JP2001079831A - Twin-screw extruder - Google Patents

Twin-screw extruder

Info

Publication number
JP2001079831A
JP2001079831A JP26357799A JP26357799A JP2001079831A JP 2001079831 A JP2001079831 A JP 2001079831A JP 26357799 A JP26357799 A JP 26357799A JP 26357799 A JP26357799 A JP 26357799A JP 2001079831 A JP2001079831 A JP 2001079831A
Authority
JP
Japan
Prior art keywords
flash
screw
twin
screw extruder
devolatilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26357799A
Other languages
Japanese (ja)
Other versions
JP4372911B2 (en
Inventor
Neiwa Ou
寧和 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP26357799A priority Critical patent/JP4372911B2/en
Publication of JP2001079831A publication Critical patent/JP2001079831A/en
Application granted granted Critical
Publication of JP4372911B2 publication Critical patent/JP4372911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/683Barrels or cylinders for more than two screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a screw extruder wherein a polymer solution containing high concentration volatile content can be efficiently devolatized and there exists no uselessness in terms of mechanical design and simplification of separation process can be performed by a rational design and cost reduction and energy saving can be performed. SOLUTION: In a flash devolatization region I, two relatively short auxiliary screws 2a and 2b are arranged in a V-shape above base biaxial screws 1a and 1b which are intermeshed and rotated in the same direction to make them intermesh to the twin screws 1a and 1b and a foamed body flow relaxation room 10, a shunt 15 and a flash room 14 are arranged in this order from the top below a feeding pipe 12 for a polymer provided on the upper part of an upper half divided barrel of the flash devolatization region I and gas flow rate of the volatile content separated is relaxed by the flash tank 6 provided on the upstream side of the feeding pipe 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー製造プロ
セスにおけるポリマー溶液から未反応のモノマーや溶媒
等の揮発分を除去するための脱揮工程において使用され
る二軸スクリュ押出機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twin-screw extruder used in a devolatilization step for removing volatile components such as unreacted monomers and solvents from a polymer solution in a polymer production process.

【0002】[0002]

【従来の技術】従来のフラッシュ脱揮領域を有する脱揮
用スクリュ押出機に関しては、かみ合い型同方向回転二
軸スクリュ押出機、かみ合い型異方向回転二軸スクリュ
押出機、二対のかみ合い型同方向回転二軸スクリュで構
成されるそれぞれの回転方向の異なる非かみ合い回転四
軸スクリュ押出機と、二対の部分的かみ合い型同方向回
転二軸スクリュで構成されるそれぞれの回転方向の異な
る非かみ合い四軸スクリュ押出機がある。
2. Description of the Related Art Conventionally, a devolatilizing screw extruder having a flash devolatilizing area includes a meshing type co-rotating twin-screw extruder, a meshing type counter-rotating twin-screw extruder, and a pair of meshing type screw extruders. Non-meshing rotary four-screw extruder with different rotating directions composed of directional rotating twin-screw and non-meshing with different rotating directions composed of two pairs of partially meshing co-rotating twin-screw There is a four screw extruder.

【0003】[0003]

【発明が解決しようとする課題】従来のフラッシュ脱揮
操作を含む脱揮用スクリュ押出機は、ポリマー溶液供給
部のスクリュ流路断面積が小さく、フラッシュ脱揮操作
を行う際、高いガス気速によるエントレメントの発生を
抑制するように、ポリマー溶液の供給量が制限されるた
め、押出機全体の乾量基準のポリマー処理能力が低くい
と見られる。
A conventional screw extruder for devolatilization including a flash devolatilization operation has a small screw flow path cross-sectional area of a polymer solution supply section, and when performing a flash devolatilization operation, has a high gas velocity. The amount of supply of the polymer solution is limited so as to suppress the generation of entrainment due to the above, and it is considered that the polymer processing capacity of the entire extruder on a dry weight basis is low.

【0004】また、フラッシュタンクを押出機の供給部
の上方に設置される場合には、ポリマー溶液をフラッシ
ュタンク内の供給部の上方からフラッシュし、分離され
た揮発分はフラッシュタンク上方の側面に設けられた流
路から排気され、残った融体を押出機内に供給する。こ
の様なフラッシュ脱揮は、効率が良いが、フラッシュタ
ンクの内壁に溶融ポリマーの飛沫が付着しやすい。そこ
で、フラッシュタンクのフラッシュ脱揮性能を保証し、
フラッシュタンクに付着して劣化した溶融ポリマーが供
給部のスクリュ流路内に流れ込むことにより処理される
ポリマー製品品質の低下を防止するため、定期的に押出
機の運転を止め、フラッシュタンクを掃除する必要があ
る。
When the flash tank is installed above the feed section of the extruder, the polymer solution is flashed from above the feed section in the flash tank, and the separated volatile components are applied to the side surface above the flash tank. The melt that is exhausted from the provided flow path and is supplied to the extruder. Such flash devolatilization is efficient, but droplets of the molten polymer tend to adhere to the inner wall of the flash tank. Therefore, the flash devolatilization performance of the flash tank is guaranteed,
Periodically stop the extruder and clean the flash tank to prevent degradation of the polymer product processed by the molten polymer that has adhered to the flash tank and degraded flowing into the screw flow path in the supply section. There is a need.

【0005】また、四軸スクリュ押出機に関しては、ポ
リマー溶液を直接に供給部にフィードする場合には、ス
クリュ流路の断面積が比較的大きいことによって、エン
トレメントの発生が抑制されると共に、フラッシュ脱揮
の能力も比較的良いが、その下流側においては添加剤の
添加・分散や注水脱揮技術の応用が難しく、また、フラ
ッシュ後の体積が小さくなるポリマー融体に対しては、
スクリュ本数が過剰であるため、スクリュとバレルの製
造コストが高いと見られる。
In the case of a four-screw screw extruder, when the polymer solution is fed directly to the supply section, the cross-sectional area of the screw flow path is relatively large, so that the generation of entrainment is suppressed and Although flash devolatilization ability is relatively good, it is difficult to apply and disperse additives and apply water injection devolatilization technology downstream, and for polymer melts whose volume after flashing is small,
Due to the excessive number of screws, the manufacturing cost of screws and barrels is likely to be high.

【0006】また、部分的かみ合い型同、異方向回転の
二軸スクリュ押出機と四軸スクリュ押出機はセルフクリ
ニング性を欠けているため、スクリュ流路内のかき取ら
れていない領域においては蓄積されて劣化したポリマー
が溶融ポリマーの主流に混入しやすいことにより、ポリ
マー製品の品質問題が出てくることもある。
[0006] Further, since the twin screw extruder and the four screw extruder of the partially meshing type, which rotate in different directions, do not have self-cleaning properties, they accumulate in unscrewed areas in the screw flow path. The quality of the polymer product may be caused by the fact that the deteriorated polymer is easily mixed into the main stream of the molten polymer.

【0007】本発明は、上記問題点を解決するためにな
されたものであって、高濃度の揮発分を含むポリマー溶
液を効率的に脱揮でき、機械的設計面において無駄な
く、合理的設計による分離工程の簡素化を図ることがで
き、低コスト、省エネのスクリュ押出機を提供すること
を課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and can efficiently devolatilize a polymer solution containing a high-concentration volatile component, and can efficiently and rationally design a mechanical design. It is an object of the present invention to provide a low-cost and energy-saving screw extruder that can simplify a separation process by using a screw extruder.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を次
のようにして解決する。
The present invention solves the above-mentioned problems as follows.

【0009】本発明による二軸スクリュ押出機は、フラ
ッシュ脱揮領域において、かみ合い型同方向回転のベー
スの二軸スクリュの上方に、比較的短い二本の補助スク
リュをV字型に配置して前記二軸スクリュとかみ合わせ
たことを特徴とする。
In the twin screw extruder according to the present invention, in the flash devolatilization area, two relatively short auxiliary screws are arranged in a V-shape above the twin screw of the meshing type co-rotating base. It is characterized by being engaged with the twin screw.

【0010】前記フラッシュ脱揮領域の上半分割バレル
の上部に設けたポリマー溶液供給部の下方に、発泡体流
れ緩和室、分流器およびフラッシュ室を、この順で上か
ら配置することが好ましい。
It is preferable that a foam flow relaxation chamber, a flow divider and a flash chamber are arranged in this order from the top below a polymer solution supply section provided on the upper half barrel of the flash devolatilization area.

【0011】前記フラッシュ脱揮領域において、前記ポ
リマー溶液供給部から供給されて減圧によって発泡状態
になるポリマー溶液は、前記発泡体流れ緩和室でその流
速を緩和され、前記分流器により分流されてから、前記
フラッシュ室においてフラッシュされ、分離された揮発
分のガス流速は、前記ポリマー溶液供給部の上流側に設
けたフラッシュタンクで緩和され、これによりエントレ
メントの発生を防止できる。
In the flash devolatilization area, the polymer solution supplied from the polymer solution supply section and brought into a foamed state by decompression is reduced in flow velocity in the foam flow relaxation chamber, and is diverted by the flow divider. The gas flow rate of the volatile components flashed and separated in the flash chamber is reduced by a flash tank provided on the upstream side of the polymer solution supply section, thereby preventing the occurrence of entrainment.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態について説明
する。
Embodiments of the present invention will be described.

【0013】ポリマー溶液中から揮発分の分離あるいは
除去に関しては、揮発分が高濃度の場合のフラッシュ脱
揮機構と、その後の比較的低濃度の場合の表面更新脱揮
あるいは注水脱揮の機構に従い、スクリュ押出機のフラ
ッシュ脱揮領域と低濃度脱揮領域におけるスクリュの本
数、配列とバレル形状あるいは構造を、前記低濃度脱揮
領域におけるポリマー処理能力を基準にしてそれぞれ設
計する。
The separation or removal of volatiles from the polymer solution is performed according to a flash devolatilization mechanism when the volatile content is high and a surface renewal devolatilization or water injection devolatilization when the volatile content is relatively low. The number, arrangement and barrel shape or structure of the screws in the flash devolatilization region and the low concentration devolatilization region of the screw extruder are designed based on the polymer processing capacity in the low concentration devolatilization region.

【0014】すなわち、前記低濃度脱揮領域において
は、表面更新脱揮技術と注水発泡脱揮技術は単独または
併用することができ、溶融ポリマー中ヘの添加剤の混合
・分散に適用するニーディングやリングなどの混練性や
シール性の良いスクリュエレメントが活用でき、メルト
の混練・押出には必要なトルクまたは比エネルギが比較
的小さいことやスクリュ間の干渉が比較的小さいこと等
の利点によって、比較的長いL/D(スクリュ長さ/ス
クリュ長径)のスクリュの設計と、ワンベントまたはこ
れ以上の多段ベントの設置が可能であり、除去された揮
発分の排気に障害のない通常のかみ合い型同方向回転二
軸スクリュとその通常のバレルを用いる。
That is, in the low-concentration devolatilization region, the surface renewal devolatilization technology and the water-injection foaming devolatilization technology can be used alone or in combination, and the kneading is applied to the mixing and dispersion of the additive in the molten polymer. Screw elements with good kneading and sealing properties, such as a ring and a ring, can be used.The advantages such as relatively small torque or specific energy required for kneading and extruding the melt and relatively small interference between screws are provided. A relatively long L / D (screw length / screw long diameter) screw design and the installation of one vent or more multi-stage vents are possible. A directional rotating twin screw and its usual barrel are used.

【0015】また、前記フラッシュ脱揮領域において
は、フラッシュ後のメルトの押出に必要なトルクまたは
比エネルギがポリマー溶液の全脱揮処理に必要なものに
比べて割合小さいことに対して、フラッシェ際に生じた
揮発分の量が多いことにより、ガス流速が大きくなり、
エントレメントが発生しやすいことを考慮し、前記ベー
スのかみ合い型同方向回転二軸スクリュの前記フラッシ
ュ脱揮領域までの延長部分において、かみ合い型同方向
回転二軸スクリュの利点を生かし、たわみとスクリュ間
の干渉の影響が無視できるほどの二本の比較的短い補助
スクリュを追加して、前記ベースの二軸スクリュとかみ
合って同方向回転可能かつV字型で配列することによっ
て、前記フラッシュ領域のスクリュ流路の断面面積を前
記低濃度脱揮領域のものよりほぼ倍増させる。
In the flash devolatilization area, the torque or specific energy required for extruding the melt after flashing is smaller than that required for the entire devolatilization treatment of the polymer solution. Due to the large amount of volatile matter generated in the gas, the gas flow velocity increases,
In consideration of the fact that entrainment is likely to occur, the extension of the mesh type co-rotating twin-screw of the base to the flash devolatilization area of the base takes advantage of the mesh type co-rotating twin-screw, and By adding two relatively short auxiliary screws with a negligible effect of interference between them and arranging them in a co-rotatable and V-shape in engagement with the two-axis screw of the base, the flash area The cross-sectional area of the screw flow path is almost doubled than that of the low-concentration devolatilization region.

【0016】また、ポリマー溶液のフラッシュ脱揮に関
しては、通常の粘度の低い低分子量成分混合系のケース
と違って、その中の揮発分濃度を平衡濃度まで低減する
ことが極めて困難である。つまり、フラッシュとは極め
て短時間の気液分離操作である。ある圧力下においてポ
リマーの劣化許容温度までに加熱されたポリマー溶液
は、いったん低圧雰囲気に曝されると、極端な過飽和状
態により、その中の揮発分はポリマー溶液ブロックから
熱を奪って急激に部分的気化する。フラッシュ後の発泡
状態の融体は温度の著しく低下したことによって粘度が
高くなり、その中にはまだ濃度の高い揮発分が残ってい
る。上述のフラッシュ脱揮の特徴を考慮し、フラッシュ
脱揮を制御して段階的に進行させる。
Further, regarding flash devolatilization of a polymer solution, it is extremely difficult to reduce the concentration of volatile components therein to an equilibrium concentration, unlike the case of a low-viscosity low-molecular-weight component mixture system. That is, flushing is a very short gas-liquid separation operation. Once exposed to a low pressure atmosphere, the polymer solution heated to a permissible degradation temperature of the polymer under a certain pressure, due to extreme supersaturation, volatiles in the polymer solution take heat from the polymer solution block and rapidly To evaporate. The melt in the foamed state after flashing has a higher viscosity due to a significant drop in temperature, and still contains a high concentration of volatiles therein. In consideration of the characteristics of the flash devolatilization described above, the flash devolatilization is controlled and progresses stepwise.

【0017】すなわち、揮発分濃度の高いポリマー溶液
は前記フラッシュ脱揮部に供給される場合、まず、流路
断面積が供給パイプの流路断面積より大きい緩和室に入
れられ、減圧状態により部分的気化した揮発分の気相と
発泡状態の融体相の両相に分離される。前記気相の揮発
分は分流器を通ってバイパスしてフラッシュタンクヘ排
出されるが、前記発泡状態の融体相または発泡体は揮発
分の濃度の低減される気泡セルと気泡内の揮発分気体と
が相分離な状態である。前記発泡体は前記緩和室におい
ては停留時間が比較的長く、そのブロック内の温度は均
一に近づくと共に金物内壁の加熱により、過飽和度を高
められ、気泡の生成と成長を絶えずに進行させる。
That is, when a polymer solution having a high volatile concentration is supplied to the flash devolatilization section, first, the polymer solution is put into a relaxation chamber having a flow path cross-sectional area larger than the flow path cross-sectional area of the supply pipe. The vaporized volatiles are separated into both a gas phase and a foamed melt phase. The volatile matter in the gaseous phase is discharged to the flash tank by bypassing through the flow divider, and the foamed molten phase or foam is removed from the bubble cell having a reduced volatile matter concentration and the volatile matter in the bubble. The gas is in a phase separated state. The residence time of the foam in the relaxation chamber is relatively long, the temperature in the block approaches uniform, and the degree of supersaturation is increased by the heating of the inner wall of the hardware, so that the generation and growth of air bubbles proceed constantly.

【0018】次に、前記発泡体は多くのスリットまたは
ホールが設けられる分流器を通過して、前記分流室の下
部に設けられたフラッシュ室ヘ分流する。前記発泡体は
前記分流器のスリットまたはホールを通過する際、分流
されて減圧されながら、剪断力を受けることにより、そ
の中の気泡が発泡体ブロックの内部から周辺まで比較的
均一に崩壊されることにより、気泡内の揮発分がその外
部ヘ放出される。また、前記分流器を通過して前記フラ
ッシュ室における低圧の雰囲気に曝される融体は大きな
比表面積を持ち、その中に残った揮発分が容易に融体の
外部ヘ拡散する。
Next, the foam passes through a flow divider provided with a number of slits or holes, and is diverted to a flash chamber provided below the flow dividing chamber. When passing through the slit or hole of the flow divider, the foam is subjected to a shearing force while being diverted and decompressed, so that bubbles therein are relatively uniformly collapsed from the inside to the periphery of the foam block. As a result, volatile components in the bubbles are released to the outside. In addition, the melt exposed to the low-pressure atmosphere in the flash chamber after passing through the flow divider has a large specific surface area, and the volatile matter remaining therein easily diffuses to the outside of the melt.

【0019】この様にして、前記フラッシュ室におい
て、融体全体が比較的均一に濃縮され、粘度が高くなる
こと、分流された融体流れ間の流路断面積が比較的大き
くなることと、そこでの補助二軸スクリュとベースの二
軸スクリュの流路断面積が大きいことにより、前記フラ
ッシュ室での揮発分のガス流速が抑制され、飛沫の発生
も抑制される。
In this way, in the flash chamber, the entire melt is relatively uniformly concentrated and the viscosity is increased, and the cross-sectional area of the flow between the separated melt flows is relatively large. Due to the large channel cross-sectional area of the auxiliary twin-screw and the base twin-screw, the gas flow rate of the volatile component in the flash chamber is suppressed, and the generation of splashes is also suppressed.

【0020】また、前記フラッシュ室において、フラッ
シュ後の融体は揮発分の気化により、温度が著しく低減
した状態になり、前記フラッシュ室底部におけるかみ合
いながら回転した状態のベースの二軸スクリュと補助ス
クリュの流路に入ると、素早くその下流ヘ運搬されると
共に、二軸スクリュ用バレル内壁面積の約倍ぐらいの内
壁面積がある前記フラッシュ脱揮領域のバレルに加熱さ
れ、従来の二軸スクリュの場合より、約倍ぐらいの融体
表面積を有するため、前記ベースの二軸スクリュと前記
補助二軸スクリュの回転により、フラッシュ脱揮後の自
由発泡脱揮または表面更新脱揮も効率的に続けられる。
In the flash chamber, the temperature of the melt after flashing is remarkably reduced due to evaporation of volatiles, and the twin screw of the base and the auxiliary screw rotated while meshing at the bottom of the flash chamber. In the case of the conventional twin-screw, it is quickly transported to the downstream of the flash devolatilization zone, and is heated to the barrel of the flash devolatilization area having an inner wall area of about twice the inner wall area of the barrel for the twin-screw. Since the surface area of the melt is about twice as large, free-foaming devolatilization after flash devolatilization or surface renewal devolatilization can be efficiently continued by rotation of the base twin-screw and the auxiliary twin-screw.

【0021】また、前記フラッシュ室部とその下流領域
において生じた揮発分ガスは従来の二軸スクリュ流路の
断面積より約倍ぐらいの断面積を有するその上流側の前
記べースの二軸スクリュと前記補助スクリュの流路を通
過する際、流速が前記二軸スクリュの場合より約倍ぐら
いで低減され、あるいはエントレメントの発生が抑制で
きる許容ガス流量が約倍増可能である。
Further, the volatile gas generated in the flash chamber portion and the downstream region has a cross-sectional area approximately twice as large as the cross-sectional area of the conventional twin-screw flow path. When passing through the flow path of the screw and the auxiliary screw, the flow velocity can be reduced by about twice as compared with the case of the twin screw, or the allowable gas flow rate that can suppress the generation of entrainment can be doubled.

【0022】また、この様に生じた揮発分のガスは前記
フラッシュ室より上流側に設置され、流路断面積が前記
ベースの二軸スクリュと補助スクリュ流路の全断面積よ
りはるかに大きい前記フラッシュタンクに入る際、流速
は著しく低減され、例え融体飛沫が生じても、ガス流速
の緩和により、前記フラッシュタンク底部における回転
状態の前記ベースの二軸スクリュと前記補助スクリュの
流路内に戻され、前記フラッシュタンクの下流ヘ送られ
る。
The gas of the volatile matter generated in this manner is provided upstream of the flash chamber, and the cross-sectional area of the flow passage is much larger than the total cross-sectional area of the biaxial screw and the auxiliary screw flow passage of the base. When entering the flash tank, the flow rate is significantly reduced, and even if melt droplets are generated, the gas flow rate is reduced, so that the rotating twin-screw of the base and the auxiliary screw in the flow path at the bottom of the flash tank. It is returned and sent to the downstream of the flash tank.

【0023】[0023]

【実施例】本発明の一実施例の二軸スクリュ押出機につ
いて図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A twin screw extruder according to one embodiment of the present invention will be described with reference to the drawings.

【0024】図1は本発明によるフラッシュ脱揮強化用
補助スクリュ付き二軸スクリュ押出機の概略図である。
同図に示すようにスクリュ押出機の全脱揮領域はフラッ
シュ脱揮領域Iと、その他の操作、例えば添加剤の添加
や分散などを含み、表面更新脱揮技術と注水発泡脱揮技
術が単独あるいは併用できる低濃度脱揮領域IIに分けら
れている。
FIG. 1 is a schematic view of a twin-screw extruder with an auxiliary screw for enhancing flash devolatilization according to the present invention.
As shown in the figure, the entire devolatilization area of the screw extruder includes the flash devolatilization area I and other operations, such as addition and dispersion of additives, and the surface renewal devolatilization technique and the water injection foaming devolatilization technique are independent. Alternatively, it is divided into a low-concentration devolatilization region II that can be used in combination.

【0025】前記フラッシュ脱揮領域Iは基本的にベー
スの下半分割バレル5b、装・脱着しやすい上半分割バ
レル5aと、上半分割バレル5aの上方に装着したフラ
ッシュタンク6及びポリマー溶液の供給パイプ12の下
方に接続する金物9から構成されている。なお、脱揮領
域I、II−1において、二分割バレルとしたのは、二軸
スクリュ1a、1bと二本の補助スクリュ2a、2bと
を装・脱着しやすくするためである。
The flash devolatilization area I basically includes a lower half barrel 5b of the base, an upper half barrel 5a which is easy to mount and remove, a flash tank 6 mounted above the upper half barrel 5a, and a polymer solution. It is composed of hardware 9 connected below the supply pipe 12. In the devolatilization areas I and II-1, the reason why the two-part barrel is used is to make it easier to mount / detach the two-shaft screws 1a and 1b and the two auxiliary screws 2a and 2b.

【0026】前記低濃度脱揮領域IIは前記フラッシュ脱
揮領域Iの下流側に隣接するスクリュ装・脱着補助のた
めの二軸スクリュ用二分割バレルII−1と、その次に接
続する通常の二軸スクリュ用バレルII−2から構成され
ている。また、前記二軸スクリュ用二分割バレルI−1
はベースの下半分割バレル11bと装・脱着しやすい上
半分割11aから構成されている。
The low-concentration devolatilization region II is provided with a two-shaft screw barrel II-1 adjacent to the flash devolatilization region I downstream of the flash devolatilization region for assisting screw mounting / removal, and a normal barrel connected next thereto. It consists of a twin screw barrel II-2. Further, the two-part barrel I-1 for the twin screw is provided.
Is composed of a lower half barrel 11b of the base and an upper half 11a which is easy to be attached and detached.

【0027】図2および図3は本発明のフラッシュ脱揮
領域の構成図であり、図2の(a)は要部断面正面図、
(b)は(a)の要部断面側面図であり、図3の(a)
は、図2(a)の平面図、(b)は図2(a)のA部拡
大図である。図4は図2のA−A線断面図、図5は図2
のB−B線断面図である。
FIGS. 2 and 3 are views showing the configuration of a flash devolatilization area according to the present invention. FIG.
3B is a sectional side view of a main part of FIG. 3A, and FIG.
2A is a plan view of FIG. 2A, and FIG. 2B is an enlarged view of a portion A of FIG. 2A. 4 is a sectional view taken along line AA of FIG. 2, and FIG.
FIG. 7 is a sectional view taken along line BB of FIG.

【0028】図2〜5に示すように前記フラッシュ脱揮
領域Iにおいては、シャフト3a、3bに組んだべース
の二軸スクリュ1a、1bの上流部と、シャフト4a、
4bに組んで入れ込み型ナット13(図3(b)参照)
で固着した二本の補助スクリュ2a、2bとはV字型の
ように装着されている。
As shown in FIGS. 2 to 5, in the flash devolatilization area I, the upstream portions of the base twin-screw screws 1a and 1b assembled to the shafts 3a and 3b, and the shafts 4a and 4b
4b, insertable nut 13 (see FIG. 3 (b))
The two auxiliary screws 2a and 2b fixed in the above manner are mounted in a V-shape.

【0029】また、フラッシュタンク6はフランジ6a
を通じてボルト6bで上半分割バレル5aに固定されて
いる。金物9とその下部に設置された分流器15は装・
脱着容易なフランジ9bを通じてボルト9cで上半分割
バレル5aに固定される。また、供給パイプ12はフラ
ンジ12aを通じてボルト12bで金物9の上部に固定
される。
The flash tank 6 has a flange 6a.
Is fixed to the upper half barrel 5a with a bolt 6b. The hardware 9 and the shunt 15 installed under the hardware 9
It is fixed to the upper half barrel 5a by a bolt 9c through a flange 9b which is easily detachable. The supply pipe 12 is fixed to the upper part of the hardware 9 by bolts 12b through a flange 12a.

【0030】前記金物9は、下方に向けて広がっている
発泡体流れ緩和室10を有し、その下部に配置された分
流器15は、多くのスリットまたはホールを有する板状
体とされ、分流器15と前記V字型のスクリュ間は、フ
ラッシュ室14とされている。このフラッシュ室14の
スクリュ軸と垂直になる方向の内壁幅は、前記ベースの
二軸スクリュ1a、1bの中心距離以上とされている。
The metal member 9 has a foam flow relaxation chamber 10 extending downward, and a flow divider 15 disposed below the foam flow relaxation chamber 10 is a plate-like body having many slits or holes. A flash chamber 14 is provided between the vessel 15 and the V-shaped screw. The width of the inner wall of the flash chamber 14 in the direction perpendicular to the screw axis is equal to or larger than the center distance of the biaxial screws 1a and 1b of the base.

【0031】また、フラッシュタンク6内の操作状況を
観察するために、フラッシェタンク6の側面においてサ
イトガラス8が設置された上向きの斜めな観察ポート7
が設けられている。前記フラッシュタンク6のスクリュ
軸と垂直になる方向の内壁幅は、前記ベースの二軸スク
リュ1a、1bの全幅以上とされている。
In order to observe the operation state in the flash tank 6, an obliquely upward observing port 7 on which a sight glass 8 is installed on the side surface of the flash tank 6.
Is provided. The inner wall width of the flash tank 6 in a direction perpendicular to the screw axis is equal to or greater than the entire width of the base biaxial screws 1a and 1b.

【0032】また、フラッシュ脱揮領域Iにおいては上
半分割バレル5aはボルト5cでベースの下半分割バレ
ル5bに固定される。また、その隣接の二軸スクリュ用
二分割バレルII−1は、その上半分割11aをボルト1
1cでベースの下半分割バレル11bに固定され、ボル
ト5dでフラッシュ脱揮領域Iのバレル5a、5bに固
定される。
In the flash devolatilization region I, the upper half barrel 5a is fixed to the lower half barrel 5b of the base with bolts 5c. Further, the adjacent two-part barrel II-1 for a twin screw is formed by connecting the upper half part 11a with a bolt 1
At 1c, it is fixed to the lower half barrel 11b of the base, and is fixed to the barrels 5a, 5b of the flash devolatilization area I by bolts 5d.

【0033】また、揮発分の気化により、温度が低下し
た溶融かつ発泡状態のポリマーブロック中からの揮発分
の分離を促進するため、前記フラッシュ脱揮領域Iと前
記低濃度脱揮領域II用バレルの加熱媒体の流路5e、1
1dのほか、前記金物9と、前記補助スクリュ2a、2
bの末端に隣接する前記二軸スクリュ用二分割バレルII
−1の上半分割バレル11aのフランジ部にそれぞれ加
熱可能な構造、例えば、加熱媒体の流路9a、11eを
設ける。
In order to promote the separation of volatile components from the melted and foamed polymer block whose temperature has been reduced by vaporizing the volatile components, the flash devolatilization zone I and the low concentration devolatilization zone II barrel are used. Heating medium flow paths 5e, 1
1d, the hardware 9 and the auxiliary screws 2a, 2
b split barrel for twin screw adjacent to the end of b
A structure capable of heating, for example, flow paths 9a and 11e for a heating medium are provided in the flange portion of the upper half barrel 11a of -1.

【0034】[0034]

【発明の効果】本発明のフラッシュ脱揮強化用補助スク
リュ付き二軸スクリュ押出機は以上説明したように構成
されているので、従来のかみ合い型同方向回転同直径二
軸スクリュ押出機より、次のような効果を得ることがで
きる。 (a)同じ高含有量の揮発分が含まれ、ポリマー乾量基
準のポリマー溶液に対する処理能力を顕著に向上するこ
とができる。 (b)エントレメントの発生に関する揮発分許容濃度が
倍以上であるポリマー溶液の脱揮処理に適用できる。 (c)フラッシュ脱揮時に起こりやすいエントレメント
の発生が完全に抑制、防止できる。 (d)ポリマー溶液重合プロセス下流の分離工程の簡素
化、例えば、フラッシュタンク数の削減を図ることがで
きる。 (e)前記分離工程と後処理工程における設備投資のコ
ストダウンを図ることができる。(f)前記分離工程と
後処理工程の省エネルギを図ることができる。 (g)前記分離工程と後処理工程の省スペースを図るこ
とができる。 (h)前記ポリマー溶液重合プロセスに関するポリマー
製造のコストダウンを図ることができる。
The twin screw extruder with an auxiliary screw for flash devolatilization according to the present invention is constructed as described above. The following effects can be obtained. (A) The same high content of volatile matter is contained, and the processing capacity for a polymer solution based on the dry weight of the polymer can be significantly improved. (B) The present invention can be applied to the devolatilization treatment of a polymer solution in which the allowable concentration of volatile matter relating to the generation of entrainment is twice or more. (C) Entrainment that is likely to occur during flash devolatilization can be completely suppressed or prevented. (D) The separation step downstream of the polymer solution polymerization process can be simplified, for example, the number of flash tanks can be reduced. (E) Cost reduction of capital investment in the separation step and the post-treatment step can be achieved. (F) Energy can be saved in the separation step and the post-treatment step. (G) Space can be saved in the separation step and the post-treatment step. (H) It is possible to reduce the cost of polymer production relating to the polymer solution polymerization process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるフラッシュ脱揮強化用補助スクリ
ュ付き二軸スクリュ押出機の概略図である。
FIG. 1 is a schematic view of a twin-screw extruder with an auxiliary screw for enhancing flash devolatilization according to the present invention.

【図2】フラッシュ脱揮領域の構成図であり、(a)は
要部断面正面図、(b)は(a)の要部断面側面図であ
る。
FIGS. 2A and 2B are configuration diagrams of a flash devolatilization area, where FIG. 2A is a cross-sectional front view of a main part, and FIG.

【図3】フラッシュ脱揮領域の構成図であり、(a)
は、図2(a)の平面図、(b)は図2(a)のA部拡
大図である。
FIG. 3 is a configuration diagram of a flash devolatilization area, and FIG.
2A is a plan view of FIG. 2A, and FIG. 2B is an enlarged view of a portion A of FIG. 2A.

【図4】図2のA−A線断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 2;

【図5】図2のB−B線断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 2;

【符号の説明】[Explanation of symbols]

1a、1b 二軸スクリュ 2a、2b 補助スクリュ 3a、3b シャフト(二軸スクリュ用) 4a、4b シャフト(補助スクリュ用) 5a 上半分割バレル(フラッシュ脱揮領域用) 5b 下半分割バレル(フラッシュ脱揮領域用) 5c ボルト 5d ボルト 5e 熱媒流路 6 フラッシュタンク 6a フランジ(フラッシュタンク用) 6b ボルト 7 観察ポート 8 サイトガラス 9 金物 9a 熱媒流路 9b フランジ(金物用) 9c ボルト 10 発泡体流れ緩和室 11a 上半分割バレル(二軸スクリュ用) 11b 下半分割バレル(二軸スクリュ用) 11c ボルト 11d 熱媒流路 11e 熱媒流路 12 供給パイプ(ポリマー溶液供給部) 12a フランジ(供給パイプ用) 12b ボルト 13 ナット 14 フラッシュ室 15 分流器 1a, 1b Twin screw 2a, 2b Auxiliary screw 3a, 3b Shaft (for twin screw) 4a, 4b Shaft (for auxiliary screw) 5a Upper half barrel (for flash devolatilization area) 5b Lower half barrel (for flash 5c bolt 5d bolt 5e Heat medium flow path 6 Flash tank 6a Flange (for flash tank) 6b Bolt 7 Observation port 8 Sight glass 9 Hardware 9a Heat medium flow path 9b Flange (for metal) 9c Bolt 10 Foam flow Relaxation chamber 11a Upper half barrel (for twin screw) 11b Lower half barrel (for twin screw) 11c Bolt 11d Heat medium flow path 11e Heat medium flow path 12 Supply pipe (polymer solution supply unit) 12a Flange (supply pipe 12b Bolt 13 Nut 14 Flash chamber 15 Divider

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 フラッシュ脱揮領域(I)において、か
み合い型同方向回転のベースの二軸スクリュ(1a、1
b)の上方に、比較的短い二本の補助スクリュ(2a、
2b)をV字型に配置して前記二軸スクリュ(1a、1
b)とかみ合わせたことを特徴とする二軸スクリュ押出
機。
In the flash devolatilization area (I), a meshing type co-rotating base twin-screw (1a, 1a,
Above b), two relatively short auxiliary screws (2a,
2b) are arranged in a V-shape and the twin screw (1a, 1a
b) A twin screw extruder characterized by interlocking with b).
【請求項2】 前記二軸スクリュ(1a、1b)と前記
二本の補助スクリュ(2a、2b)とを装・脱着しやす
くするため、前記フラッシュ脱揮領域(I)のバレルを
二分割バレル(5a、5b)とし、これに隣接した下流
側の低濃度脱揮領域(II)のバレルを部分的二分割バレ
ル(11a、11b)とし、前記部分的二分割バレル
(11a、11b)に通常のバレルを連結したことを特
徴とする請求項1記載の二軸スクリュ押出機。
2. The flash devolatilization area (I) is divided into two barrels so that the twin screw (1a, 1b) and the two auxiliary screws (2a, 2b) can be easily attached and detached. (5a, 5b), the barrel of the low concentration devolatilization region (II) on the downstream side adjacent thereto is a partial bisected barrel (11a, 11b), and the partial bisected barrel (11a, 11b) is usually 2. The twin screw extruder according to claim 1, wherein the barrels are connected.
【請求項3】 前記フラッシュ脱揮領域(I)の上半分
割バレル(5a)の上部に設けたポリマー溶液供給部
(12)の下方に、発泡体流れ緩和室(10)、分流器
(15)およびフラッシュ室(14)を、この順で上か
ら配置していることを特徴とする請求項2記載の二軸ス
クリュ押出機。
3. A foam flow relaxation chamber (10) and a flow divider (15) below a polymer solution supply section (12) provided above an upper half barrel (5a) of the flash devolatilization area (I). 3. The twin-screw extruder according to claim 2, wherein the flash chamber and the flash chamber are arranged in this order from above.
【請求項4】 前記発泡体流れ緩和室(10)は、加熱
可能な金物(9)内に形成されていることを特徴とする
請求項3記載の二軸スクリュ押出機。
4. The twin-screw extruder according to claim 3, wherein the foam flow relaxation chamber (10) is formed in a heatable hardware (9).
【請求項5】 前記フラッシュ室(14)のスクリュ軸
と垂直になる方向の内壁幅は、前記ベースの二軸スクリ
ュ(1a、1b)の中心距離以上であることを特徴とす
る請求項3記載の二軸スクリュ押出機。
5. The flash chamber according to claim 3, wherein an inner wall width of the flash chamber in a direction perpendicular to a screw axis is equal to or longer than a center distance of the biaxial screw of the base. Twin screw extruder.
【請求項6】 前記ポリマー溶液供給部(12)より上
流側に設けられたフラッシュタンク(6)のスクリュ軸
と垂直になる方向の内壁幅は前記ベースの二軸スクリュ
(1a、1b)の全幅以上であることを特徴とする請求
項3記載の二軸スクリュ押出機。
6. An inner wall width of a flash tank (6) provided upstream of the polymer solution supply section (12) in a direction perpendicular to a screw axis is the entire width of the base twin screw (1a, 1b). The twin screw extruder according to claim 3, characterized in that:
【請求項7】 前記フラッシュ脱揮領域(I)におい
て、前記ポリマー溶液供給部(12)から供給されて減
圧によって発泡状態になるポリマー溶液は、前記発泡体
流れ緩和室(10)でその流速を緩和され、前記分流器
(15)により分流されてから、前記フラッシュ室(1
4)においてフラッシュされ、分離された揮発分のガス
流速は、前記ポリマー溶液供給部(12)の上流側に設
けたフラッシュタンク(6)で緩和されることを特徴と
する請求項3記載の二軸スクリュ押出機。
7. In the flash devolatilization area (I), the polymer solution supplied from the polymer solution supply section (12) and brought into a foamed state by decompression has a flow rate in the foam flow relaxation chamber (10). After being alleviated and diverted by the diverter (15), the flash chamber (1)
4. The method according to claim 3, wherein the gas flow rate of the volatile matter flashed and separated in the step (4) is reduced by a flash tank (6) provided on the upstream side of the polymer solution supply part (12). Shaft screw extruder.
JP26357799A 1999-09-17 1999-09-17 Twin screw extruder Expired - Fee Related JP4372911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26357799A JP4372911B2 (en) 1999-09-17 1999-09-17 Twin screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26357799A JP4372911B2 (en) 1999-09-17 1999-09-17 Twin screw extruder

Publications (2)

Publication Number Publication Date
JP2001079831A true JP2001079831A (en) 2001-03-27
JP4372911B2 JP4372911B2 (en) 2009-11-25

Family

ID=17391495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26357799A Expired - Fee Related JP4372911B2 (en) 1999-09-17 1999-09-17 Twin screw extruder

Country Status (1)

Country Link
JP (1) JP4372911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119506A1 (en) * 2006-03-28 2007-10-25 The Japan Steel Works, Ltd. Simulation apparatus for screw extruder volatilization and simulation program for screw extruder volatilization
CN112275219A (en) * 2020-11-13 2021-01-29 江苏诚盟装备股份有限公司 Complete equipment for high-efficiency devolatilization of polymer high-content solvent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119506A1 (en) * 2006-03-28 2007-10-25 The Japan Steel Works, Ltd. Simulation apparatus for screw extruder volatilization and simulation program for screw extruder volatilization
US8140307B2 (en) 2006-03-28 2012-03-20 The Japan Steel Works, Ltd Devolatilization simulation apparatus for screw extruders and devolatilization simulation program for screw extruders
TWI400157B (en) * 2006-03-28 2013-07-01 Japan Steel Works Ltd Screw degasser degassing simulation device, and screw extruder degassing simulation program
CN112275219A (en) * 2020-11-13 2021-01-29 江苏诚盟装备股份有限公司 Complete equipment for high-efficiency devolatilization of polymer high-content solvent
CN112275219B (en) * 2020-11-13 2024-05-14 江苏诚盟装备股份有限公司 High-efficient devolatilization complete equipment of high-content solvent of polymer

Also Published As

Publication number Publication date
JP4372911B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US7004616B2 (en) Kneading apparatus and method for kneading rubber-based composition using the same
RU2470780C2 (en) Method and device for production of polymer granulate
KR20100058572A (en) Degassing extruder for degassing a polymer material and method for degassing a syrup consisting of polymers, solvents and/or monomers using a degassing extruder
JPH02194004A (en) Method and device for removing impurity from polymeric synthetic substance
EP3006177B1 (en) Vented twin-screw kneading extrusion method
RU2473721C2 (en) Method and apparatus for manufacturing spinning solution for production of polymeric fiber
DK1719600T3 (en) Process for making a foam plastic film
JP2011116025A (en) Degassing device of extruder and degassing method
CA2699057C (en) Drive arrangement in a degassing extruder
US5630968A (en) Water-injection foaming devolatilizing method
JP2007276321A (en) Tandem type extrusion foaming molding process
GB2203091A (en) Degasification in extrusion apparatus
JP2001079831A (en) Twin-screw extruder
JPH07313911A (en) Device for mixing gas and flowable polymer material
JP2004066721A (en) Method for venting molten resin and its apparatus
JPH10100145A (en) Production of rubbery polymer and apparatus therefor
KR20140021960A (en) Polymer purifying method and facility, solution film forming method and facility, and flocculent and granular deposited polymer
JP2665306B2 (en) Devolatilization method and extruder in extruder
Kimura et al. Twin‐Screw Extrusion of Polyethylene
CN110997275B (en) Extruder system with pressure regulating device
JP2011042094A (en) Method and apparatus for reducing volume of raw material solution containing volatile component
KR102382103B1 (en) Mixing method and system thereof
JPH10244531A (en) Continuous kneading machine, material-discharging method therefor and rotor for continuous kneading machine
JP2008279693A (en) Four shaft screw extruder
US20030094718A1 (en) Extrusion plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080827

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080916

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees