JP2001082107A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JP2001082107A
JP2001082107A JP25838799A JP25838799A JP2001082107A JP 2001082107 A JP2001082107 A JP 2001082107A JP 25838799 A JP25838799 A JP 25838799A JP 25838799 A JP25838799 A JP 25838799A JP 2001082107 A JP2001082107 A JP 2001082107A
Authority
JP
Japan
Prior art keywords
turbine
steam
pressure steam
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25838799A
Other languages
Japanese (ja)
Inventor
Yuji Nameki
裕二 行木
Norifumi Amano
至文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25838799A priority Critical patent/JP2001082107A/en
Publication of JP2001082107A publication Critical patent/JP2001082107A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit thermal deformation of a turbine internal structure by introducing low pressure steam introduced in the midway stage of the steam turbine into a turbine cylinder, and installing an introducing pipe, one side of which is communicated with a low pressure steam outlet connected to the turbine cylinder, the other side being communicated with the interior of the turbine cylinder. SOLUTION: An internal introducing pipe 10 for introducing low pressure steam 1 is installed with one side thereof connected to an outlet of a low pressure steam introducing pipe 3 and the other side thereof communicated with the interior of a medium pressure exhaust part 11. The internal introducing pipe 10 is extended from the outlet of the low pressure introducing pipe 3 toward a rotor shaft 9 to branch off in two directions along the circumferential direction of the turbine internal cylinder 5. Accordingly, the low pressure steam 1 is introduced from the connecting part between the low pressure steam introducing pipe 3 and the turbine external cylinder 2 to flow in the medium pressure exhaust part 11 through the internal introducing pipe 10. At this time, low pressure steam 1 and the medium pressure exhaust part steam 4 heat-exchange through the internal introducing pipe 10, so that a temperature difference between both steam 1, 4 can be reduced and also thermal deformation of the internal structure can be inhibited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンバインドサイク
ル発電プラントの蒸気タービンに関する。
The present invention relates to a steam turbine for a combined cycle power plant.

【0002】[0002]

【従来の技術】3重圧コンバインドサイクル発電プラン
トでは、高圧主蒸気,再熱蒸気および低圧蒸気が蒸気タ
ービンに導入される。この場合、低圧蒸気はその圧力よ
り低い段落圧力蒸気タービンの途中段落に導入される
が、低圧蒸気温度と段落温度は必ずしも一致しない。こ
のような温度差のある蒸気に蒸気タービン内部の構造物
がさらされることは、熱応力および熱変形が発生して、
亀裂発生の要因となる可能性があった。
2. Description of the Related Art In a triple pressure combined cycle power plant, high-pressure main steam, reheat steam and low-pressure steam are introduced into a steam turbine. In this case, the low-pressure steam is introduced into the middle stage of the stage pressure steam turbine lower than the pressure, but the low-pressure steam temperature and the stage temperature do not always match. Exposure of the internal structure of the steam turbine to such steam having a temperature difference causes thermal stress and thermal deformation,
This could be a factor in crack initiation.

【0003】[0003]

【発明が解決しようとする課題】従来、低圧蒸気を導入
するスペースを考慮し、タービン中圧排気部に低圧蒸気
配管が接続されるのが一般的であった。この際、低圧蒸
気はタービン内部に蒸気管から直接導入されるため、中
圧タービン最終段の内部車室の一部は、中圧タービン段
落を通ってくる蒸気と低圧蒸気の両方にさらされる。中
圧タービン最終段の段落温度と低圧蒸気温度とでは、通
常その蒸気温度が異なるため、内部車室には蒸気タービ
ンの回転中心に対して円周方向に不均一な温度分布が生
じる。この結果、内部車室の伸びも不均一となり、蒸気
タービンの回転中心と一致していた内部車室の中心がず
れることになる。また、内部車室の厚さ方向にも温度差
が生じ、これが熱応力の原因となる。さらに、高圧運転
部に冷気を導入することになれば、急激な熱応力を伴
い、亀裂発生の要因ともなってしまう。
Conventionally, a low-pressure steam pipe has generally been connected to a medium-pressure exhaust portion of a turbine in consideration of a space for introducing low-pressure steam. At this time, since the low-pressure steam is directly introduced into the turbine from the steam pipe, a part of the internal casing of the final stage of the intermediate-pressure turbine is exposed to both the steam passing through the intermediate-pressure turbine stage and the low-pressure steam. Since the stage temperature and the low-pressure steam temperature of the final stage of the intermediate-pressure turbine are usually different from each other, a non-uniform temperature distribution occurs in the inner casing in the circumferential direction with respect to the rotation center of the steam turbine. As a result, the elongation of the inner casing becomes uneven, and the center of the inner casing, which coincides with the rotation center of the steam turbine, is shifted. Further, a temperature difference also occurs in the thickness direction of the inner casing, which causes thermal stress. Furthermore, if cool air is introduced into the high-pressure operating section, a rapid thermal stress is involved, which may cause cracking.

【0004】本発明は、上記した問題に鑑みなされたも
のであって、その目的とするところは、蒸気タービン内
部構造物の熱変形を抑制する蒸気タービンを提供するこ
とにある。
[0004] The present invention has been made in view of the above problems, and an object of the present invention is to provide a steam turbine that suppresses thermal deformation of an internal structure of the steam turbine.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の蒸気タービンは、タービンの途中段落に低
圧蒸気を導入する構造を備えた蒸気タービンにおいて、
前記低圧蒸気はタービン車室に導入されるものであっ
て、一方が外部から導入され前記タービン車室に接続さ
れる低圧蒸気出口に連通し、他方が前記タービン車室の
空間内部に連通する導入管を設けたものである。
In order to achieve the above object, a steam turbine according to the present invention includes a steam turbine having a structure for introducing low-pressure steam into a middle stage of the turbine.
The low-pressure steam is introduced into the turbine casing, one of which is introduced from the outside and communicates with a low-pressure steam outlet connected to the turbine casing, and the other communicates with the inside of the space of the turbine casing. A tube is provided.

【0006】また、本発明の蒸気タービンは、タービン
中圧蒸気排気部に低圧蒸気を導入する構造を備えた蒸気
タービンにおいて、前記低圧蒸気はタービン車室に導入
されるものであって、一方が外部から導入され前記ター
ビン車室に接続される低圧蒸気出口に連通し、他方が中
圧蒸気排気部後流側の前記タービン車室の空間内部に連
通する導入管を設けたものである。
Further, the steam turbine of the present invention is a steam turbine having a structure for introducing low-pressure steam into a turbine medium-pressure steam exhaust portion, wherein the low-pressure steam is introduced into a turbine casing. An introduction pipe is provided which communicates with a low-pressure steam outlet which is introduced from the outside and which is connected to the turbine casing, and which communicates with the inside of the turbine casing on the downstream side of the medium-pressure steam exhaust part.

【0007】好ましくは、前記導入管は、タービン車室
に接続される低圧蒸気出口部からロータシャフトに向か
って延伸し、その途中位置からロータシャフトの周方向
に沿って分岐させた形状に形成するものである。
Preferably, the introduction pipe extends from a low-pressure steam outlet connected to the turbine casing toward the rotor shaft, and is formed to have a shape branching from a middle position along the circumferential direction of the rotor shaft. Things.

【0008】また、好ましくは、前記導入管は、フィン
あるいは凹凸部が形成されているものである。
Preferably, the introduction tube has a fin or an uneven portion.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例について、
図面を用いて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described in detail with reference to the drawings.

【0010】低圧蒸気を蒸気タービンの途中段落に導入
するシステムの代表的なものとして、3重圧コンバイン
ドサイクル発電プラントが挙げられる。以下、この3重
圧コンバインドサイクル発電プラントに用いられる蒸気
タービンを例として説明する。
A typical example of a system for introducing low-pressure steam into a middle stage of a steam turbine is a triple-pressure combined cycle power plant. Hereinafter, a steam turbine used in the triple pressure combined cycle power plant will be described as an example.

【0011】図1は、蒸気タービンの軸方向に沿った断
面図であり、タービン中圧排気部に低圧蒸気を導入する
構造を示したものである。図示しないボイラからの低圧
蒸気1は、タービン外部車室2に接続された低圧蒸気導
入管3を通りタービン内部へ下側から流入する。低圧蒸
気1をタービンへ流入させるために、その圧力PLPは、
図示しないタービン段落を通って中圧排気部11に排出
される中圧排気部蒸気4の圧力PIPよりも若干高く設定
される。
FIG. 1 is a cross-sectional view along the axial direction of the steam turbine, showing a structure for introducing low-pressure steam into the turbine medium-pressure exhaust portion. Low-pressure steam 1 from a boiler (not shown) flows into the turbine from below through a low-pressure steam introduction pipe 3 connected to a turbine exterior casing 2. To allow the low pressure steam 1 to flow into the turbine, its pressure P LP
It is slightly set higher than the pressure P IP of pressure exhaust portion steam 4 in which is discharged to the pressure exhaust portion 11 medium through the not-shown turbine stage.

【0012】その際、中圧排気部蒸気4の温度TIPと低
圧蒸気1の温度TLPは通常一致せず、TIPとTLPの温度
差ΔTは数十℃程度となり、運転特性によりさらに大き
な温度差の蒸気を導入する場合もあり得る。また、ター
ビン内部車室5の中圧排気部11は、その上側では中圧
排気部蒸気4のみにさらされる一方、その下側では中圧
排気部蒸気4に加えて、さらに低圧蒸気導入管3によっ
て供給される低圧蒸気1にもさらされてしまう。このた
め、タービン内部車室5の上部と下部とで温度差が生じ
ることになる。
At this time, the temperature T IP of the intermediate-pressure exhaust steam 4 and the temperature T LP of the low-pressure steam 1 do not usually coincide with each other, and the temperature difference ΔT between T IP and T LP becomes about several tens of degrees Celsius. It is also possible to introduce steam with a large temperature difference. On the upper side, the medium-pressure exhaust section 11 of the turbine interior casing 5 is exposed only to the medium-pressure exhaust section steam 4, and on the lower side, in addition to the medium-pressure exhaust section steam 4, a low-pressure steam introduction pipe 3 is further provided. Exposed to the low-pressure steam 1 supplied by the fuel cell. For this reason, a temperature difference occurs between the upper part and the lower part of the turbine inner casing 5.

【0013】図2は、タービン内部車室に温度差が生じ
たときの変形状態を示した図である。前述したように、
中圧排気部蒸気4のみにさらされる上部車室51と、低
圧蒸気1にもさられる下部車室52とでは、上部車室5
1に対し下部車室52の温度がより低温になってしま
い、その熱伸び量の差により、内部車室中心軸6がター
ビン中心軸7に対して上に凸となるように変形を生じ
る。このような不均一な伸び量の差による変形は、熱応
力に加えて、内部車室中心軸6とタービン中心軸7との
不一致により、動翼8とロータシャフト9から構成され
る回転体とタービン内部車室等の静止体との摺動の原因
になる虞がある。
FIG. 2 is a diagram showing a deformed state when a temperature difference occurs in the turbine interior casing. As previously mentioned,
The upper casing 51 is exposed only to the medium-pressure exhaust steam 4 and the lower casing 52 is exposed to the low-pressure steam 1.
In contrast to 1, the temperature of the lower casing 52 becomes lower, and due to the difference in the amount of thermal expansion, the inner casing central axis 6 is deformed so as to project upward with respect to the turbine central axis 7. Deformation due to such non-uniform elongation difference causes, in addition to thermal stress, inconsistency between the inner casing center axis 6 and the turbine center axis 7, resulting in a rotating body composed of the rotor blade 8 and the rotor shaft 9. There is a possibility that it may cause sliding with a stationary body such as a turbine interior compartment.

【0014】そこで本実施例では、以下に説明する構成
によって、熱応力および不均一な熱変形を起こす要因で
ある蒸気の温度差の低減を図ったものである。
Therefore, in the present embodiment, the structure described below is used to reduce the thermal stress and the temperature difference of steam, which is a cause of uneven thermal deformation.

【0015】図3は、図1に示す蒸気タービンの排気側
から見た縦断面図である。本実施例では、図1に示す構
成に加えてさらに、一方が低圧蒸気導入管3の出口に接
続され、他方が中圧排気部11の内部に連通し低圧蒸気
を導入する内部導入管10を設置している。この内部導
入管10は、まず低圧蒸気導入管3の出口からロータシ
ャフト9に向かって延伸し、そしてロータシャフト9ま
たはタービン内部車室5の周方向に沿って2方向に分岐
して配置されるように形成されている。
FIG. 3 is a longitudinal sectional view of the steam turbine shown in FIG. 1 as viewed from the exhaust side. In the present embodiment, in addition to the configuration shown in FIG. 1, one is connected to the outlet of the low-pressure steam introduction pipe 3, and the other is an internal introduction pipe 10 that communicates with the inside of the medium-pressure exhaust unit 11 and introduces low-pressure steam. Has been installed. The internal introduction pipe 10 first extends from the outlet of the low-pressure steam introduction pipe 3 toward the rotor shaft 9, and is branched and arranged in two directions along the circumferential direction of the rotor shaft 9 or the turbine interior casing 5. It is formed as follows.

【0016】以上のように内部導入管10を設置するこ
とで、低圧蒸気導入管3とタービン外部車室2の接続部
から導入される低圧蒸気1は、中圧排気部11内に設置
された内部導入管10を通った後、中圧排気部11へと
流入する。低圧蒸気1は、内部導入管10の内部を通過
する際に中圧排気部蒸気4との間で、内部導入管10を
介して熱交換が行われる。したがって、タービン内部に
流入する低圧蒸気1の蒸気温度PLTと中圧排気部蒸気4
の蒸気温度TIPの温度差ΔTを、内部導入管10が無い
場合、つまり直接タービン内部に低圧蒸気1が流入され
る場合と比べて小さくすることが可能となった。
By installing the internal introduction pipe 10 as described above, the low-pressure steam 1 introduced from the connection between the low-pressure steam introduction pipe 3 and the turbine exterior casing 2 is installed in the medium-pressure exhaust section 11. After passing through the internal introduction pipe 10, it flows into the medium pressure exhaust unit 11. When the low-pressure steam 1 passes through the inside of the internal introduction pipe 10, heat exchange is performed between the low-pressure steam 1 and the medium-pressure exhaust steam 4 through the internal introduction pipe 10. Therefore, the steam temperature PLT of the low-pressure steam 1 flowing into the turbine and the steam 4
The temperature difference ΔT of the steam temperature T IP, and if there is no internal inlet tube 10, the turbine inner low pressure steam 1 that is directly made it possible to reduce in comparison with the case that flows.

【0017】図3に示す本実施例では、内部導入管10
は低圧蒸気導入管3とタービン外部車室2の接続部から
途中2方向に分岐し、2本の配管で熱交換を行うように
しているが、配管形状は低圧蒸気1と中圧排気部蒸気4
の間で行われるべき熱交換量に応じて、その本数,径,
長さをより好適なものに設定する。
In the present embodiment shown in FIG.
Is branched in two directions on the way from the connection between the low-pressure steam introduction pipe 3 and the turbine exterior casing 2 to perform heat exchange with two pipes. The pipe shapes are low-pressure steam 1 and medium-pressure exhaust steam. 4
The number, diameter,
Set the length to a more suitable one.

【0018】一般に、配管の本数または径は、その内部
を流れる蒸気の流速を低く抑え、圧力損失が大きくなら
ないように設計される。また、ある状態の蒸気が一定流
量流れる場合、配管の本数あるいは径を増加させれば、
その蒸気流速は反比例して減少することは一般的に知ら
れており、使用される配管は制限値内の流速が得られる
ようにその本数あるいは径を選択される。
In general, the number or diameter of the pipes is designed so that the flow velocity of the steam flowing inside the pipes is suppressed low and the pressure loss does not increase. Also, when the steam in a certain state flows at a constant flow rate, if the number or diameter of the piping is increased,
It is generally known that the steam flow rate decreases in inverse proportion, and the number or diameter of the pipes used is selected so as to obtain a flow rate within the limit value.

【0019】これに対して、本実施例で用いられる内部
導入管10では、蒸気の流速だけではなく、低圧蒸気1
と中圧排気部蒸気4との間で、効率的に熱交換を行うよ
うに考慮したものである。蒸気の流速を低く抑えると、
配管内面との熱伝達が小さくなるので、圧力損失が許容
できる範囲で配管の内径は小さくすることが好ましい。
また、配管の長さは、より長いものを用いるほど熱交換
する伝熱面積が大きくなることから、所定の本数および
径の配管について単位長さあたりの熱交換量を算出して
おき、低圧蒸気1の蒸気温度TLPと中圧排気部蒸気4の
蒸気温度TIPとの温度差ΔTを緩和するのに必要な熱交
換量を考慮したものを使用することが好ましい。
On the other hand, in the internal introduction pipe 10 used in this embodiment, not only the flow rate of the steam but also the low-pressure steam 1
This takes into account efficient heat exchange between the steam and the intermediate-pressure exhaust section steam 4. If you keep the steam flow rate low,
Since the heat transfer with the inner surface of the pipe becomes small, it is preferable to make the inside diameter of the pipe small as long as the pressure loss can be tolerated.
In addition, since the heat transfer area for heat exchange increases as the length of the pipe becomes longer, the heat exchange amount per unit length is calculated for pipes of a predetermined number and diameter, and the low pressure steam is calculated. It is preferable to use one that takes into account the amount of heat exchange required to reduce the temperature difference ΔT between the steam temperature T LP of the first and the steam temperature T IP of the intermediate-pressure exhaust section steam 4.

【0020】また、内部導入管10の内面あるいは外面
に、熱伝達をより効率的に行うためにフィンを設置した
り、凹凸を形成することもできる。このように、フィン
を設けるなど熱伝達を向上させる手段を追加すること
で、圧力損失をより低減できる配管径を選択したり、配
管の長さを短くすることが可能となり、これはタービン
発電プラントの性能向上、さらにはプラントのコストを
削減する上で非常に有効である。
Further, fins may be provided on the inner surface or the outer surface of the internal introduction pipe 10 for more efficient heat transfer, or irregularities may be formed. As described above, by adding a means for improving heat transfer such as providing fins, it is possible to select a pipe diameter capable of further reducing pressure loss and to shorten the length of the pipe. It is very effective in improving the performance of the system and further reducing the cost of the plant.

【0021】以上述べたように、本実施例では、低圧蒸
気1とタービン中圧排気部蒸気4とを低圧蒸気導入管3
を介して熱交換を行い、その温度差を低減させた状態で
低圧蒸気1をタービン中圧排気部11に導入させてい
る。このため、タービン内部車室5には不均一な温度分
布が形成されることが抑制されるため、熱応力や不均一
な伸び量の差による熱変形あるいは亀裂の発生を抑制す
ることが可能となった。また、従来では不均一な伸び量
の差による変形によって、内部車室中心軸6とービン中
心軸7とがズレを生じて、動翼8とロータシャフト9か
ら構成される回転体とタービン内部車室等の静止体との
摺動の原因になる虞があったが、本実施例では上記の通
り低圧蒸気1の温度差を低減させているので、このよう
な問題を解決することが可能となった。
As described above, in this embodiment, the low-pressure steam 1 and the turbine intermediate-pressure exhaust steam 4 are connected to the low-pressure steam introduction pipe 3.
The low-pressure steam 1 is introduced into the turbine intermediate-pressure exhaust unit 11 in a state where the temperature difference is reduced. For this reason, since the formation of an uneven temperature distribution in the turbine interior casing 5 is suppressed, it is possible to suppress the occurrence of thermal deformation or cracks due to differences in thermal stress or uneven elongation. became. Further, in the related art, the center axis 6 of the inner casing and the center axis 7 of the bin are displaced due to deformation due to a difference in the amount of elongation, and the rotating body including the rotor blades 8 and the rotor shaft 9 and the turbine Although there was a possibility of causing sliding with a stationary body such as a chamber, in the present embodiment, since the temperature difference of the low-pressure steam 1 is reduced as described above, such a problem can be solved. became.

【0022】なお、上述した説明においては3重圧コン
バインドサイクル発電プラントに用いられる蒸気タービ
ンの低圧蒸気入口部の構造について説明したが、本発明
は蒸気タービン内部構造物の熱応力あるいは変形の発生
を抑制することを目的としたものであり、2重圧コンバ
インドサイクル発電プラント等他の蒸気タービンに本発
明を適用することで同様の効果を得ることが可能であ
る。
In the above description, the structure of the low-pressure steam inlet portion of the steam turbine used in the triple pressure combined cycle power plant has been described. However, the present invention suppresses the occurrence of thermal stress or deformation of the internal structure of the steam turbine. The same effect can be obtained by applying the present invention to another steam turbine such as a double pressure combined cycle power plant.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、蒸気タ
ービン内部構造物の熱変形を抑制する蒸気タービンを提
供できるという効果を奏する。
As described above, according to the present invention, it is possible to provide a steam turbine that suppresses thermal deformation of the internal structure of the steam turbine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸気タービンの軸方向に沿った断面図である。FIG. 1 is a cross-sectional view along an axial direction of a steam turbine.

【図2】タービン内部車室に温度差が生じたときの変形
状態図である。
FIG. 2 is a deformation state diagram when a temperature difference occurs in a turbine interior casing.

【図3】本発明の一実施例を示す蒸気タービンの縦断面
図である。
FIG. 3 is a longitudinal sectional view of a steam turbine showing one embodiment of the present invention.

【符号の説明】 1…低圧蒸気、2…タービン外部車室、3…低圧蒸気導
入管、4…中圧排気部蒸気、5…タービン内部車室、6
…内部車室中心軸、7…タービン中心軸、8…動翼、9
…ロータシャフト、10…内部導入管、11…中圧排気
部、51…上部車室、52…下部車室。
[Description of Signs] 1 ... Low-pressure steam, 2 ... Tube outer casing, 3 ... Low-pressure steam introducing pipe, 4 ... Medium-pressure exhaust steam, 5 ... Turbine inner casing, 6
... Center axis of inner casing, 7 ... Center axis of turbine, 8 ... Rotating blade, 9
... rotor shaft, 10 ... internal introduction pipe, 11 ... medium pressure exhaust part, 51 ... upper casing, 52 ... lower casing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】タービンの途中段落に低圧蒸気を導入する
構造を備えた蒸気タービンにおいて、 前記低圧蒸気はタービン車室に導入されるものであっ
て、一方が外部から導入され前記タービン車室に接続さ
れる低圧蒸気出口に連通し、他方が前記タービン車室の
空間内部に連通する導入管を設けたことを特徴とする蒸
気タービン。
1. A steam turbine having a structure for introducing low-pressure steam in a middle stage of a turbine, wherein the low-pressure steam is introduced into a turbine case, and one of the low-pressure steam is introduced from the outside to the turbine case. A steam turbine, further comprising an introduction pipe communicating with a low-pressure steam outlet to be connected and the other communicating with the inside of the space of the turbine casing.
【請求項2】タービン中圧蒸気排気部に低圧蒸気を導入
する構造を備えた蒸気タービンにおいて、 前記低圧蒸気はタービン車室に導入されるものであっ
て、一方が外部から導入され前記タービン車室に接続さ
れる低圧蒸気出口に連通し、他方が中圧蒸気排気部後流
側の前記タービン車室の空間内部に連通する導入管を設
けたことを特徴とする蒸気タービン。
2. A steam turbine having a structure for introducing low-pressure steam to a turbine medium-pressure steam exhaust portion, wherein the low-pressure steam is introduced into a turbine casing, and one of the low-pressure steam is introduced from the outside and the turbine A steam turbine, further comprising an inlet pipe communicating with a low-pressure steam outlet connected to the chamber and the other communicating with the inside of the turbine casing on the downstream side of the medium-pressure steam exhaust unit.
【請求項3】前記導入管は、タービン車室に接続される
低圧蒸気出口部からロータシャフトに向かって延伸し、
その途中位置からロータシャフトの周方向に沿って分岐
させた形状に形成したことを特徴とする請求項1または
2に記載の蒸気タービン。
3. The introduction pipe extends from a low-pressure steam outlet connected to a turbine casing toward a rotor shaft.
The steam turbine according to claim 1, wherein the steam turbine is formed in a shape branched from a middle position along a circumferential direction of the rotor shaft.
【請求項4】前記導入管は、フィンあるいは凹凸部が形
成されていることを特徴とする請求項1または2に記載
の蒸気タービン。
4. The steam turbine according to claim 1, wherein the introduction pipe has a fin or an uneven portion.
JP25838799A 1999-09-13 1999-09-13 Steam turbine Pending JP2001082107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25838799A JP2001082107A (en) 1999-09-13 1999-09-13 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25838799A JP2001082107A (en) 1999-09-13 1999-09-13 Steam turbine

Publications (1)

Publication Number Publication Date
JP2001082107A true JP2001082107A (en) 2001-03-27

Family

ID=17319544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25838799A Pending JP2001082107A (en) 1999-09-13 1999-09-13 Steam turbine

Country Status (1)

Country Link
JP (1) JP2001082107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593546A (en) * 2016-12-22 2017-04-26 东方电气集团东方汽轮机有限公司 Turbine low-pressure steam admission mode and equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593546A (en) * 2016-12-22 2017-04-26 东方电气集团东方汽轮机有限公司 Turbine low-pressure steam admission mode and equipment

Similar Documents

Publication Publication Date Title
CN105723178B (en) Global matrix formula pipe in pipe
US6227799B1 (en) Turbine shaft of a steam turbine having internal cooling, and also a method of cooling a turbine shaft
RU2351766C2 (en) Steam turbine and method of its operation
CN105222616B (en) Method and system for radial tubular duct heat exchanger
JP4410425B2 (en) Cooled gas turbine exhaust casing
JP3110338B2 (en) Combustor cooling structure with steam
JP2015522762A (en) Active gap control system
JP2002534627A (en) Recuperator for gas turbine engine
JPS6340241B2 (en)
JP2012132438A (en) Apparatus and method for cooling platform region of turbine rotor blade
JP2001132476A (en) Gas turbine, gas turbine device and refrigerant recovery method of gas turbine moving blade
JP7093238B2 (en) Steam turbine equipment and combined cycle plant
CN108699913B (en) Cooling system for a turbine engine
JPH10131896A (en) Blade support body for compressor
US8702376B2 (en) High temperature radially fed axial steam turbine
US3915588A (en) Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US20110030335A1 (en) Combined-cycle steam turbine and system having novel cooling flow configuration
CN107044347A (en) A kind of regenerator and gas turbine
JP2001082107A (en) Steam turbine
US6676370B2 (en) Shaped part for forming a guide ring
US2377611A (en) Turbine
JPS61138804A (en) Cooling system for steam turbine
JP2003239704A (en) Turbomachine with high and low pressure parts
US7402024B2 (en) Steam turbine
JPS6172806A (en) Method of zoning condenser for double-flow low-pressure turbine