JP2001080942A - Production of alumina cement - Google Patents

Production of alumina cement

Info

Publication number
JP2001080942A
JP2001080942A JP25261599A JP25261599A JP2001080942A JP 2001080942 A JP2001080942 A JP 2001080942A JP 25261599 A JP25261599 A JP 25261599A JP 25261599 A JP25261599 A JP 25261599A JP 2001080942 A JP2001080942 A JP 2001080942A
Authority
JP
Japan
Prior art keywords
aluminum
alumina cement
ash
shells
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25261599A
Other languages
Japanese (ja)
Other versions
JP3525081B2 (en
Inventor
Akihiro Maekawa
明弘 前川
Kazumi Murakami
和美 村上
Yukihisa Yuasa
幸久 湯浅
Keiji Tomii
奎司 冨井
Masao Kadotani
正雄 門谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie Prefecture
Daiki Aluminium Industry Co Ltd
Original Assignee
Mie Prefecture
Daiki Aluminium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie Prefecture, Daiki Aluminium Industry Co Ltd filed Critical Mie Prefecture
Priority to JP25261599A priority Critical patent/JP3525081B2/en
Publication of JP2001080942A publication Critical patent/JP2001080942A/en
Application granted granted Critical
Publication of JP3525081B2 publication Critical patent/JP3525081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the perfectly recycling of scrapped aluminum possible at an aluminum regeneration factory by firing main materials of aluminum dross waste ash, which is treated as industrial waste, and shells at a specified temperature to produce alumina cement. SOLUTION: The main materials of aluminum dross waste ash and shells are fired at 1,100-1,500 deg.C in a mixed ration of 50-80 pts.wt. shells to 100 pts.wt. aluminum dross waste ash on a dry basis. The aluminum dross waste ash is obtained from the aluminum dross generated in a step to dissolve aluminum or an aluminum alloy after the recoverable metal aluminum content is recovered until the residual metal aluminum content is 5% or below. The residual metal aluminum is successfully reacted with calcium in the shell while restraining the thermit reaction when fired. As a result, the metal aluminum amount remaining in the fired matter can be made very small. High strength and great formability can be achieved when the fired matter is used as cement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業廃棄物として
捨てられていたアルミニウムスクラップを再溶融しアル
ミニウムを回収した時、或いはアルミニウムインゴット
を再溶融した時に発生するアルミドロス残灰と、カキや
真珠など貝類の養殖場から産出される貝殻とで、有用な
アルミナセメントを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to aluminum dross ash generated when aluminum is recovered by re-melting aluminum scrap discarded as industrial waste or re-melting an aluminum ingot, and oysters and pearls. The present invention relates to a method for producing useful alumina cement with shells produced from a shellfish farm.

【0002】[0002]

【従来の技術】アルミニウムメタル、アルミニウム合金
またはそれらのスクラップを溶解あるいは再溶融する際
にはアルミドロスが発生する。このアルミドロスの中に
は金属アルミニウムメタルが含まれており、アルミドロ
ス中の前記メタル分を回収した残りをアルミドロス残灰
と言う。特にスクラップの場合、溶解原料が汚れていれ
ばいるほどメタル回収率は低く、逆に、アルミドロス残
灰の発生量は多くなる。
2. Description of the Related Art Aluminum dross is generated when melting or re-melting aluminum metal, aluminum alloy or scraps thereof. The aluminum dross contains metallic aluminum metal, and the remainder obtained by collecting the metal in the aluminum dross is referred to as aluminum dross residual ash. In particular, in the case of scrap, the dirtyer the molten raw material, the lower the metal recovery rate, and conversely, the greater the amount of aluminum dross residual ash generated.

【0003】近年、リサイクルが盛んになりアルミスク
ラップの溶解量が増え、アルミドロス残灰の発生量も増
加している。一方、廃棄物処分場不足が深刻な社会問題
となっており、今後、廃棄物処理費用がさらに増大して
いくことは容易に予想できる。
In recent years, recycling has become active and the amount of aluminum scrap dissolved has increased, and the amount of aluminum dross residual ash generated has also increased. On the other hand, the shortage of waste disposal sites has become a serious social problem, and it is easy to expect that waste disposal costs will further increase in the future.

【0004】アルミドロス残灰には、圧延業及び押出業
から発生する軽圧系の残灰と鋳物・ダイカストや二次合
金業から発生する合金系の残灰が存在する。軽圧系と合
金系あるいは同じ系の残灰でもその発生場所により化学
組成は異なるが、発生場所が同一であればそのばらつき
は比較的小さい。従って、アルミナセメントの製造にお
いては、発生場所が同じアルミドロス残灰あるいは異な
るものを一定割合で混合し化学組成を安定させ使用す
る。
[0004] Aluminum dross residue ash includes light pressure-based residue ash generated from the rolling and extruding industries and alloy-based residue ash generated from castings, die castings and secondary alloys. Although the chemical composition of the light pressure system and the alloy system or the residual ash of the same system differs depending on the generation location, the variation is relatively small if the generation location is the same. Therefore, in the production of alumina cement, aluminum dross residual ash having the same generation location or different ones is mixed at a fixed ratio to stabilize the chemical composition before use.

【0005】合金系のアルミドロス残灰の主な構成物組
成は、例えば次のようなものである。
[0005] The main constituent composition of the alloy-based aluminum dross residual ash is, for example, as follows.

【0006】 Al2O3:73.27%(内メタルAl:33.5%) SiO2 :11.14%(内メタルSi:4.14%) MgO : 9.93% Fe2O3: 1.60% Na2O: 0.59% K2O : 0.64% 一方、軽圧系のアルミドロス残灰の主な構成物組成は、
例えば次のようなものである。
Al 2 O 3 : 73.27% (internal metal Al: 33.5%) SiO 2 : 11.14% (internal metal Si: 4.14%) MgO: 9.93% Fe 2 O 3 : 1.60% Na 2 O: 0.59% K 2 O: 0.64% On the other hand, the main component composition of light pressure aluminum dross residual ash is
For example:

【0007】 Al2O3:94.25%(内メタルAl:36.3%) SiO2 :0.45%(内メタルSi :0.11%) MgO :1.29% Fe2O3:0.33% Na2O:074% K2O :0.10% 従来のアルミドロス残灰の処理方法としては、アルミド
ロス残灰に石灰石・生石灰を混合し溶融することでアル
ミナセメントを得る方法(特開昭52-152928)、アルミ
ドロスとドロマイトを混合粉砕し1500〜1600℃で焼成す
ることでアルミナセメントを製造する方法(特公昭63-5
7376)、アルミドロスに石灰石・生石灰質等を添加し80
0〜1500℃で焼成することでカルシウムアルミネート及
びカルシウムサルホアルミネートを生成させ、これを速
硬性水硬性材料とする方法(特開平5-294685)、アルミ
ドロス残灰と貝化石を原料にアルミナセメントを製造す
る方法(特開昭63-288932)等がある。
Al 2 O 3 : 94.25% (inner metal Al: 36.3%) SiO 2 : 0.45% (inner metal Si: 0.11%) MgO: 1.29% Fe 2 O 3 : 0.33% Na 2 O: 074% K 2 O: 0.10% As a conventional method for treating aluminum dross residual ash, there is a method in which limestone and quick lime are mixed with aluminum dross residual ash and melted to obtain an alumina cement (Japanese Patent Laid-Open No. 52-152928), and aluminum dross and dolomite are used. A method of manufacturing alumina cement by mixing and crushing and firing at 1500 to 1600 ° C (Japanese Patent Publication No. Sho 63-5
7376), add limestone and quicklime to aluminum dross
A method in which calcium aluminate and calcium sulfoaluminate are produced by baking at 0 to 1500 ° C. and used as a quick-setting hydraulic material (Japanese Patent Laid-Open No. 5-294685). There is a method for producing cement (JP-A-63-288932).

【0008】一方、産業廃棄物として従来処理されてい
た貝殻にはホタテ貝、アコヤ貝、カキ殻などがあり、前
記(特開昭63-288932)の貝化石とは全く異なるもので
時間の経過と共に悪臭が発生するものである。特に、カ
キ殻についてはカキ養殖場等から大量に発生しその処理
に苦慮している。
On the other hand, shells conventionally treated as industrial waste include scallops, pearl oysters, oyster shells, etc., which are completely different from the fossil shells described in JP-A-63-288932, and the passage of time. In addition, a bad smell is generated. In particular, oyster shells are generated in large quantities from oyster farms and the like, and there is a difficulty in treating them.

【0009】これら貝殻の構成物組成は、主に、炭酸カ
ルシウムで、表面に付着した有機物の他、塩素、珪素、
等を含有している。現在のところ、一部が肥料として利
用されているが決定的な再利用方法は見当たらず、人工
魚礁用集魚ケース(特開平06-141727)や健康食用ペッ
トフード(特開平07-031381)等の利用が提案されてい
る程度である。
[0009] The composition of these shells is mainly calcium carbonate, organic substances attached to the surface, chlorine, silicon,
Etc. are contained. At present, some of them are used as fertilizers, but no definitive reuse method has been found, such as artificial fish reef fish collection cases (JP-A-06-141727) and pet foods for healthy eating (JP-A-07-031381). Use is suggested.

【0010】[0010]

【発明が解決しようとする課題】本発明はその処理に苦
慮している廃棄物である軽圧系または合金系のアルミド
ロス残灰とカキ殻等の貝殻を出発原料とし、これら廃棄
物以外の原料を一切使用せず、しかも従来より低温で焼
成出来てエネルギー消費量の低減にも貢献可能なアルミ
ナセメントの製造方法を開発することにある。
SUMMARY OF THE INVENTION The present invention uses light-pressure or alloy aluminum dross residue ash and shells such as oyster shells, which are wastes that are difficult to treat, as starting materials. It is an object of the present invention to develop a method of producing alumina cement which does not use any raw material and which can be fired at a lower temperature than before and can contribute to reduction of energy consumption.

【0011】[0011]

【課題を解決するための手段】「請求項1」は本発明に
掛かるアルミナセメントの製造方法に関し「アルミドロ
ス残灰と貝殻とを主原料にし、1100〜1500℃の温度で焼
成する」事を特徴とする。これによれば、産業廃棄物と
して処理されていたアルミドロス残灰とカキ殻などの貝
殻から有用なアルミナセメントが製造でき、アルミニウ
ム再生工場におけるスクラップアルミニウムの完全リサ
イクルが可能となる。
A first aspect of the present invention relates to a method for producing an alumina cement according to the present invention, wherein "aluminum dross residual ash and shells are used as main raw materials and fired at a temperature of 1100 to 1500 ° C". Features. According to this, useful alumina cement can be manufactured from aluminum dross residual ash and shells such as oyster shells that have been treated as industrial waste, and scrap aluminum can be completely recycled in an aluminum recycling plant.

【0012】特に、本発明では従来例との比較におい
て、主原料の1つとして貝化石でなく、内容物を取り除
いた後の生の貝殻を使用している点が重要である。生の
貝殻は前述のように主に炭酸カルシウムで形成されてい
るが、微細な空隙が無数に存在し且つ前記空隙に有機物
などが充填された、微視的にはポーラスなものと考えら
れる。即ち、無機物と有機物との混合体であり、これが
焼成時の熱で有機物が燃焼してポーラスな炭酸カルシウ
ムの結合体となり、これが更に酸化分解される時に反応
性に富んだ微細なCaOを生成し、アルミナセメント生成
反応をより容易に進行させると推定される。その結果と
して、アルミナセメントの生成反応を通常より低い温度
(1100〜1500℃)での低温焼成を可能にしたと考えられ
る。
In particular, in comparison with the conventional example, it is important that the present invention uses, as one of the main raw materials, not the fossil shellfish but the raw shell after removing the contents. Raw shells are mainly formed of calcium carbonate as described above, but are considered to be microscopically porous with numerous voids and an organic substance filled in the voids. That is, it is a mixture of an inorganic substance and an organic substance, and the organic substance is burned by heat at the time of firing to form a porous calcium carbonate binder, and when it is further oxidatively decomposed, fine CaO with high reactivity is generated. It is presumed that the alumina cement formation reaction proceeds more easily. As a result, the formation reaction of alumina cement is
It is considered that low-temperature firing at (1100 to 1500 ° C.) was made possible.

【0013】「請求項2」はアルミドロス残灰と貝殻の
混合割合に関し「アルミドロス残灰と貝殻の混合割合
は、アルミドロス残灰100重量部に対し、乾燥重量にお
ける貝殻50〜85重量部の範囲である」事を特徴とする。
アルミドロス残灰100重量部に対し、乾燥重量における
貝殻50重量部より小さい場合はコランダム(Al2O3)が多
く生成し、85重量部より大きい場合はCa20Al26Mg3Si3O
68やマヤナイト(12CaO・7Al2O8)が多く生成し、アルミナ
セメントとならない。
[0013] Claim 2 relates to the mixing ratio of aluminum dross residual ash and shells. "The mixing ratio of aluminum dross residual ash and shells is 50 to 85 parts by weight of shell per 100 parts by weight of aluminum dross residual ash. In the range. "
For 100 parts by weight of residual amidroshes, corundum (Al 2 O 3 ) is generated more when the shell is less than 50 parts by weight in dry weight, and Ca 20 Al 26 Mg 3 Si 3 O
A lot of 68 and mayanite (12CaO.7Al 2 O 8 ) are formed and do not become alumina cement.

【0014】「請求項3」は、アルミドロス残灰の種類
に関し「アルミドロス残灰は、アルミニウムまたはアル
ミニウム合金溶解工程から発生するアルミドロスから、
回収可能なメタル分を回収した残りの部分である」こと
を特徴とするもので、このようにメタル回収後のアルミ
ドロス残灰を原材料として使用出来るので、産業廃棄物
減少効果並びに経済的効果は非常に高い。なおここで
は、アルミドロス残灰としては、メタル回収後のものに
言及しているが、当然、メタル回収前のものでも使用可
能である。
Claim 3 relates to the type of aluminum dross residual ash. "Aluminum dross residual ash is derived from aluminum dross generated from the aluminum or aluminum alloy melting step.
It is the remaining part of the metal that can be recovered. '' The aluminum dross ash after the metal recovery can be used as a raw material in this way, thus reducing the industrial waste and economical effects. Very high. Here, as the aluminum dross residual ash, the one after metal recovery is mentioned, but naturally, the one before metal recovery can also be used.

【0015】「請求項4」はアルミドロス残灰中の残留
メタル分に関し「仮焼されたアルミドロス残灰の残留ア
ルミメタル分が5%以下のもの」である事を特徴とす
る。前述のように仮焼する事により残留アルミメタル分
を5%以下にする事で、焼成時のテルミット反応を抑制
し且つ貝殻のカルシウム分とうまく反応させる事が出来
てアルミナセメント中に残留する金属アルミニウム量を
非常に少なくする事が出来、焼成物をセメントとして使
用した場合、高強度、高成形性を発揮する。
Claim 4 relates to the residual metal content in the aluminum dross residual ash, wherein the residual aluminum content of the calcined aluminum dross residual ash is 5% or less. By reducing the residual aluminum metal content to 5% or less by calcination as described above, the thermite reaction at the time of firing can be suppressed and the calcium content of the shell can be reacted well, and the metal remaining in the alumina cement The amount of aluminum can be extremely reduced, and when the fired product is used as cement, it exhibits high strength and high formability.

【0016】「請求項5」は、アルミニウム残灰の平均
粒径に関し「貝殻との焼成に先だって行われる仮焼に供
されるアルミニウム残灰は、その平均粒径が1mm以下に
粉砕されている」事を特徴とする。
Claim 5 relates to an average particle size of aluminum residual ash. "Aluminum residual ash subjected to calcination performed prior to sintering with shells is pulverized to an average particle size of 1 mm or less. The feature is.

【0017】「請求項6」は、粉砕貝殻の平均粒径に関
し「焼成に供される粉砕貝殻の平均粒径は、1mm以下で
ある」事を特徴とする。前記アルミニウム残灰と粉砕貝
殻の平均粒径を1mm以下にする事で反応が促進され、且
つ焼成温度が低いので焼成物は粉粒状のままであり、後
の粉砕が容易となる。
A sixth aspect of the present invention is characterized in that the average particle size of the crushed shell used for firing is 1 mm or less. The reaction is promoted by setting the average particle size of the aluminum residual ash and the crushed shell to 1 mm or less, and the calcination temperature is low, so that the calcination product remains in the form of powder and granules, and subsequent crushing becomes easy.

【0018】 〔発明の詳細な説明〕以下、本発明を詳述する。本発明
の原材料となるアルミドロスには、大別して合金系のド
ロスと軽圧系のドロスとがあり、合金系のドロスは、軽
圧系のドロスと比較しマグネシウム、シリカ等のアルミ
ナセメントの原料としては好ましくない成分を多く含有
している。組成の例は前出の通りである。
[Detailed Description of the Invention] Hereinafter, the present invention will be described in detail. Aluminum dross, which is a raw material of the present invention, is roughly classified into alloy dross and light pressure dross, and alloy dross is a raw material of alumina cement such as magnesium and silica as compared with light pressure dross. Contains many undesirable components. Examples of the composition are as described above.

【0019】合金系アルミドロス残灰に含有するマグネ
シウムは焼成時において、主に、アルミニウムと結合し
スピネル(Al2O3・MgO)となる。スピネルは、非常に安
定しているためアルミナセメントへの悪影響はなく、逆
に耐火度が高いためアルミナセメントの耐火性を向上さ
せる。
During firing, magnesium contained in the alloy-based aluminum dross residual ash mainly combines with aluminum to form spinel (Al 2 O 3 .MgO). Spinel is very stable and therefore has no adverse effect on alumina cement. Conversely, spinel has high fire resistance and improves the fire resistance of alumina cement.

【0020】同じく、合金系のアルミドロス残灰に多く
含有しているシリカは、焼成時にアルミニウムと反応し
水硬性のないゲーレナイト(2CaO・Al2O3・SiO2)を生
成させる。スピネル、ゲ−レナイトはアルミナセメント
に悪影響を及ぼすことはないが、アルミナセメントの主
成分であるカルシウムアルミネート(CaO・Al2O3 :以
下、CAとする)を多く生成させる上では好ましくないも
のである。したがって、合金系ドロス単独での使用より
軽圧系ドロスとの混合使用が望ましい。
Similarly, the silica contained in the alloy-based aluminum dross residual ash in a large amount reacts with aluminum at the time of calcination to form gehlenite (2CaO.Al 2 O 3 .SiO 2 ) having no hydraulic property. Spinel and gallenite do not adversely affect the alumina cement, but are not preferable in generating a large amount of calcium aluminate (CaO.Al 2 O 3 : hereinafter, CA) which is a main component of the alumina cement. It is. Therefore, it is preferable to use the alloy dross in combination with the light pressure dross rather than using the alloy dross alone.

【0021】アルミドロス残灰の生灰には多くのメタル
分を含有するため、これらが酸化鉄等と高温で接するこ
とでテルミット反応と呼ばれる爆発的な反応が起こる。
このテルミット反応の利用はアルミナセメントの製造に
は有効であると思われたが、1100〜1350℃での焼成範囲
においては貝殻のカルシウム成分とうまく反応せずアル
ミナセメントの主成分であるCAをうまく生成させず、一
部、金属アルミニウムも残留していた。
Since the raw ash of aluminum dross residual ash contains a large amount of metal, an explosive reaction called a thermite reaction occurs when the raw ash comes into contact with iron oxide or the like at a high temperature.
Although the use of this thermite reaction was thought to be effective for the production of alumina cement, it did not react well with the calcium component of the shell in the firing range of 1100 to 1350 ° C, and it did not produce CA, the main component of alumina cement. It was not formed, and some aluminum metal remained.

【0022】この原因は、ドロスの金属アルミニウムが
カキ殻等の貝殻のカルシウム成分と反応を起こす前に酸
化してしまうため反応部分の環境が酸欠状態となり反応
が促進されなかったと思われる。加えて金属アルミニウ
ムが製造したアルミナセメントに残留した場合、練り混
ぜた時点でこれらが発泡材となり充分な強度が発現しな
い他、膨張してきちんとした成形物が得られない。した
がって、アルミドロス残灰をあらかじめ酸化させておく
ことは1100〜1350℃の焼成温度でのアルミナセメントの
製造には有効である。
It is considered that the cause of this is that the metal aluminum of dross is oxidized before reacting with the calcium component of the shell such as oyster shells, so that the environment of the reaction part is in an oxygen-deficient state and the reaction is not promoted. In addition, when metallic aluminum remains in the produced alumina cement, it becomes a foamed material at the time of mixing and does not exhibit sufficient strength, and does not expand to obtain a proper molded product. Therefore, previously oxidizing aluminum dross residual ash is effective for producing alumina cement at a firing temperature of 1100 to 1350 ° C.

【0023】アルミドロス残灰に添加される石灰質原料
としては、カキや真珠或いはホタテ貝の養殖場等でその
処理に苦慮しているカキ殻、アコヤ貝、ホタテ貝などの
内容物を取り除いた後の生の貝殻で、貝殻の成分のほと
んどが炭酸カルシウムで種類によりカルサイト、アラゴ
ナイトといった構造に違いがある。しかし、これらの構
造上の違いは高温で処理するアルミナセメントの製造に
は影響がない。
As the calcareous raw material to be added to the aluminum dross residual ash, after removing contents such as oyster shells, pearl oyster shells, and scallop shells which are difficult to treat in oysters, pearls, or scallop farms, etc. Most of the shell components are calcium carbonate, and there are differences in the structure of calcite and aragonite depending on the type. However, these structural differences have no effect on the production of alumina cement treated at high temperatures.

【0024】前記生の貝殻は前述のように主に炭酸カル
シウムで形成されているが、微細な空隙が無数に存在し
且つ前記空隙に有機物などが充填された、微視的にはポ
ーラスなものと考えられる。即ち、無機物と有機物との
混合体であり、これが焼成時の熱で有機物が燃焼してポ
ーラスな炭酸カルシウムの結合体となる。そしてこれが
焼成により酸化分解される時に反応性に富んだ微細なCa
Oを生成し、アルミナセメント生成反応をより容易に進
行させると推定される。その結果として、アルミナセメ
ントの生成反応を通常より低い温度(1100〜1500℃)での
低温焼成を可能にすると考えられる。
The raw shell is mainly made of calcium carbonate as described above, but has a myriad of fine voids and is filled with organic substances and the like, and is microscopically porous. it is conceivable that. That is, it is a mixture of an inorganic substance and an organic substance, and the organic substance is burned by heat at the time of baking to form a porous calcium carbonate composite. And when this is oxidatively decomposed by firing, fine reactive Ca
It is presumed that O is produced and the alumina cement production reaction proceeds more easily. As a result, it is considered that the formation reaction of alumina cement can be performed at a low temperature (1100 to 1500 ° C.) at a low temperature.

【0025】他の成分としては、カリウム、ナトリウ
ム、塩素等を若干量含有し、表面に付着物が多い場合に
はシリカや有機物も存在する。シリカや塩素などは水洗
することで多くが除去でき、カキ殻等の場合には表面が
乾燥していても内部に水分を保持している場合が多いた
め、粉砕混合処理を行う前には100℃以上で充分に乾燥
しておくことが重要である。また、悪臭の原因である有
機物はセメントの焼成温度に達する以前に分解されるた
め問題とならない。
Other components include potassium, sodium, chlorine and the like in a small amount, and when there are many deposits on the surface, silica and organic substances are also present. Most of silica and chlorine can be removed by washing with water, and in the case of oyster shells, etc., water is often retained inside even if the surface is dry. It is important to dry sufficiently above ℃. In addition, the organic substances causing the offensive odor are decomposed before reaching the calcination temperature of the cement, so that there is no problem.

【0026】貝殻に含有する塩素は、水洗処理でかなり
除去できることは既に述べた。アルミドロス残灰におい
ても、溶湯の清浄化と品質改善のため塩素ガス、塩素系
フラックス等が使用されるため塩素は若干含有する。塩
素はアルミナセメントの焼成過程においても低減してい
くが、できあがったセメントに残留していることも考え
られる。
It has already been mentioned that chlorine contained in shells can be considerably removed by washing with water. Amidroth residual ash also contains a small amount of chlorine because chlorine gas and chlorine-based flux are used for cleaning and improving the quality of the molten metal. Chlorine is also reduced during the alumina cement firing process, but it is also conceivable that chlorine remains in the finished cement.

【0027】一般的にセメントを鉄筋コンクリートの材
料として使用する場合には、塩素が鉄筋に悪影響(腐食)
を及ぼすため含有する上限値が規定されている。しかし
ながら、アルミナセメントに塩素が若干量残留していた
としても、耐火物として使用する場合には鉄筋と共に使
用されない無筋コンクリートであるため鉄筋腐食の心配
がなく問題とならない。
In general, when cement is used as a material for reinforced concrete, chlorine has an adverse effect on the reinforcing steel (corrosion).
, The upper limit of the content is specified. However, even if a small amount of chlorine remains in the alumina cement, when used as a refractory, it is a straight concrete that is not used together with a reinforcing bar, so that there is no concern about rebar corrosion and there is no problem.

【0028】次に、本発明の製造方法に付いて説明す
る。まず、生の貝殻と仮焼にて予め酸化させたアルミド
ロス残灰とをそれぞれ1mm以下に粉砕した後、混合し、1
100〜1350℃で焼成することでアルミナセメントクリン
カーを得る。このとき、混合割合はAl2O3/CaO=1.5〜2.0
(重量比)、焼成時間は焼成温度で60〜120分が好適で、
クリンカーをブレーン比表面積で3000〜5000cm2/g 程度
に粉砕することでアルミナセメントを得る。
Next, the manufacturing method of the present invention will be described. First, raw shells and aluminum dross residual ash, which had been pre-oxidized by calcining, were each crushed to 1 mm or less, and then mixed.
Alumina cement clinker is obtained by baking at 100 to 1350 ° C. At this time, the mixing ratio is Al 2 O 3 /CaO=1.5 to 2.0
(Weight ratio), the firing time is preferably 60 to 120 minutes at the firing temperature,
Alumina cement is obtained by crushing the clinker to a specific surface area of about 3000 to 5000 cm 2 / g.

【0029】アルミナセメントを1100〜1350℃で焼成す
ることは工業的に製造されている1450〜1600℃より低い
温度であるためエネルギー消費も少なく、さらに、クリ
ンカーが粉粒状で、従来の高温焼成の場合のように溶融
して1つの大きいブロック状態になっていないため、粉
砕にかかるエネルギー消費もそれだけ少なくなり、省エ
ネルギに貢献出来る。粉砕された前記アルミナセメント
はそのままかあるいはアルミナ等を添加し、さらに水を
加え混練した後、硬化させて使用する。
Firing alumina cement at 1100 to 1350 ° C. is lower in temperature than 1450 to 1600 ° C., which is industrially manufactured, so that it consumes less energy. Since it is not melted into one large block state as in the case, the energy consumption for pulverization is reduced accordingly, which can contribute to energy saving. The pulverized alumina cement is used as it is or after adding alumina or the like, further adding water, kneading, and then hardening.

【0030】以下に実施例を挙げて本発明をより具体的
に説明する。 「実施例1」下記の主な組成を持つあらかじめ酸化させ
た合金系アルミドロス残灰100重量部に対し、カキ殻82
重量部加え、ボールミルにて200rpm、1時間の条件で粉
砕混合した。1回の焼成量は20gとした。これを電気炉で
1300℃で2時間焼成し、得られた焼成物を再びボールミ
ルで200rpm、2時間の条件で粉砕したものをアルミナセ
メントとした。このとき、アルミニウム残灰の主な化学
組成およびアルミナセメントのX線回折パターンを図1に
示す。
Hereinafter, the present invention will be described more specifically with reference to examples. "Example 1" Oyster husk 82 parts per 100 parts by weight of pre-oxidized alloy aluminum dross residual ash having the following main composition
A weight part was added and pulverized and mixed in a ball mill at 200 rpm for 1 hour. The amount of one firing was 20 g. This in an electric furnace
The mixture was calcined at 1300 ° C. for 2 hours, and the obtained calcined product was pulverized again with a ball mill at 200 rpm for 2 hours to obtain alumina cement. At this time, the main chemical composition of the aluminum residual ash and the X-ray diffraction pattern of the alumina cement are shown in FIG.

【0031】図1において、実施例1により得られた生成
物の主なX線回折ピークはスピネル、ゲーレナイトの
他、アルミナセメントの主要化合物であるCAであった。
In FIG. 1, the main X-ray diffraction peaks of the product obtained in Example 1 were CA, which is a main compound of alumina cement, in addition to spinel and gehlenite.

【0032】(実施例1における酸化させた合金系アル
ミニウム残灰の主な化学組成) Al2O3:68.54% SiO2 :14.44% MgO:10.63% Fe2O3 :2.72% Na2O:0.32% K2O :0.08% このアルミナセメントの強度試験及び耐火度試験を行っ
た。強度試験はJIS R2521(1995)に従い、耐火度試験はJ
IS R2204(1991)に準じた方法により行った。その結果、
材令1日における強度は28.5MPa、7日は32.5MPa、28日は
34.8MPaで耐火温度は1480℃であった。
(Main Chemical Composition of Oxidized Alloy Residual Ash in Example 1) Al 2 O 3 : 68.54% SiO 2 : 14.44% MgO: 10.63% Fe 2 O 3 : 2.72% Na 2 O: 0.32 % K 2 O: 0.08% The alumina cement was subjected to a strength test and a fire resistance test. The strength test complies with JIS R2521 (1995), and the fire resistance test is J
This was performed according to a method according to IS R2204 (1991). as a result,
28.5MPa in one day of material age, 32.5MPa in 7th, 28th in 28th
At 34.8 MPa, the refractory temperature was 1480 ° C.

【0033】「実施例2」実施例1と同じ廃棄物原料を
使用し、あらかじめ仮焼した合金系アルミドロス残灰10
0重量部に対し、カキ殻65重量部加え、電気炉において1
150℃で2時間焼成した。他の条件は実施例1と同条件と
した。このときのアルミナセメントのX線回折パターン
を図2に示す。
Example 2 Using the same waste raw material as in Example 1, preliminarily calcined alloy aluminum dross residual ash 10
0 parts by weight, 65 parts by weight of oyster shells, 1 in an electric furnace
It was baked at 150 ° C. for 2 hours. Other conditions were the same as in Example 1. FIG. 2 shows an X-ray diffraction pattern of the alumina cement at this time.

【0034】図2において、実施例2により得られた生成
物のX線回折ピークは主にCAの他、スピネル、ゲーレナ
イト、コランダム(Al2O3)、マヤナイト(12CaO・7Al2O3)
であった。強度試験及び耐火度試験は、実施例1と同様
に行い、その結果、材令1日における強度は15.0MPa、7
日は20.5MPa、28日は22.7MPaで耐火温度は1500℃であっ
た。
In FIG. 2, the X-ray diffraction peak of the product obtained in Example 2 is mainly CA, as well as spinel, gehlenite, corundum (Al 2 O 3 ) and mayanite (12CaO · 7Al 2 O 3 ).
Met. The strength test and the fire resistance test were performed in the same manner as in Example 1. As a result, the strength at 1 day of the material age was 15.0 MPa, 7
The day was 20.5 MPa, the 28th was 22.7 MPa and the refractory temperature was 1500 ° C.

【0035】「実施例3」あらかじめ酸化させた軽圧系
ドロス150Kgと合金系ドロス36Kgにカキ殻150Kgを加えた
合計336Kgの原料を混合した後、回転炉において焼成し
た。焼成条件は、原料供給速度140Kg / 時間、炉の回転
速度1.5rpm、排ガス温度1080℃で原料焼成時間はおよそ
2時間であった。アルミニウム残灰の主な化学組成を下
記に、得られたアルミナセメントのX線回折パターンを
図3に示す。
[Example 3] A total of 336 kg of raw materials obtained by adding 150 kg of oyster shells to 150 kg of light-pressure dross and 36 kg of alloy dross, which had been oxidized in advance, were mixed and then fired in a rotary furnace. The firing conditions were as follows: raw material supply rate 140 kg / hour, furnace rotation speed 1.5 rpm, exhaust gas temperature 1080 ° C, and raw material firing time was approximately
Two hours. The main chemical composition of aluminum residual ash is shown below, and the X-ray diffraction pattern of the obtained alumina cement is shown in FIG.

【0036】(実施例3における酸化させた軽圧系アル
ミニウム残灰の主な化学組成) Al2O3 :86.57% (内、メタルアルミニウム分:0.56
%) SiO2 : 4.83% (内、メタルシリカニウム分:0.11
%) MgO : 5.10% Fe2O3 :1.22% Na2O : 0.14% K2O :0.03% (実施例3における酸化させた合金系アルミニウム残灰
の主な化学組成) Al2O3 :65.76% (内、メタルアルミニウム分:1.24
%) SiO2 :14.90% (内、メタルシリカニウム分:3.89
%) MgO :12.02% Fe2O3: 2.04% Na2O : 0.11% K2O : 0.06% 図3において、実施例3により得られた生成物のX線回折
ピークは主にCAの他、スピネル、ゲーレナイトであっ
た。強度試験及び耐火度試験は、実施例1、2と同様に行
い、その結果、材令1日における強度は39.5MPa、7日は4
8.9MPa、28日は50.9MPaで耐火温度は1480℃であった。
実施例3の結果より、電気炉による少量の焼成結果と回
転炉における大量の焼成結果が良く一致することが確認
できた。
(Main chemical composition of oxidized light pressure aluminum residual ash in Example 3) Al 2 O 3 : 86.57% (including metal aluminum content: 0.56)
%) SiO 2 : 4.83% (including metal silica content: 0.11)
%) MgO: 5.10% Fe 2 O 3: 1.22% Na 2 O: 0.14% K 2 O: 0.03% ( main chemical composition of the alloy series aluminum residual ash obtained by oxidation in Example 3) Al 2 O 3: 65.76 % (Including metal aluminum content: 1.24)
%) SiO 2 : 14.90% (of which metal silica content: 3.89)
%) MgO: 12.02% Fe 2 O 3 : 2.04% Na 2 O: 0.11% K 2 O: 0.06% In FIG. 3, the X-ray diffraction peaks of the product obtained in Example 3 mainly include CA, Spinel, Gehle Knight. The strength test and the fire resistance test were performed in the same manner as in Examples 1 and 2, and as a result, the strength on day 1 of the material was 39.5 MPa, and on day 7 it was 4
At 8.9MPa, the temperature on the 28th was 50.9MPa and the refractory temperature was 1480 ℃.
From the results of Example 3, it was confirmed that the results of the small amount of firing in the electric furnace and the results of the large amount of firing in the rotary furnace were in good agreement.

【0037】[0037]

【発明の効果】以上の通り、本発明によると、その処理
に苦慮していたアルミドロス残灰とカキ殻などの貝殻を
同時に処理でき、耐火物原料等として有用なアルミナセ
メントが製造できる。得られたセメントは、材令初期の
おいて充分に強度発現し、耐火度も1500℃程度と良好で
ある。このようにアルミドロス残灰をアルミナセメント
の原料とすることで、アルミニウム再生工場におけるス
クラップアルミニウムの完全リサイクルが可能となる。
As described above, according to the present invention, aluminum dross residual ash and shells such as oyster shells, which have been difficult to treat, can be treated simultaneously, and alumina cement useful as a refractory raw material can be produced. The obtained cement exhibits sufficient strength in the early stage of the material age, and has a good fire resistance of about 1500 ° C. By using aluminum dross residual ash as a raw material for alumina cement in this way, it becomes possible to completely recycle scrap aluminum in an aluminum recycling factory.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で製造したセメントのX線回折パターン
FIG. 1 is an X-ray diffraction pattern diagram of a cement manufactured in Example 1.

【図2】実施例2で製造したセメントのX線回折パターン
FIG. 2 is an X-ray diffraction pattern diagram of the cement produced in Example 2.

【図3】実施例3で製造したセメントのX線回折パターン
FIG. 3 is an X-ray diffraction pattern diagram of the cement manufactured in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 和美 三重県津市高茶屋5丁目5番45号 三重県 科学技術振興センター工業技術総合研究所 内 (72)発明者 湯浅 幸久 三重県津市高茶屋5丁目5番45号 三重県 科学技術振興センター工業技術総合研究所 内 (72)発明者 冨井 奎司 大阪府八尾市南久宝寺3丁目46番地 株式 会社大紀アルミニウム工業所内 (72)発明者 門谷 正雄 大阪府八尾市南久宝寺3丁目46番地 株式 会社大紀アルミニウム工業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazumi Murakami 5-5-45 Takachaya, Tsu-shi, Mie Pref., Mie Science and Technology Promotion Center, National Institute of Advanced Industrial Science and Technology (72) Inventor Yukihisa Yuasa 5 Takachaya, Tsu-shi, Mie No.5-45, Mie Prefectural Institute of Science and Technology, National Institute of Advanced Industrial Science and Technology (72) Inventor Keiji Tomii 3-46, Minamikyuhoji, Yao-shi, Osaka Inside Daiki Aluminum Industry Co., Ltd. (72) Inventor Masao Kadoya Osaka 3-46 Minamikyuho-ji Temple, Yao City Daiki Aluminum Industry Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミドロス残灰と貝殻とを主原料に
し、1100〜1500℃の温度で焼成する事を特徴とするアル
ミナセメントの製造方法。
1. A method for producing alumina cement, comprising using aluminid residual ash and shells as main raw materials and firing at a temperature of 1100 to 1500 ° C.
【請求項2】 アルミドロス残灰と貝殻の混合割合は、
アルミドロス残灰100重量部に対し、乾燥重量における
貝殻50〜85重量部の範囲である事を特徴とする請求項1
に記載のアルミナセメントの製造方法。
2. The mixing ratio of the residual amidroth ash and the shell is as follows:
The shell is 50 to 85 parts by weight on a dry weight basis relative to 100 parts by weight of the residual ash of the amidroth.
The method for producing alumina cement according to the above.
【請求項3】 アルミドロス残灰は、アルミニウムまた
はアルミニウム合金溶解工程から発生するアルミドロス
から、回収可能なメタル分を回収した残りの部分である
ことを特徴とする請求項1又は2に記載のアルミナセメ
ントの製造方法。
3. The method according to claim 1, wherein the residual amidroth ash is a remaining portion obtained by recovering a recoverable metal component from aluminum dross generated from the aluminum or aluminum alloy melting step. Manufacturing method of alumina cement.
【請求項4】 仮焼されたアルミドロス残灰の残留アル
ミメタル分が5%以下のものである事を特徴とする請求
項1〜3のいずれかに記載のアルミナセメントの製造方
法。
4. The method for producing alumina cement according to claim 1, wherein the calcined aluminum dross residual ash has a residual aluminum metal content of 5% or less.
【請求項5】 貝殻との焼成に先だって行われる仮焼に
供されるアルミニウム残灰は、その平均粒径が1mm以下
に粉砕されている事を特徴とする請求項1〜4のいずれ
かに記載のアルミナセメントの製造方法。
5. The method according to claim 1, wherein the aluminum residual ash subjected to calcination prior to sintering with the shell is ground to an average particle size of 1 mm or less. A method for producing the alumina cement according to the above.
【請求項6】 焼成に供される粉砕貝殻の平均粒径は、
1mm以下である事を特徴とする請求項1〜5のいずれか
に記載のアルミナセメントの製造方法。
6. The average particle size of the crushed shell used for firing is as follows:
The method for producing alumina cement according to any one of claims 1 to 5, wherein the diameter is 1 mm or less.
JP25261599A 1999-09-07 1999-09-07 Method for producing alumina cement Expired - Lifetime JP3525081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25261599A JP3525081B2 (en) 1999-09-07 1999-09-07 Method for producing alumina cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25261599A JP3525081B2 (en) 1999-09-07 1999-09-07 Method for producing alumina cement

Publications (2)

Publication Number Publication Date
JP2001080942A true JP2001080942A (en) 2001-03-27
JP3525081B2 JP3525081B2 (en) 2004-05-10

Family

ID=17239840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25261599A Expired - Lifetime JP3525081B2 (en) 1999-09-07 1999-09-07 Method for producing alumina cement

Country Status (1)

Country Link
JP (1) JP3525081B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273637A (en) * 2005-03-29 2006-10-12 Taiheiyo Cement Corp Fired product
JP2006282486A (en) * 2005-04-05 2006-10-19 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, and monolithic refractory
CN104086106A (en) * 2014-06-27 2014-10-08 安徽珍珠水泥集团股份有限公司 Production method of high-efficiency cement
ES2592953A1 (en) * 2015-05-29 2016-12-02 Cementos Portland Valderrivas, S.A. Cementing material from mixtures of waste and/or industrial subproducts and manufacturing procedure (Machine-translation by Google Translate, not legally binding)
KR101991317B1 (en) * 2017-12-21 2019-06-20 한국해양대학교 산학협력단 cement clinker composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273637A (en) * 2005-03-29 2006-10-12 Taiheiyo Cement Corp Fired product
JP4567504B2 (en) * 2005-03-29 2010-10-20 太平洋セメント株式会社 Fired product
JP2006282486A (en) * 2005-04-05 2006-10-19 Denki Kagaku Kogyo Kk Alumina cement, alumina cement composition, and monolithic refractory
CN104086106A (en) * 2014-06-27 2014-10-08 安徽珍珠水泥集团股份有限公司 Production method of high-efficiency cement
ES2592953A1 (en) * 2015-05-29 2016-12-02 Cementos Portland Valderrivas, S.A. Cementing material from mixtures of waste and/or industrial subproducts and manufacturing procedure (Machine-translation by Google Translate, not legally binding)
KR101991317B1 (en) * 2017-12-21 2019-06-20 한국해양대학교 산학협력단 cement clinker composition

Also Published As

Publication number Publication date
JP3525081B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
RU2567977C2 (en) Method of extraction of metals from aluminium-bearing and titaniferous ores and residual rock
US5198190A (en) Method of recycling hazardous waste
EP0720592A1 (en) Process for the preparation of calcium aluminates from aluminum dross residues
WO2009089907A1 (en) Process for preparing a foaming slag former, product and use thereof.
CN103030312B (en) Treatment method of magnesium metal smelting waste slag
CN112607758B (en) Method for preparing calcium aluminate by synergistic treatment of high-magnesium aluminum ash and fly ash
JP2683763B2 (en) Recalcination and extraction methods for detoxification and integrated utilization of chromium residues
Lou et al. Recycling secondary aluminum dross to make building materials: A review
Moon et al. Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future
JP3925683B2 (en) Cement or cement additive manufacturing method
JP3525081B2 (en) Method for producing alumina cement
CN105217825B (en) A kind of segment processing method of fluorine-containing heavy metal wastewater thereby
CN112725629A (en) Preparation method for extracting nonferrous metal and reduced iron from steel slag
US20080041277A1 (en) Fluoride-containing hydraulic cements and methods of making the same
JP5126924B2 (en) Production method of high purity cement from incinerated ash
JPH09202616A (en) Ceramic stock and its production
CN109336430A (en) Using copper ore dressing tailings recycling iron coordinate system for the method for inorganic coagulation material
CN106927706A (en) A kind of method of incineration of refuse flyash synthetic crystal mineral material
CN113336458A (en) Novel cement with industrial waste residues as raw materials and preparation method thereof
JP4026105B2 (en) Method for manufacturing ground improvement material
CN108623291A (en) A kind of technique preparing refractory castable for ladle coproduction acid
CN108751966A (en) A kind of technique of ardealite and the hard heat-insulated plate coproduction acid of red mud furnace lining
RU2619406C2 (en) Method for complex processing of red and nepheline sludges
TW201226578A (en) A method to manufacture alumina cement from black dross of secondary aluminum metallurgy
US5516976A (en) Sulphate agglomeration

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Ref document number: 3525081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term