion engine according to claim 1 or 2, wherein:
【請求項4】 高負荷運転条件において、第1回目の燃
料噴射を行わず、第2回目の吸気行程中での燃料噴射の
際に、必要とする燃料の総噴射量全量を噴射することを
特徴とする請求項1ないし3のいずれかに記載の圧縮自
己着火ガソリン内燃機関。
4. In a high load operation condition, the first fuel injection is not performed, and the required total fuel injection amount is injected at the time of the second fuel injection during the intake stroke. A compression self-ignition gasoline internal combustion engine according to any one of claims 1 to 3.
【請求項5】 吸気行程中での燃料噴射時期を、吸気弁
開時期直後に設定したことを特徴とする請求項1ないし
4のいずれかに記載の圧縮自己着火ガソリン内燃機関。
5. The compression self-ignition gasoline internal combustion engine according to claim 1, wherein the fuel injection timing during the intake stroke is set immediately after the intake valve opening timing.
【請求項6】 吸気行程中での燃料噴射量を、第1回目
と第2回目の各噴射量を合わせた総噴射量のうちの半分
以上としたことを特徴とする請求項1,2,3,5のい
ずれかに記載の圧縮自己着火ガソリン内燃機関。
6. The fuel injection amount during the intake stroke is at least half of the total injection amount of the first and second injection amounts. A compressed self-ignition gasoline internal combustion engine according to any one of claims 3 and 5.
【請求項7】 低負荷運転条件において、第1回目の噴
射量割合を、第2回目の噴射量と合わせた総噴射量のう
ちの15〜45%に設定したことを特徴とする請求項
1,2,3,5,6のいずれかに記載の圧縮自己着火ガ
ソリン内燃機関。
7. A low-load operation condition, wherein the first injection amount ratio is set to 15 to 45% of the total injection amount combined with the second injection amount. , 2, 3, 5, 6.
【請求項8】 低負荷から圧縮自己着火運転が可能な高
負荷側の運転条件において、第1回目の噴射量割合を、
負荷の上昇とともに減少するよう設定したことを特徴と
する請求項7記載の圧縮自己着火ガソリン内燃機関。
8. Under an operating condition on a high load side where a compression auto-ignition operation from a low load is possible, a first injection amount ratio is defined as
8. A compression self-ignition gasoline internal combustion engine according to claim 7, wherein the internal combustion engine is set so as to decrease as the load increases.
【請求項9】 燃焼安定度を検出する安定度検出手段を
設け、この安定度検出手段が、燃焼が不安定になったこ
とを検出したときに、第1回目の噴射量割合を増加させ
るよう設定したことを特徴とする請求項1,2,3,
5,6,7,8のいずれかに記載の圧縮自己着火ガソリ
ン内燃機関。
9. A stability detecting means for detecting a combustion stability, wherein when the stability detecting means detects that combustion becomes unstable, the first injection amount ratio is increased. Claim 1, 2, 3, 3, characterized in that it is set
9. The compressed self-ignition gasoline internal combustion engine according to any one of 5, 6, 7, and 8.
【請求項10】 ノッキングの強度を検出するノッキン
グ強度検出手段を設け、このノッキング強度検出手段
が、ノッキング強度が所定値を超えたことを検出したと
きに、第2回目の噴射量割合を増加させるよう設定した
ことを特徴とする請求項1,2,3,5,6,7,8,
9のいずれかに記載の圧縮自己着火ガソリン内燃機関。
10. A knocking intensity detecting means for detecting a knocking intensity, wherein the knocking intensity detecting means increases the second injection amount ratio when the knocking intensity exceeds a predetermined value. Claims 1, 2, 3, 5, 6, 7, 8,
10. A compression self-ignition gasoline internal combustion engine according to any of 9.
【請求項11】 ノッキングの強度を検出するノッキン
グ強度検出手段を設け、このノッキング強度検出手段
が、ノッキング強度が所定値を超えたことを検出したと
きに、第1回目の噴射時期を遅角させるよう設定したこ
とを特徴とする請求項1,2,3,5,6,7,8,
9,10のいずれかに記載の圧縮自己着火ガソリン内燃
機関。
11. A knocking intensity detecting means for detecting knocking intensity is provided, and when the knocking intensity detecting means detects that the knocking intensity exceeds a predetermined value, the first injection timing is retarded. Claims 1, 2, 3, 5, 6, 7, 8,
A compression self-ignition gasoline internal combustion engine according to any one of claims 9 and 10.
JP26452099A 1999-09-17 1999-09-17 Compression self-ignition gasoline internal combustion engine Expired - Fee Related JP3791256B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26452099A JP3791256B2 (en) 1999-09-17 1999-09-17 Compression self-ignition gasoline internal combustion engine
DE60015885T DE60015885T2 (en) 1999-09-17 2000-09-13 Gasoline engine with compression ignition
EP00119930A EP1085191B1 (en) 1999-09-17 2000-09-13 Compression self-ignition gasoline internal combustion engine
US09/661,408 US6425367B1 (en) 1999-09-17 2000-09-13 Compression self-ignition gasoline internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26452099A JP3791256B2 (en) 1999-09-17 1999-09-17 Compression self-ignition gasoline internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001082229A true JP2001082229A (en) 2001-03-27
JP3791256B2 JP3791256B2 (en) 2006-06-28

Family

ID=17404405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26452099A Expired - Fee Related JP3791256B2 (en) 1999-09-17 1999-09-17 Compression self-ignition gasoline internal combustion engine

Country Status (1)

Country Link
JP (1) JP3791256B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124887A (en) * 2002-10-04 2004-04-22 Mazda Motor Corp Control device for spark ignition type engine
JP2004225680A (en) * 2002-11-28 2004-08-12 Toyota Industries Corp Internal combustion engine and control device for internal combustion engine
US7182050B2 (en) 2002-01-31 2007-02-27 Mazda Motor Corporation Control device for spark-ignition engine
US7219634B2 (en) 2002-01-31 2007-05-22 Mazda Motor Corporation Spark ignition engine control device
US7325535B2 (en) 2006-03-15 2008-02-05 Hitachi, Ltd. Engine controller
JP2008184969A (en) * 2007-01-30 2008-08-14 Mazda Motor Corp Control device of gasoline engine
JP2009019538A (en) * 2007-07-11 2009-01-29 Denso Corp Control device for cylinder injection type internal combustion engine
JP2009156117A (en) * 2007-12-26 2009-07-16 Mazda Motor Corp Control device and control method for engine
JP2009168028A (en) * 2008-01-15 2009-07-30 Robert Bosch Gmbh Operation method of self-ignition type internal combustion engine and control device for operating self-ignition type internal combustion engine
JP2010101313A (en) * 2008-09-26 2010-05-06 Mazda Motor Corp Control method of spark ignited internal combustion engine and spark ignited internal combustion engine system
JP2010281222A (en) * 2009-06-02 2010-12-16 Toyota Motor Corp Control device for internal combustion engine
JP2012002088A (en) * 2010-06-15 2012-01-05 Nippon Soken Inc Control device of internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7182050B2 (en) 2002-01-31 2007-02-27 Mazda Motor Corporation Control device for spark-ignition engine
US7219634B2 (en) 2002-01-31 2007-05-22 Mazda Motor Corporation Spark ignition engine control device
JP2004124887A (en) * 2002-10-04 2004-04-22 Mazda Motor Corp Control device for spark ignition type engine
JP2004225680A (en) * 2002-11-28 2004-08-12 Toyota Industries Corp Internal combustion engine and control device for internal combustion engine
US7412967B2 (en) 2006-03-15 2008-08-19 Hitachi, Ltd. Engine controller
US7325535B2 (en) 2006-03-15 2008-02-05 Hitachi, Ltd. Engine controller
JP2008184969A (en) * 2007-01-30 2008-08-14 Mazda Motor Corp Control device of gasoline engine
JP2009019538A (en) * 2007-07-11 2009-01-29 Denso Corp Control device for cylinder injection type internal combustion engine
JP2009156117A (en) * 2007-12-26 2009-07-16 Mazda Motor Corp Control device and control method for engine
JP2009168028A (en) * 2008-01-15 2009-07-30 Robert Bosch Gmbh Operation method of self-ignition type internal combustion engine and control device for operating self-ignition type internal combustion engine
JP2010101313A (en) * 2008-09-26 2010-05-06 Mazda Motor Corp Control method of spark ignited internal combustion engine and spark ignited internal combustion engine system
JP2010281222A (en) * 2009-06-02 2010-12-16 Toyota Motor Corp Control device for internal combustion engine
JP2012002088A (en) * 2010-06-15 2012-01-05 Nippon Soken Inc Control device of internal combustion engine

Also Published As

Publication number Publication date
JP3791256B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP3815163B2 (en) Compression self-ignition internal combustion engine
JP3945152B2 (en) Combustion control device for internal combustion engine
JP4016568B2 (en) Gasoline self-ignition internal combustion engine
EP2354508B1 (en) Engine control method and apparatus
US7769525B2 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
US8459021B2 (en) Method and apparatus for controlling supercharged engine
US6425367B1 (en) Compression self-ignition gasoline internal combustion engine
JP4748255B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP3760710B2 (en) Combustion control device for internal combustion engine
JP4122630B2 (en) Compression self-ignition gasoline engine
JP2001152919A (en) Compressed self-ignition gasoline engine
JP2002004913A (en) Compression self-ignition type internal combustion engine
JP2000064863A (en) Four-cycle internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP4062870B2 (en) Combustion control device for internal combustion engine
JP5540730B2 (en) Control device for spark ignition engine
JP2020186716A (en) Control device of compression ignition-type engine
JP2020186717A (en) Control device of compression ignition-type engine
JP2001003771A (en) Compression self ignitition gasoline internal combustion engine
JP2001082229A (en) Compression self-ignition gasoline internal combustion engine
JP2010144558A (en) Control method and control device for engine
JP3965905B2 (en) Compression self-ignition internal combustion engine
JP3257430B2 (en) Exhaust heating device
JP2002276442A (en) Combustion control device for internal combustion engine
JP3835130B2 (en) Compression self-ignition internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees