JP2001078391A - Dynamo-electric machine - Google Patents

Dynamo-electric machine

Info

Publication number
JP2001078391A
JP2001078391A JP25459899A JP25459899A JP2001078391A JP 2001078391 A JP2001078391 A JP 2001078391A JP 25459899 A JP25459899 A JP 25459899A JP 25459899 A JP25459899 A JP 25459899A JP 2001078391 A JP2001078391 A JP 2001078391A
Authority
JP
Japan
Prior art keywords
stator
outer shell
winding
axial
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25459899A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nakahama
敬文 中濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25459899A priority Critical patent/JP2001078391A/en
Publication of JP2001078391A publication Critical patent/JP2001078391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling performance at the end part of a stator coil winding, and to reduce heat loss. SOLUTION: In an outer shell 21, that is composed of a stator frame 22 and bearing brackets 23 and 24, a rotor 37 that has a stator 27 and a rotary shaft 36 is provided, and at the same time, partition members 45 and 46 that separate the upstream side from the downstream one in axial flow fans 43 and 44 which are mounted to the rotary shaft 36 for fixing are provided, and an inner circumference side coil winding end part projects inside nearly into an arc shape at the end of stator coil winding covered with the partition members 45 and 46, while being located on the downstream side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内蔵する軸流ファ
ンにより固定子及び回転子を冷却するようにした回転電
機に関する。
The present invention relates to a rotating electric machine in which a stator and a rotor are cooled by a built-in axial fan.

【0002】[0002]

【従来の技術】従来、この種の回転電機として例えば防
滴形電動機の構成を、図9に示す上半部の縦断面図、及
び図10の要部の拡大図を参照して説明する。電動機の
外殻1は、円筒状の固定子枠2と、その図示する左右の
両端面部に取付固定された軸受ブラケット3a,3bと
から構成されており、この軸受ブラケット3a,3bの
中心部には、夫々軸受4a,4bを備えている。そし
て、前記固定子枠2の略中央部の内周面には、固定子5
が取付固定されている。即ち、前記固定子枠2の略中央
には、例えば軸方向に延びるスリット状開口部からなる
冷媒の流出口2aが形成され、この流出口2a領域にお
ける内周面に固定子5たる固定子鉄心6の外径部分が嵌
合され取付固定されている。そして、この固定子鉄心6
は複数の鉄心ブロック6aから構成されると共に、内方
に形成された図示しないスロットに固定子巻線7が納め
られ、且つ各鉄心ブロック6a間にはラジアル方向の第
1の通風ダクト8が形成されている。また、前記外殻1
の流出口2a両側部には、冷媒の流入口2bが形成され
ている。
2. Description of the Related Art Heretofore, a structure of a drip-proof type electric motor as a rotating electric machine of this type will be described with reference to a longitudinal sectional view of an upper half shown in FIG. 9 and an enlarged view of a main part of FIG. The outer shell 1 of the electric motor is composed of a cylindrical stator frame 2 and bearing brackets 3a, 3b attached to and fixed to both left and right end faces as shown in the figure, and is provided at the center of the bearing brackets 3a, 3b. Has bearings 4a and 4b, respectively. A stator 5 is provided on the inner peripheral surface at a substantially central portion of the stator frame 2.
Is attached and fixed. That is, an outlet 2a of a refrigerant having a slit-like opening extending in the axial direction, for example, is formed substantially at the center of the stator frame 2, and a stator core 5 serving as a stator 5 is formed on an inner peripheral surface in the area of the outlet 2a. The outer diameter portion 6 is fitted and fixed. And this stator core 6
Is composed of a plurality of iron core blocks 6a, a stator winding 7 is accommodated in a slot (not shown) formed inward, and a first ventilation duct 8 in the radial direction is formed between each iron core block 6a. Have been. In addition, the outer shell 1
The coolant inlet 2b is formed on both sides of the outlet 2a.

【0003】一方、前記軸受ブラケット3a,3bの軸
受4a,4bには、回転軸9が支承された回転子10を
装着しており、この回転子10は、前記固定子鉄心6と
対応した複数の鉄心ブロック11aからなる固定子鉄心
11と、回転子導体12とから構成されると共に、各鉄
心ブロック11a間にはラジアル方向の第2の通風ダク
ト13が形成されていて、該第2の通風ダクト13は前
記第1の通風ダクト8と対応する配置構成にある。加え
て、斯かる各鉄心ブロック11aには、中心部に近い回
転軸9の周囲近傍に軸方向に貫通してなる通風孔14を
形成していて、上記第2の通風ダクト13と連通した構
成にある。
On the other hand, a rotor 10 on which a rotating shaft 9 is supported is mounted on the bearings 4a, 4b of the bearing brackets 3a, 3b. The rotor 10 has a plurality of rotors corresponding to the stator core 6. A stator core 11 composed of an iron core block 11a and a rotor conductor 12, and a second radial ventilation duct 13 is formed between each iron core block 11a. The duct 13 has an arrangement corresponding to the first ventilation duct 8. In addition, in each of the iron core blocks 11a, a ventilation hole 14 is formed in the vicinity of the rotation shaft 9 near the center portion so as to penetrate in the axial direction, and communicates with the second ventilation duct 13. It is in.

【0004】そして、前記回転軸9には、前記回転子1
0の両側部に配置された軸流ファン15,16が取付固
定されていて、該軸流ファン15,16の回転に伴い内
方たる回転子10側に向けて送風されるブレード15
a,16aを夫々有している。しかるに、この軸流ファ
ン15,16の上流側(軸受ブラケット3a,3b側)
と、下流側(回転子10及び固定子5側)とを仕切るべ
く環状の仕切り部材17及び18を外殻1内に設けてい
る。
The rotating shaft 9 is provided with the rotor 1
Axial fans 15 and 16 disposed on both sides of the axial flow fan 0 are fixedly mounted, and the blades 15 blown toward the inner rotor 10 as the axial fans 15 and 16 rotate.
a and 16a, respectively. However, on the upstream side of the axial fans 15 and 16 (on the bearing brackets 3a and 3b side).
The annular partition members 17 and 18 are provided in the outer shell 1 so as to partition between the downstream side (the rotor 10 and the stator 5 side).

【0005】即ち、この仕切り部材17,18は、その
外径部分が前記固定子枠2の流出口2aと流入口2bと
の間に接合し、内径部分が各軸流ファン15,16のブ
レード15a,16aの先端部に近接する環状をなし、
且つ該内径部分が下流側である回転子10側に向けて延
出する筒状部17a,18aから構成されている。そし
て、この筒状部17a,18aの外周側に前記固定子巻
線7の端部が配置され、結果、該巻線7の端部は斯かる
仕切り部材17,18により覆われた構成にある。従っ
て、軸流ファン15,16の回転により流入口2bから
取入れられた上流側の冷媒は、下流側の流出口2bから
流出する間、仕切り部材17,18によって混合するこ
となく円滑に流通する。
That is, the partition members 17 and 18 have outer diameter portions joined between the outlet 2a and the inlet 2b of the stator frame 2 and inner diameter portions of the blades of the axial fans 15 and 16 respectively. Forming an annular shape close to the tip of 15a, 16a,
Further, the inner diameter portion is constituted by cylindrical portions 17a and 18a extending toward the rotor 10 which is the downstream side. The ends of the stator winding 7 are arranged on the outer peripheral side of the cylindrical portions 17a and 18a, and as a result, the ends of the winding 7 are covered by the partition members 17 and 18. . Therefore, the upstream-side refrigerant taken in from the inlet 2b by the rotation of the axial fans 15 and 16 flows smoothly without being mixed by the partition members 17 and 18 while flowing out from the outlet 2b on the downstream side.

【0006】そして、斯かる構成の電動機の外殻1の上
面部には、冷媒の流入口2b及び流出口2aを包含して
被着された風胴19が設けられている。この風胴19
は、軸方向両端面に各流入口2bと連通する吸気口19
bが夫々形成されていると共に、略中央に位置して排気
口19aが形成されていて、この排気口19aは、前記
吸気口19bとは仕切り壁20a,20bにより隔離さ
れる一方、前記流出口2aと連通した構成にある。
A wind tunnel 19 is provided on the upper surface of the outer shell 1 of the electric motor having the above configuration so as to cover the refrigerant inlet 2b and the outlet 2a. This wind tunnel 19
Are intake ports 19 communicating with the respective inlets 2b at both axial end faces.
b are formed, and an exhaust port 19a is formed substantially at the center. The exhaust port 19a is separated from the intake port 19b by partition walls 20a, 20b, while the outlet port is formed. 2a.

【0007】[0007]

【発明が解決しようとする課題】このように構成された
電動機において、回転軸9の回転に伴って軸流ファン1
5,16が回転されると、図9中に矢印で示すように、
吸気口19aから外気たる冷媒が吸入され、流入口2b
から電動機の外殻1内に流入する。以下、説明の便宜
上、図示左方側における冷媒の流れにつき述べるに
(尚、図示右方側も同じ作用)、その冷媒は、仕切り部
材17及び軸流ファン15を境にして上流側と下流側と
に区分され、上流側では一方の軸受4aに接触して冷媒
中に放熱させ、下流側では回転子10及び固定子5の外
端面を中心に同様に放熱させ、これらを冷却する。
In the electric motor constructed as described above, the axial fan 1 is driven by the rotation of the rotating shaft 9.
When 5, 16 are rotated, as shown by arrows in FIG.
Outside air refrigerant is sucked from the inlet 19a, and the inlet 2b
Flows into the outer shell 1 of the motor. Hereinafter, for convenience of explanation, the flow of the refrigerant on the left side in the figure will be described (the same operation is also performed on the right side in the figure), and the refrigerant flows upstream and downstream with respect to the partition member 17 and the axial fan 15. On the upstream side, heat is radiated into the refrigerant by contacting one of the bearings 4a, and on the downstream side, heat is similarly radiated around the outer end surfaces of the rotor 10 and the stator 5 to cool them.

【0008】しかる後、冷却に供された冷媒の一部は流
出口2aを経て風胴19の排気口19aから外部に排出
され、また一部は回転子10の通風孔14から流入し、
反対側から流入してきた冷媒と共に遠心方向に流れ、第
2の通風ダクト13を経て外周方向に放出される。これ
は回転子鉄心11の回転に伴う遠心ポンプ作用(ファン
効果)により、冷媒が軸方向の通風孔14から吸引さ
れ、これに連通する第2の通風ダクト13から外方に遠
心放出されるもので、これを以って各鉄心6,11を内
方側からも冷却する。
After that, a part of the refrigerant used for cooling is discharged to the outside from the exhaust port 19a of the wind tunnel 19 through the outlet 2a, and a part of the refrigerant flows into the ventilation hole 14 of the rotor 10,
The refrigerant flows in the centrifugal direction together with the refrigerant flowing from the opposite side, and is discharged to the outer peripheral direction through the second ventilation duct 13. The refrigerant is sucked from the axial ventilation holes 14 by the centrifugal pump action (fan effect) accompanying the rotation of the rotor core 11, and is centrifugally discharged outward from the second ventilation duct 13 communicating with the refrigerant. Accordingly, each iron core 6, 11 is also cooled from the inside.

【0009】従って、この種電動機が有する、固定子鉄
心6及び回転子鉄心11における鉄損、固定子巻線7及
び回転子導体12における銅損、そして軸受4a,4b
における軸受摩擦損などの熱的損失に対し、これを軽減
するにはこれら発熱部材との冷媒の接触をより多くして
その冷却効果を高めることが望ましい。但し、冷却効果
を上げるべく軸流ファン15を大形化したり外殻1内の
空間を大きくすることは、コストアップとなるなど好ま
しくなく実用に供するには不利である。しかして、上述
の冷却構造においては、風胴19の吸気口19bを通り
流入口2bから取入れられた冷媒が、上記発熱部材を効
率良く冷却するために、外殻1の内部において仕切り部
材17を設けて上流側と下流側領域とが混合しないよう
に区画すると共に、軸方向の外方に最も突出する固定子
巻線7端部に対して、該仕切り部材17にて覆うように
し、以って、冷媒を外殻1内の全ての発熱部材と有効に
接触する通風路をコンパクトに構成している。
Accordingly, this type of motor has iron loss in the stator core 6 and the rotor core 11, copper loss in the stator winding 7 and the rotor conductor 12, and bearings 4a and 4b.
In order to reduce the heat loss such as the friction loss of the bearing, it is desirable to increase the contact of the coolant with these heat generating members to enhance the cooling effect. However, enlarging the axial fan 15 or enlarging the space inside the outer shell 1 in order to increase the cooling effect is not preferable, such as increasing the cost, and is disadvantageous for practical use. Thus, in the above-described cooling structure, the coolant taken in from the inflow port 2b through the air inlet 19b of the wind tunnel 19 cools the partition member 17 inside the outer shell 1 in order to efficiently cool the heating member. The upstream and downstream regions are provided so as not to mix with each other, and the end portion of the stator winding 7 that projects most outward in the axial direction is covered with the partition member 17. Thus, the ventilation passage for effectively contacting the refrigerant with all the heat generating members in the outer shell 1 is compactly configured.

【0010】ところが、外殻1内の冷媒の通風路におい
ては、入り口損失,曲り損失,排気損失などの通風損失
は避け難く、加えて上記従来構成では、図10に拡大し
て示すように、固定子巻線7端部における冷却が不十分
となり易い。即ち、冷媒は同図実線矢印で示すように固
定子鉄心6の近傍付近では主たる通風路として比較的速
やかに流れ、当然冷却効果も良好であるが、仕切り部材
17で覆われた端部にあっては死角となって破線で示し
た矢印方向への通風が十分に行われず、図中二点鎖線で
示すように所謂淀み領域Sが生じて、冷媒の入れ替えが
不十分となり冷却効果が低下する。しかるに、この種電
動機は、最も大きい温度上昇部における熱損失を考慮し
て容量(サイズ)を決定するため、通風損失及び熱損失
が大きい場合には、結果的に所期の冷却性能を確保する
には電動機サイズの大形化を招くという問題を有してい
た。
However, in the ventilation passage of the refrigerant in the outer shell 1, ventilation loss such as entrance loss, bending loss and exhaust loss is unavoidable. In addition, in the above-described conventional configuration, as shown in FIG. The cooling at the end of the stator winding 7 tends to be insufficient. That is, the refrigerant flows relatively quickly as a main ventilation path near the stator core 6 as shown by the solid line arrow in the figure, and naturally has a good cooling effect. As a result, the ventilation in the direction of the arrow indicated by the dashed line is not performed sufficiently, and a so-called stagnation region S is generated as shown by the two-dot chain line in the figure, and the replacement of the refrigerant is insufficient and the cooling effect is reduced . However, in this type of electric motor, the capacity (size) is determined in consideration of the heat loss in the largest temperature rising portion. Therefore, when the ventilation loss and the heat loss are large, the intended cooling performance is eventually secured. Has a problem that the size of the motor is increased.

【0011】従って、本発明の目的は、固定子巻線端部
における冷却性能を向上して、熱損失の軽減化を図り得
る回転電機を提供するにある。
Accordingly, it is an object of the present invention to provide a rotating electric machine capable of improving cooling performance at an end portion of a stator winding and reducing heat loss.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の回転電機は、第1に、筒状の固定子枠とそ
の両端部に配設され軸受を有する軸受ブラケットとから
構成される外殻と、前記固定子枠の内周面に取付固定さ
れた固定子と、前記固定子に対応し前記両軸受ブラケッ
ト間に回転軸を介して装着された回転子と、この回転子
の側方にあって前記回転軸に取付固定された軸流ファン
と、前記外殻に形成され前記軸流ファンの上流側に位置
する冷媒の流入口及び下流側に位置する流出口と、前記
外殻内に設けられ前記軸流ファンの上流側と下流側との
間を仕切るように該軸流ファンの径方向先端部と近接す
る筒状部を有すると共に、下流側領域に位置する前記固
定子巻線の端部を覆うように形成された仕切り部材とを
備え、前記固定子巻線の端部のうち内周側巻線端部を内
方に略円弧状に突出形成したことを特徴とする(請求項
1の発明)。
In order to achieve the above object, a rotating electric machine according to the present invention comprises, firstly, a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings. An outer shell, a stator fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator, and mounted between the two bearing brackets via a rotary shaft, An axial flow fan attached to and fixed to the rotating shaft at the side of the refrigerant flow inlet formed at the outer shell and located at an upstream side of the axial flow fan and an outlet positioned at a downstream side, A cylindrical portion provided in an outer shell and adjacent to a radial end portion of the axial fan so as to partition between an upstream side and a downstream side of the axial fan, and the fixed portion located in a downstream region; A partition member formed so as to cover an end of the slave winding, and And wherein the protruding formed in a substantially arcuate shape to among the peripheral winding end portions of the line inwardly (the invention of claim 1).

【0013】斯かる構成によれば、内周側巻線端部を内
方に略円弧状に突出形成擦ることで、該巻線端部に衝突
する冷媒の衝突角度を大きくして流れの向きを仕切り部
材側である巻線端部の先端側に指向させることができ
る。従って、冷媒の主たる流れ方向に対して衝突した冷
媒の多くを固定子巻線の端部へと導くことができ、従
来、淀み領域が生ずるなどして不十分であった固定子巻
線端部における冷媒の流れを円滑にして冷却効果の向上
を図り得、総じて冷媒の通風損失を抑えて効率の良い冷
却性能が得られ、電動機の駆動に伴う銅損や鉄損等によ
って発生する熱損失をより軽減できて、コンパクトな電
動機サイズを得るなど実用に好適する回転電機を提供で
きる。
According to such a configuration, the end of the inner circumferential side winding is formed to protrude in a substantially arc shape inward, so that the collision angle of the refrigerant colliding with the end of the winding is increased so that the flow direction is changed. Can be directed to the tip end side of the winding end, which is the partition member side. Therefore, most of the refrigerant that has collided in the main flow direction of the refrigerant can be guided to the end of the stator winding, and the end of the stator winding that has been insufficient due to the formation of a stagnation region in the past is obtained. The cooling effect can be improved by smoothing the flow of the refrigerant in the above, the cooling efficiency can be obtained by suppressing the ventilation loss of the refrigerant as a whole, and the heat loss generated by copper loss and iron loss etc. It is possible to provide a rotating electric machine which can be reduced more and is suitable for practical use such as obtaining a compact motor size.

【0014】また、上記目的を達成するために、本発明
の回転電機は、第2に、筒状の固定子枠とその両端部に
配設され軸受を有する軸受ブラケットとから構成される
外殻と、前記固定子枠の内周面に取付固定された固定子
と、前記固定子に対応し前記両軸受ブラケット間に回転
軸を介して装着された回転子と、この回転子の側方にあ
って前記回転軸に取付固定された軸流ファンと、前記外
殻に形成され前記軸流ファンの上流側に位置する冷媒の
流入口及び下流側に位置する流出口と、前記外殻内に設
けられ前記軸流ファンの上流側と下流側との間を仕切る
ように該軸流ファンの径方向先端部と近接する筒状部を
有すると共に、下流側領域に位置する前記固定子巻線の
端部を覆うように形成された仕切り部材とを備え、前記
固定子巻線の端部のうち外周側巻線端部を外方に略円弧
状に突出形成したことを特徴とする(請求項2の発
明)。
[0014] In order to achieve the above object, the rotating electric machine of the present invention comprises, secondly, an outer shell comprising a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings. A stator attached and fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator and mounted between the bearing brackets via a rotating shaft, and a side of the rotor. An axial fan mounted and fixed to the rotating shaft; an inlet formed on the outer shell and located at an upstream side of the axial flow fan and an outlet located at a downstream side of the axial fan; A cylindrical portion is provided adjacent to a radial end of the axial fan so as to partition between an upstream side and a downstream side of the axial fan, and the stator winding located in a downstream region is provided. A partition member formed so as to cover the end, and an end of the stator winding. Protruding formed in a substantially arc shape outwardly out outer circumferential side coil end portion and wherein (invention of claim 2).

【0015】斯かる構成によれば、外周側巻線端部を外
方に略円弧状に突出形成することにより、その内周側巻
線端部との間隔を広めることができる。従って、並列状
態の各内周側巻線端部間を通り広い空間領域に流入した
冷媒の流速は、外周側巻線端部側に至るまでに減速さ
れ、そして外周側巻線端部間に流入し流出する際、特に
入り口における流入抵抗の低減による所謂入り口損失を
極力小さくできるので、十分な通風量(冷媒)を確保し
て該巻線端部の冷却性能を高めることができる。
According to such a configuration, by forming the outer-circumference-side winding end portion to protrude outward in a substantially arc shape, the distance between the outer-circumference-side winding end portion and the inner-circumference-side winding end can be increased. Therefore, the flow velocity of the refrigerant flowing into the wide space region passing between the inner winding ends in the parallel state is reduced until reaching the outer winding end, and between the outer winding ends. At the time of inflow and outflow, the so-called entrance loss, particularly due to the reduction of the inflow resistance at the entrance, can be minimized, so that a sufficient ventilation volume (refrigerant) can be secured and the cooling performance of the winding end can be enhanced.

【0016】また、上記目的を達成するために、本発明
の回転電機は、第3に、筒状の固定子枠とその両端部に
配設され軸受を有する軸受ブラケットとから構成される
外殻と、前記固定子枠の内周面に取付固定された固定子
と、前記固定子に対応し前記両軸受ブラケット間に回転
軸を介して装着された回転子と、この回転子の側方にあ
って前記回転軸に取付固定された軸流ファンと、前記外
殻に形成され前記軸流ファンの上流側に位置する冷媒の
流入口及び下流側に位置する流出口と、前記外殻内に設
けられ前記軸流ファンの上流側と下流側との間を仕切る
ように該軸流ファンの径方向先端部と近接する筒状部を
有すると共に、下流側領域に位置する前記固定子巻線の
端部を覆うように形成された仕切り部材とを備え、前記
仕切り部材の筒状部の下流側延出端部に、前記軸流ファ
ンによる通風を前記固定子巻線の端部先端側に指向させ
るガイド部材を設けたことを特徴とする(請求項3の発
明)。
In order to achieve the above object, a rotating electric machine according to the present invention has, in a third aspect, an outer shell comprising a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings. A stator attached and fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator and mounted between the bearing brackets via a rotating shaft, and a side of the rotor. An axial fan mounted and fixed to the rotating shaft; an inlet formed on the outer shell and located at an upstream side of the axial flow fan and an outlet located at a downstream side of the axial fan; A cylindrical portion is provided adjacent to a radial end of the axial fan so as to partition between an upstream side and a downstream side of the axial fan, and the stator winding located in a downstream region is provided. A partition member formed so as to cover an end portion, and a cylindrical shape of the partition member. The downstream extending end, characterized in that a guide member for directing the air by the axial flow fan to the end tip side of the stator winding (the invention of claim 3).

【0017】斯かる構成によれば、軸流ファンによって
取入れられた冷媒は、下流側における固定子鉄心等に向
けて供給されるうちの一部がガイド部材よって取込ま
れ、そして風向変換されて、仕切り部材により覆われる
固定子巻線端部の先端部に向けて順次供給され、従っ
て、従来のように冷媒の流れの死角となって淀み領域が
生ずることもなく、総じて固定子巻線の温度を低減でき
て熱損失の減少を図り得る回転電機を提供できる。
According to such a configuration, the refrigerant taken in by the axial fan is partially taken in by the guide member while being supplied to the stator core or the like on the downstream side, and the wind direction is changed. , Are sequentially supplied toward the end of the stator winding end covered by the partition member.Therefore, there is no blind spot in the flow of the refrigerant as in the related art, and a stagnation region does not occur. It is possible to provide a rotating electric machine capable of reducing temperature and reducing heat loss.

【0018】[0018]

【発明の実施の形態】(第1の実施の形態)以下、本発
明の回転電機につき防滴形電動機に適用した第1実施例
について、図1ないし図3に基づき説明する。まず、図
1は電動機の下半部を省略して上半部の構成を示した縦
断面図で、図示するように、この種防滴形電動機の外殻
21は、円筒状の固定子枠22と、その図示する左右の
両端面部に取付固定された軸受ブラケット23,24と
から構成されており、この軸受ブラケット23,24の
中心部には、夫々軸受25,26を備えている。そし
て、前記固定子枠22の内周面の略中央に位置して固定
子27が取付固定されている。即ち、前記固定子枠22
の内周面の中央部位には、例えば軸方向(図示する左右
方向)に延びる複数のスリット状開口部からなる冷媒の
流出口28が形成され、この流出口28の形成領域内に
おける内周面に、前記固定子27の固定子鉄心29の外
径部分を嵌合により取付固定している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment in which a rotating electric machine according to the present invention is applied to a drip-proof motor will be described below with reference to FIGS. First, FIG. 1 is a longitudinal sectional view showing the configuration of an upper half portion of a motor, omitting a lower half portion thereof. As shown in the drawing, an outer shell 21 of this type of drip-proof motor has a cylindrical stator frame. 22 and bearing brackets 23 and 24 attached to and fixed to the left and right end surfaces thereof, and bearings 25 and 26 are provided at the center of the bearing brackets 23 and 24, respectively. A stator 27 is mounted and fixed substantially at the center of the inner peripheral surface of the stator frame 22. That is, the stator frame 22
At the center of the inner peripheral surface, there is formed a refrigerant outlet 28 composed of a plurality of slit-shaped openings extending in, for example, the axial direction (the left-right direction in the drawing), and an inner peripheral surface in a region where the outlet 28 is formed. Further, the outer diameter portion of the stator core 29 of the stator 27 is attached and fixed by fitting.

【0019】そして、この固定子鉄心29は複数に分割
された鉄心ブロック29aから構成されると共に、内方
に形成された図示しないスロットに固定子巻線30が挿
入され、図示しない楔にて保持されて固定子27を構成
している。しかるに、これら鉄心ブロック29a間に
は、放射方向に延び周方向に間欠的に配置された板状の
第1のスペーサ31を軸方向に交互に介在して、これら
をクランプ32により押えることによって一体化し、ま
た、これによって鉄心ブロック29aの内径側から外径
側に抜ける所謂ラジアル方向の第1の通風ダクト33が
形成される。また、前記外殻21の流出口28の両側部
に位置して、冷媒の流入口34,35が夫々形成されて
いる。
The stator core 29 is composed of a plurality of divided core blocks 29a, and a stator winding 30 is inserted into a slot (not shown) formed inside and held by a wedge (not shown). Thus, the stator 27 is configured. However, between the iron core blocks 29a, plate-shaped first spacers 31 extending in the radial direction and intermittently arranged in the circumferential direction are alternately interposed in the axial direction, and are pressed by the clamps 32 to be integrated. Thus, a first ventilation duct 33 in a so-called radial direction is formed, which extends from the inner diameter side to the outer diameter side of the core block 29a. Further, refrigerant inlets 34 and 35 are formed on both sides of the outlet 28 of the outer shell 21, respectively.

【0020】一方、前記軸受ブラケット23,24の軸
受25,26には、回転軸36が支承された回転子37
が前記固定子27と対応する位置関係に設けられてい
る。この回転子37は、回転子鉄心38と回転子導体3
9とを具備してなり、その回転子鉄心38は軸方向に複
数に分割された鉄心ブロック38aから構成され、これ
ら鉄心ブロック38a間には、図示しないスロット数に
対応して前記回転子導体39と一体に形成され、且つ周
方向に間欠的に配置された筒状の第2のスペーサ40を
軸方向に交互に設けている。従って、これら鉄心ブロッ
ク38a間にはラジアル方向の第2の通風ダクト41が
形成され、その外周側はエアギャップGを経て前記第1
の通風ダクト33と対向している。また、中心側の回転
軸36の周囲近傍に位置して、各鉄心ブロック38aを
軸方向に貫通してなる複数個の通風孔42(1個のみ図
示)を形成していて、この通風孔42と直交する方向に
上記第2の通風ダクト41の内方端側が連通した構成に
ある。
On the other hand, the bearings 25 and 26 of the bearing brackets 23 and 24 have a rotor 37 on which a rotating shaft 36 is supported.
Are provided in a positional relationship corresponding to the stator 27. The rotor 37 includes a rotor core 38 and a rotor conductor 3.
The rotor core 38 is composed of a plurality of core blocks 38a divided in the axial direction, and between the core blocks 38a, the rotor conductors 39 correspond to the number of slots (not shown). The cylindrical second spacers 40 formed integrally with each other and arranged intermittently in the circumferential direction are provided alternately in the axial direction. Therefore, a second ventilation duct 41 in the radial direction is formed between the iron core blocks 38a, and the outer peripheral side of the second ventilation duct 41 passes through the air gap G to the first ventilation duct 41.
Is opposed to the ventilation duct 33. Further, a plurality of ventilation holes 42 (only one is shown) formed in the vicinity of the rotation shaft 36 on the center side and penetrating through each iron core block 38a in the axial direction are formed. The inner end side of the second ventilation duct 41 communicates in a direction perpendicular to the above.

【0021】そして、前記回転軸36には、前記回転子
37の両側部に配置された軸流ファン43,44が取付
固定されていて、該軸流ファン43,44の回転に伴い
内方たる回転子10側に向けて送風されるブレード43
a,44aを夫々有している。しかるに、各軸流ファン
43及び44の上流側である軸受ブラケット23及び2
4側の領域と、下流側である回転子37及び固定子27
側の領域とを仕切るべく、環状の仕切り部材45,46
を前記外殻21内に夫々ネジ止め手段等により取付けて
いる。即ち、この仕切り部材45,46は、夫々その外
径部分が前記固定子枠22の流入口34及び35と流出
口28との間に接合し、内径部分が各軸流ファン43,
44のブレード43a,44aの先端部に近接する環状
をなし、且つ該内径部分が下流側である回転子37側に
向けて延出する筒状部45a,46aから構成されてい
る。
Axial fans 43, 44 arranged on both sides of the rotor 37 are fixedly mounted on the rotating shaft 36, and are inwardly provided as the axial fans 43, 44 rotate. Blade 43 blown toward rotor 10 side
a and 44a, respectively. However, the bearing brackets 23 and 2 on the upstream side of the axial fans 43 and 44
The area on the fourth side and the rotor 37 and the stator 27 on the downstream side
Annular partition members 45 and 46 to separate the
Are mounted in the outer shell 21 by screwing means or the like. That is, the partition members 45 and 46 have outer diameter portions joined between the inlets 34 and 35 of the stator frame 22 and the outlet 28, respectively, and inner diameter portions thereof have the respective axial fans 43 and 46.
Forty-four blades 43a, 44a are formed in an annular shape close to the tips of the blades, and the inner diameter portion is formed of cylindrical portions 45a, 46a extending toward the rotor 37, which is the downstream side.

【0022】そして、これら筒状部45a,46aの外
周側に前記固定子巻線30の端部が配置され、結果、該
巻線30の端部は斯かる仕切り部材45,46により覆
われて、軸流ファン43,44の下流側領域に配置され
た構成にある。従って、軸流ファン43,44の回転に
より流入口34,35から取入れられた上流側の冷媒
は、下流側の流出口28から流出する間、仕切り部材4
5,46によって混合することなく流動するよう隔離さ
れる。そして、特に本構成では、仕切り部材45,46
にて覆われるように配置された固定子巻線30の端部の
うち、図2に拡大して示すように内周側巻線端部30a
を径方向内方に突出する略円弧状に形成しており、一
方、これに対峙する外周側巻線端部30bは、本構成で
は略直線状に形成されている。
The ends of the stator winding 30 are arranged on the outer peripheral side of the tubular portions 45a and 46a. As a result, the ends of the winding 30 are covered by the partition members 45 and 46. , Disposed in the downstream region of the axial fans 43, 44. Therefore, while the upstream-side refrigerant taken in from the inlets 34 and 35 by the rotation of the axial fans 43 and 44 flows out from the downstream-side outlet 28, the partition member 4
5, 46 to be segregated to flow without mixing. And especially in this structure, the partition members 45 and 46
Of the end portions of the stator winding 30 arranged so as to be covered by the inner winding end portion 30a as shown in an enlarged manner in FIG.
Is formed in a substantially circular arc shape projecting radially inward, while the outer peripheral side winding end portion 30b opposed thereto is formed substantially linearly in the present configuration.

【0023】このように構成された電動機の外殻21の
上面部には、固定子枠22の流入口34,35及び流出
口28を包含して被着された風胴47が設けられてい
る。この風胴47は、軸方向両端面に吸気口48,49
が形成され、また略中央に位置して排気口50が形成さ
れると共に、各吸気口48,49と排気口50との間に
仕切り壁47a,47bが一体に形成されてこれらを隔
離し、以って各吸気口48及び49は、夫々固定子枠2
2の流入口34及び35と連通し、排気口50は流出口
28と連通した構成にある。
On the upper surface of the outer shell 21 of the electric motor constructed as described above, a wind tunnel 47 is provided so as to cover the inlets 34, 35 and the outlet 28 of the stator frame 22. . The wind tunnel 47 has intake ports 48 and 49 on both end faces in the axial direction.
And an exhaust port 50 is formed substantially at the center, and partition walls 47a and 47b are integrally formed between each of the intake ports 48 and 49 and the exhaust port 50 to isolate them. Accordingly, each of the intake ports 48 and 49 is connected to the stator frame 2 respectively.
The exhaust port 50 communicates with the outlet 28 and the exhaust port 50 communicates with the inlets 34 and 35.

【0024】次に、上記構成の作用について述べる。電
動機の通電駆動に伴い回転軸36に取付固定された軸流
ファン43,44が回転されると、図1中に矢印で示す
ように、風胴47の両吸気口48,49から外気たる冷
媒が吸入され、流入口34,35から電動機の外殻21
内に流入する。以下、説明の便宜上、図示左方の片側に
おける軸流ファン43の作動に基づく冷媒の流れにつき
述べる。尚、図示右方側も対称構造につき実質的に同じ
作用を奏するもので、以下必要に応じ付言するに留め
る。
Next, the operation of the above configuration will be described. When the axial fans 43 and 44 attached and fixed to the rotating shaft 36 are rotated with the energization driving of the electric motor, as shown by arrows in FIG. 1, the refrigerant flowing outside through the two intake ports 48 and 49 of the wind tunnel 47. Is sucked, and the outer shell 21 of the motor is
Flows into. Hereinafter, for convenience of explanation, the flow of the refrigerant based on the operation of the axial fan 43 on one side on the left side in the figure will be described. It should be noted that the right side in the figure also exerts substantially the same operation with respect to the symmetrical structure, and will be described below as necessary.

【0025】従って、外殻21内に取入れられた冷媒
は、仕切り部材45と軸流ファン43とで区画された上
流側領域において、まず軸受25からの放熱作用を促し
てこれを冷却し、軸受摩擦損失を効果的に軽減する。こ
の後、冷媒は軸流ファン43以降の下流側領域に至り、
固定子27の固定子巻線30端部や固定子鉄心29、及
び回転子37の回転子鉄心38や回転子導体39などの
発熱部材に接触して熱を冷媒中に放熱させ冷却する。こ
のように冷却に供されて昇温化した冷媒は、固定子枠2
2の流出口28を経て風洞47の排気口50から外部に
排出される。
Therefore, the refrigerant introduced into the outer shell 21 promotes a heat radiation action from the bearing 25 in the upstream area defined by the partition member 45 and the axial fan 43, thereby cooling the same. Effectively reduce friction loss. Thereafter, the refrigerant reaches the downstream region after the axial fan 43,
It contacts heat generating members such as the stator winding 30 end of the stator 27, the stator core 29, and the rotor core 38 and the rotor conductor 39 of the rotor 37, and radiates heat into the refrigerant to cool. The refrigerant which has been subjected to the cooling and raised in temperature in this manner is supplied to the stator frame 2
The air is discharged from the exhaust port 50 of the wind tunnel 47 to the outside through the second outlet 28.

【0026】しかるに、下流側における冷媒の冷却作用
につき更に詳細に述べると、まず回転子37に対して
は、冷媒が回転子導体39や回転子鉄心38などの外表
面と接触して冷却すると共に、一部は回転子鉄心38の
通風孔42から流入した後、第2の通風ダクト41を経
て外周側に流れ、各鉄心ブロック38aを内方側からも
冷却する。この場合、回転子37における通風孔42及
び第2の通風ダクト41への冷媒の流入は、該回転子3
7の回転に伴う遠心ポンプ機能(ファン作用)に基づき
取込まれ外方に放出されるもので、これは通風孔42の
左右両方向から流入し、そして共に遠心方向に放出され
る。
However, the cooling operation of the refrigerant on the downstream side will be described in more detail. First, the refrigerant contacts the outer surfaces of the rotor conductor 39 and the rotor core 38 to cool the rotor 37 while cooling. After a part flows in from the ventilation hole 42 of the rotor core 38, it flows to the outer peripheral side through the second ventilation duct 41, and also cools each core block 38a from the inner side. In this case, the inflow of the refrigerant into the ventilation holes 42 and the second ventilation duct 41 in the rotor 37
It is taken in based on the centrifugal pump function (fan action) accompanying the rotation of 7 and is discharged outward, flows in from both the left and right directions of the ventilation hole 42, and is discharged together in the centrifugal direction.

【0027】また、固定子27側に対しては固定子巻線
30の端部や固定子鉄心29の外表面の冷却と共に、上
記した第2の通風ダクト41を経た冷媒が各鉄心ブロッ
ク29a間の第1の通風ダクト33に流入し、そして外
周側に抜けて流出口28から流出し、固定子鉄心29を
内方からも冷却する。この場合、特に固定子巻線30の
端部における冷媒の流れは、即ち、仕切り部材45にて
覆われた先端部を含む内周側巻線端部30a及び外周側
巻線端部30b近傍における冷媒の流れは、一部は軸流
ファン43から流出口28間の直線的通風路を経て流れ
るほか、特に本構成では、内周側巻線端部30aを内方
に略円弧状に突出形成しているので、該端部30aに衝
突した冷媒は仕切り部材45側に向きが変えられ、従っ
て、図2中に示す破線矢印方向にも流れ易くなる。
On the side of the stator 27, while cooling the ends of the stator windings 30 and the outer surface of the stator core 29, the refrigerant that has passed through the second ventilation duct 41 is supplied between the core blocks 29a. Flows into the first ventilation duct 33, and flows out of the outlet 28 through the outer peripheral side, thereby cooling the stator core 29 also from the inside. In this case, in particular, the flow of the refrigerant at the end of the stator winding 30 is in the vicinity of the inner winding end 30a and the outer winding end 30b including the tip covered by the partition member 45. A part of the flow of the refrigerant flows through a linear ventilation path between the axial fan 43 and the outlet 28, and in particular, in this configuration, the inner peripheral side winding end 30a protrudes inward in a substantially arc shape. As a result, the refrigerant that has collided with the end portion 30a is redirected toward the partition member 45, and therefore easily flows in the direction indicated by the dashed arrow in FIG.

【0028】これを、図3に示す固定子巻線30端部に
おける作用説明図を参照して説明すると、まず前記した
従来の固定子巻線7の端部に当てはめて考察すると、こ
れは二点鎖線で示すように略直線状に形成されているた
め、該巻線7端部に対する冷媒の主たる流れ方向を示す
矢印Xとがなす衝突角度θ0 は鋭角となるため、衝突し
た冷媒の殆どは二点鎖線の矢印で示す固定子鉄心6及び
回転子鉄心11側に流れ、該巻線7端部の有効な冷却効
果は望めない。これに対し、本実施例にあっては、内周
側巻線端部30aが円弧状のため、冷媒の衝突角度θ1
が大きく衝突後の冷媒が破線矢印で示す仕切り部材45
側に指向して流れる。
This will be described with reference to the operation explanatory view at the end of the stator winding 30 shown in FIG. 3. First, when this is applied to the end of the conventional stator winding 7 described above, Since it is formed in a substantially straight line as shown by the dashed line, the collision angle θ0 formed by the arrow X indicating the main flow direction of the refrigerant with respect to the end of the winding 7 is an acute angle. It flows toward the stator core 6 and the rotor core 11 indicated by the two-dot chain line arrows, and an effective cooling effect at the end of the winding 7 cannot be expected. On the other hand, in the present embodiment, since the inner peripheral side winding end portion 30a has an arc shape, the refrigerant collision angle θ1
Is large and the refrigerant after the collision is a partition member 45 indicated by a broken-line arrow.
Flows to the side.

【0029】この結果、従来のような淀み領域S(図1
0参照)を生ずることなく冷媒は内周側巻線端部30a
及び外周側巻線端部30b側へと円滑に入れ替わり流
れ、従って、これまで仕切り部材45により冷媒の流れ
が不十分であった固定子巻線29の端部を有効に冷却し
つつ、やがては流出口28及び風胴47の排気口50か
ら速やかに排出される。このように本構成によれば、特
に固定子巻線30の端部における冷媒の流れを良好とし
たので、総じて冷媒の通風損失を抑制して効率の良い冷
却性能が得られ、電動機の駆動に伴う銅損や鉄損等によ
って発生する熱損失をより軽減できて、コンパクトな電
動機サイズにて実用に供し得るものである。
As a result, a stagnation region S (FIG.
0), the refrigerant flows into the inner peripheral winding end 30a.
Then, the flow is smoothly switched to the outer circumferential side winding end 30b side, and thus the end of the stator winding 29 where the flow of the refrigerant has been insufficient by the partition member 45 until now is effectively cooled. The air is quickly discharged from the outlet 28 and the exhaust port 50 of the wind tunnel 47. As described above, according to the present configuration, particularly, the flow of the refrigerant at the end portion of the stator winding 30 is made favorable, so that the ventilation loss of the refrigerant is suppressed as a whole, and efficient cooling performance is obtained. The heat loss caused by the accompanying copper loss and iron loss can be further reduced, and the motor can be practically used with a compact motor size.

【0030】上記の構成に対し、図4ないし図8は本発
明の第2及び第3実施例を示し、夫々第1実施例と同一
部分には同一符号を付して説明を省略し、異なる部分に
ついて以下に述べる。尚、これら実施例による開示は、
上記第1実施例と同様に左方の片側における構造及び作
用効果につき述べる。
FIGS. 4 to 8 show the second and third embodiments of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and their description is omitted. The parts are described below. In addition, the disclosure by these examples is as follows.
Similar to the first embodiment, the structure and operation and effect on the left side will be described.

【0031】(第2の実施の形態)図4及び図5は、本
発明の第2実施例を示し、まず、図4は図2相当図で、
上記第1実施例に対し固定子巻線30の端部を異なる構
成としたものである。即ち、端部のうち外周側巻線端部
30bを外方に突出する略円弧状としたもので、一方、
内周側巻線端部30aは、略直線状に延びる形状とする
など、その余の構成は上記第1実施例と同様である。
(Second Embodiment) FIGS. 4 and 5 show a second embodiment of the present invention. First, FIG. 4 is a diagram corresponding to FIG.
An end of the stator winding 30 is different from that of the first embodiment. That is, of the ends, the outer peripheral side winding end 30b is formed in a substantially circular arc shape protruding outward.
The other configuration is the same as that of the first embodiment, such as the inner peripheral side winding end portion 30a having a shape extending substantially linearly.

【0032】斯かる構成によれば、内,外周側巻線端部
30a,30b間の間隔H1 が大きくなることに基づ
き、周方向に並列する各内周側巻線端部30a間から流
入する冷媒の通風損失を軽減でき、冷却に必要な通風量
を確保できる。即ち、図5(a)は、図4のA−A線に
沿って切断して示す断面図で、軸流ファン43を経た冷
媒は、図示矢印方向に示すように各内周側巻線端部30
aに対して具体的には斜め方向から供給され、該巻線端
部30a間の隙間W1 から流入する。そして、並列状態
にある内,外周側巻線端部30a,30b間の間隔H1
を有する領域内に達するが、ここでは隙間W1 に比し間
隔H1 を有する広い空間領域であるため流入した冷媒の
流速は減速され、次いで外周側巻線端部30b間の隙間
W2 (≒W1 )に流入する。
According to such a configuration, since the distance H1 between the inner and outer winding ends 30a, 30b is increased, the air flows in from between the inner winding ends 30a arranged in the circumferential direction. The ventilation loss of the refrigerant can be reduced, and the ventilation amount required for cooling can be secured. That is, FIG. 5A is a cross-sectional view cut along the line AA in FIG. 4, and the refrigerant that has passed through the axial fan 43 is connected to each inner circumferential winding end as indicated by the arrow direction in the drawing. Part 30
a is supplied from the oblique direction, and flows into the gap W1 between the winding ends 30a. The distance H1 between the inner and outer peripheral winding ends 30a, 30b in the parallel state
In this case, the flow velocity of the inflowing refrigerant is reduced because it is a wide space area having an interval H1 as compared with the gap W1, and then the gap W2 (≒ W1) between the outer winding ends 30b. Flows into.

【0033】この場合、冷媒は減速された状態から隙間
W2 に流入するので、大きな流入抵抗を受けることなく
流入し易く、所謂入り口損失を極力小さくすることがで
き、従って、通風損失の軽減に基づき有効な冷媒として
の通風量を確保でき、より多くの冷媒との接触が得られ
る。そして、該外周側巻線端部30b間を円滑に通り抜
け、斯くして、これら内,外周側巻線端部30a,30
bから、これを横切る冷媒中に放熱させ冷却する。この
冷却に供され昇温化された冷媒は、排気流として流出口
28及び風胴47の排気口50から外方に排出される。
In this case, since the refrigerant flows into the gap W2 from the decelerated state, it is easy to flow without receiving a large inflow resistance, so that the so-called entrance loss can be reduced as much as possible. It is possible to secure a ventilation amount as an effective refrigerant, and to obtain contact with more refrigerant. And, it passes smoothly between the outer peripheral side winding ends 30b, and thus, the inner and outer peripheral side winding ends 30a, 30
From b, heat is radiated into the refrigerant traversing this and cooled. The refrigerant that has been subjected to this cooling and raised in temperature is discharged outward from the outlet 28 and the exhaust port 50 of the wind tunnel 47 as an exhaust stream.

【0034】これに対し、図5(b)は、前記した従来
構成に相当する上記(a)相当図にあって、斯かる構成
では内,外周側巻線端部7a,7bが共に直線状に延
び、従って、これらの間に形成される間隔H0 は小さい
(H0 <H1 )。しかして、冷媒が内周側巻線端部7a
間の隙間W1 から流入した空間領域は、狭い間隔H0 か
らなる空間であるため、流入速度に略等しい流速で外周
側巻線端部7b間の隙間W2 (≒W1 )に流入しようと
して該隙間W2 周縁と衝突し、その際に生ずる流入抵抗
による入り口損失が大きく、結果として通風量(冷媒)
が減少し固定子巻線7の端部全般に亘る冷却性能が低下
することは否めない。このように従来構成に比し、本実
施例では間隔H1 を大きくすることによって通風抵抗を
低減し、それだけ固定子巻線30端部を流通する冷媒の
通風量を多く供給でき、該端部における冷却性能を高め
ることができる。
On the other hand, FIG. 5B is a view corresponding to FIG. 5A corresponding to the above-mentioned conventional configuration, and in this configuration, both the inner and outer peripheral winding ends 7a and 7b are linear. Therefore, the interval H0 formed between them is small (H0 <H1). Thus, the refrigerant flows into the inner peripheral side winding end 7a.
Since the space region that has flowed in from the gap W1 is a space formed with a narrow interval H0, the space W2 tries to flow into the gap W2 (≒ W1) between the outer peripheral winding ends 7b at a flow rate substantially equal to the flow rate. Entrance loss due to the inflow resistance generated at the time of collision with the peripheral edge is large, and as a result, the ventilation volume (refrigerant)
It is unavoidable that the cooling performance over the entire end of the stator winding 7 is reduced. As described above, in the present embodiment, compared with the conventional configuration, the ventilation resistance is reduced by increasing the interval H1, so that a larger amount of the refrigerant flowing through the end of the stator winding 30 can be supplied. Cooling performance can be improved.

【0035】尚、付言するに、上記した第1実施例にお
いては、特に内周側巻線端部30aを円弧状に形成し
て、これに衝突した冷媒に対して、その流れを仕切り部
材45側である端部先端側に導き、冷却性能を改善した
点につき述べた。その第1実施例にあっても、第2実施
例に謂う間隔H1 に相当する広い空間領域を形成できる
同一事情を有することから、内周側巻線端部30aから
流入した冷媒に対しても、斯かる第2実施例と同様の作
用効果が期待でき、冷却性能の一層の向上に有利である
ことが理解できる。
It should be noted that, in the above-described first embodiment, in particular, the inner circumferential side winding end 30a is formed in an arc shape, and the flow of the refrigerant colliding with the inner winding end 30a is divided by the partition member 45. It was described that the cooling performance was improved by guiding to the end tip side which is the side. Even in the first embodiment, since it has the same circumstance that a wide space area corresponding to the so-called interval H1 can be formed as in the second embodiment, even the refrigerant flowing from the inner winding end 30a can be used. It can be understood that the same operation and effect as those of the second embodiment can be expected, which is advantageous for further improving the cooling performance.

【0036】(第3の実施の形態)図6ないし図8は、
本発明の第3実施例を示し、図6は図2相当図、図7は
図6の要部の拡大図で、そして図8は仕切り部材51
(図示左方の片側のみ示す)の固定子鉄心29側から見
た正面図である。本実施例における仕切り部材51は、
その筒状部51aの延出端部にあって、軸流ファン43
の下流側における冷媒の一部を固定子巻線30端部の先
端に向けて流れるように、風向変換可能としたガイド部
材52を設けたものである。
(Third Embodiment) FIG. 6 to FIG.
FIG. 6 is a view corresponding to FIG. 2, FIG. 7 is an enlarged view of a main part of FIG. 6, and FIG.
It is the front view seen from the stator iron core 29 side (only one left side is shown in the figure). The partition member 51 in the present embodiment includes:
At the extending end of the cylindrical portion 51a, the axial fan 43
Is provided with a guide member 52 which is capable of changing the wind direction so that a part of the refrigerant on the downstream side flows toward the tip of the end of the stator winding 30.

【0037】即ち、ガイド部材52は図6及び図7の断
面図に示すように、軸方向に延びる筒状部51aの先端
部から例えば一体に形成され、外方に拡開する傾斜面部
52aと、更に延出され且つ曲成されて固定子巻線30
端部の先端方向に指向するガイド面部52bと、前記傾
斜面部に52aに例えば周方向四箇所に形成されスリッ
ト状で円弧形状の開口部52c(図8も参照)とから構
成される。従って、本構成の仕切り部材51は、上記第
1実施例における仕切り部材45とはガイド部材52を
有している点で異なり、その余の構成は第1実施例と同
じ構成にある。
That is, as shown in the cross-sectional views of FIGS. 6 and 7, the guide member 52 is formed integrally with, for example, a tip end of a cylindrical portion 51a extending in the axial direction, and is formed with an inclined surface portion 52a expanding outward. , Further extended and bent to form a stator winding 30
It is composed of a guide surface portion 52b directed toward the distal end of the end portion, and a slit-shaped arc-shaped opening portion 52c (see also FIG. 8) formed at the inclined surface portion 52a at, for example, four circumferential positions. Therefore, the partition member 51 of this configuration is different from the partition member 45 of the first embodiment in that the partition member 51 has the guide member 52, and the remaining configuration is the same as that of the first embodiment.

【0038】このようにガイド部材52を設けた本実施
例によれば、軸流ファン43によって取込まれた冷媒
は、下流側における固定子鉄心29等に向けて供給され
るうちの一部が傾斜面部52aの開口部52cから導入
され、そしてガイド面部52bにて風向変換され、図
6,7中に破線矢印にて示すように仕切り部材51にて
覆われた固定子巻線30端部の先端部に向けて順次供給
され、従来のように冷媒の流れの死角となって淀み領域
S(図10参照)が生ずることもなく、結果として固定
子巻線30の温度を低減できて熱損失の減少を図り得る
電動機を提供できる。尚、本実施例におけるガイド部材
52では、傾斜面部52aに開口部52cを形成した構
成としたが、これに限らず、例えば傾斜面部52aは仕
切り部材51の筒状部51aをストレート状に延長した
構成としても冷媒の取込みは可能であり、また、仕切り
部材51とは別部材として組み込むことも可能で、斯か
る場合にはガイド面部52bにあっても、風向変換可能
とする種々の具体形状に変更して実施できるものであ
る。
According to the present embodiment in which the guide member 52 is provided, a part of the refrigerant taken in by the axial fan 43 is supplied to the stator core 29 and the like on the downstream side. The direction of the wind is changed from the opening 52c of the inclined surface 52a, and the wind direction is changed by the guide surface 52b, and the end of the stator winding 30 is covered by the partition member 51 as shown by the dashed arrow in FIGS. It is supplied sequentially toward the tip portion, and the stagnation region S (see FIG. 10) does not occur due to the blind spot of the flow of the refrigerant unlike the related art. As a result, the temperature of the stator winding 30 can be reduced and the heat loss can be reduced. It is possible to provide an electric motor capable of reducing power consumption. The guide member 52 in this embodiment has a configuration in which the opening 52c is formed in the inclined surface 52a. However, the present invention is not limited to this. For example, the inclined surface 52a is formed by extending the cylindrical portion 51a of the partition member 51 in a straight shape. It is possible to take in the refrigerant also as a configuration, and it is also possible to incorporate the refrigerant as a separate member from the partition member 51, and in such a case, even in the guide surface portion 52b, it is possible to change the wind direction into various specific shapes. It can be changed and implemented.

【0039】その他、本発明は上記し且つ図面に示した
各実施例に限定されるものではなく、例えば、冷媒を出
し入れする二つの流入口と一つの流出口を有する電動機
の構成に限らず、一つの流入口とする電動機にも転用で
きると共に、斯かる場合には軸流ファンも1個の構成と
することも可能であり、また、各実施例を任意に組合わ
せた構成としても良く、且つ、防滴形電動機に限らず各
種の回転電機に適用することが可能であるなど、要旨を
逸脱しない範囲内で適宜変更して実施し得るものであ
る。
In addition, the present invention is not limited to the embodiments described above and shown in the drawings. For example, the present invention is not limited to the configuration of a motor having two inlets and one outlet for introducing and removing a refrigerant. It can be diverted to a motor having one inflow port, and in such a case, it is also possible to use a single axial flow fan. In addition, the present invention can be applied to various kinds of rotating electric machines without being limited to the drip-proof type electric motor, and can be appropriately modified and implemented without departing from the gist of the invention.

【0040】[0040]

【発明の効果】以上の説明にて明らかなように、本発明
の回転電機によれば、特に固定子巻線の端部に対し、冷
媒の下流側領域における通風損失を抑えて流れを円滑に
して通風量を確保し得て、冷媒との接触を良好ならし
め、その冷却性能を向上することができる。従って、冷
却ファンや回転電機自体を大形化することなく効率の良
い冷却効果が得られ、鉄損及び銅損などの熱的損失を小
さく抑えることができる実用的に優れた回転電機を提供
できる。
As is apparent from the above description, according to the rotating electric machine of the present invention, the flow of the refrigerant is smoothed by suppressing the ventilation loss in the downstream region of the refrigerant, particularly with respect to the end of the stator winding. As a result, it is possible to secure a sufficient amount of ventilation, improve the contact with the refrigerant, and improve the cooling performance. Accordingly, an efficient cooling effect can be obtained without increasing the size of the cooling fan or the rotating electric machine itself, and a practically excellent rotating electric machine capable of suppressing heat loss such as iron loss and copper loss can be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す防滴形電動機の上半
部の構成を示す縦断面図
FIG. 1 is a longitudinal sectional view showing a configuration of an upper half of a drip-proof electric motor according to a first embodiment of the present invention.

【図2】要部の拡大断面図FIG. 2 is an enlarged sectional view of a main part.

【図3】固定子巻線端部における作用説明図FIG. 3 is an explanatory diagram of an operation at an end portion of a stator winding.

【図4】本発明の第2実施例を示す図2相当図FIG. 4 is a view corresponding to FIG. 2, showing a second embodiment of the present invention;

【図5】図4のA−A線に沿って切断して示す断面図FIG. 5 is a sectional view taken along line AA of FIG. 4;

【図6】本発明の第3実施例を示す図2相当図FIG. 6 is a view corresponding to FIG. 2, showing a third embodiment of the present invention;

【図7】図6の要部の拡大図FIG. 7 is an enlarged view of a main part of FIG. 6;

【図8】仕切り部材の正面図FIG. 8 is a front view of a partition member.

【図9】従来例を示す図1相当図FIG. 9 is a diagram corresponding to FIG. 1 showing a conventional example.

【図10】図2相当図FIG. 10 is a diagram corresponding to FIG. 2;

【符号の説明】[Explanation of symbols]

図面中、21は外殻、22は固定子枠、23,24は軸
受ブラケット、25,26は軸受、27は固定子、29
は固定子鉄心、30は固定子巻線、30aは内周側巻線
端部、30bは外周側巻線端部、34は流入口、35は
流出口、36は回転軸、37は回転子、38は回転子鉄
心、39は回転子導体、43,44は軸流ファン、4
5,46,51は仕切り部材、47は風胴、及び52は
ガイド部材を示す。
In the drawings, 21 is an outer shell, 22 is a stator frame, 23 and 24 are bearing brackets, 25 and 26 are bearings, 27 is a stator, 29
Is a stator core, 30 is a stator winding, 30a is an inner winding end, 30b is an outer winding end, 34 is an inlet, 35 is an outlet, 36 is a rotating shaft, and 37 is a rotor. , 38 are rotor cores, 39 is a rotor conductor, 43 and 44 are axial fans,
5, 46 and 51 are partition members, 47 is a wind tunnel, and 52 is a guide member.

フロントページの続き Fターム(参考) 5H603 AA12 AA15 BB01 BB12 CA01 CA04 CB03 CC07 CC17 5H605 AA01 AA02 BB05 CC01 CC02 CC04 CC05 CC09 DD07 DD11 DD17 DD31 EA05 EA06 EA15 EB01 GG04 GG06 5H609 BB18 PP02 PP05 PP06 PP07 PP08 PP09 PP10 PP11 QQ02 QQ13 RR02 RR17 RR27 RR33 RR35 RR38 RR40 RR43 RR69 RR73 Continued on the front page F term (reference) 5H603 AA12 AA15 BB01 BB12 CA01 CA04 CB03 CC07 CC17 5H605 AA01 AA02 BB05 CC01 CC02 CC04 CC05 CC09 DD07 DD11 DD17 DD31 EA05 EA06 EA15 EB01 GG04 GG06 5H609 BB18 PP02 Q05 PP06 RR02 RR17 RR27 RR33 RR35 RR38 RR40 RR43 RR69 RR73

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒状の固定子枠とその両端部に配設され
軸受を有する軸受ブラケットとから構成される外殻と、
前記固定子枠の内周面に取付固定された固定子と、前記
固定子に対応し前記両軸受ブラケット間に回転軸を介し
て装着された回転子と、この回転子の側方にあって前記
回転軸に取付固定された軸流ファンと、前記外殻に形成
され前記軸流ファンの上流側に位置する冷媒の流入口及
び下流側に位置する流出口と、前記外殻内に設けられ前
記軸流ファンの上流側と下流側との間を仕切るように該
軸流ファンの径方向先端部と近接する筒状部を有すると
共に、下流側領域に位置する前記固定子巻線の端部を覆
うように形成された仕切り部材とを備え、前記固定子巻
線の端部のうち内周側巻線端部を内方に略円弧状に突出
形成したことを特徴とする回転電機。
An outer shell comprising a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings;
A stator mounted and fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator and mounted between the bearing brackets via a rotating shaft, and a side of the rotor. An axial fan mounted and fixed to the rotating shaft, an inlet formed on the outer shell and located at an upstream side of the axial flow fan and an outlet located at a downstream side of the axial fan, and provided in the outer shell. An end portion of the stator winding, which has a cylindrical portion adjacent to a radial end portion of the axial flow fan so as to partition between an upstream side and a downstream side of the axial flow fan, and is located in a downstream region. And a partition member formed so as to cover the inner periphery of the stator winding, wherein an end of the inner peripheral side winding of the end of the stator winding is formed to protrude inward in a substantially arc shape.
【請求項2】 筒状の固定子枠とその両端部に配設され
軸受を有する軸受ブラケットとから構成される外殻と、
前記固定子枠の内周面に取付固定された固定子と、前記
固定子に対応し前記両軸受ブラケット間に回転軸を介し
て装着された回転子と、この回転子の側方にあって前記
回転軸に取付固定された軸流ファンと、前記外殻に形成
され前記軸流ファンの上流側に位置する冷媒の流入口及
び下流側に位置する流出口と、前記外殻内に設けられ前
記軸流ファンの上流側と下流側との間を仕切るように該
軸流ファンの径方向先端部と近接する筒状部を有すると
共に、下流側領域に位置する前記固定子巻線の端部を覆
うように形成された仕切り部材とを備え、前記固定子巻
線の端部のうち外周側巻線端部を外方に略円弧状に突出
形成したことを特徴とする回転電機。
2. An outer shell comprising a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings.
A stator mounted and fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator and mounted between the bearing brackets via a rotating shaft, and a side of the rotor. An axial fan mounted and fixed to the rotating shaft, an inlet formed on the outer shell and located at an upstream side of the axial flow fan and an outlet located at a downstream side of the axial fan, and provided in the outer shell. An end portion of the stator winding, which has a cylindrical portion adjacent to a radial end portion of the axial flow fan so as to partition between an upstream side and a downstream side of the axial flow fan, and is located in a downstream region. And a partition member formed so as to cover the outer periphery of the stator winding, wherein an outer circumferential end of the stator winding is formed so as to protrude outward in a substantially arc shape.
【請求項3】 筒状の固定子枠とその両端部に配設され
軸受を有する軸受ブラケットとから構成される外殻と、
前記固定子枠の内周面に取付固定された固定子と、前記
固定子に対応し前記両軸受ブラケット間に回転軸を介し
て装着された回転子と、この回転子の側方にあって前記
回転軸に取付固定された軸流ファンと、前記外殻に形成
され前記軸流ファンの上流側に位置する冷媒の流入口及
び下流側に位置する流出口と、前記外殻内に設けられ前
記軸流ファンの上流側と下流側との間を仕切るように該
軸流ファンの径方向先端部と近接する筒状部を有すると
共に、下流側領域に位置する前記固定子巻線の端部を覆
うように形成された仕切り部材とを備え、前記仕切り部
材の筒状部の下流側延出端部に、前記軸流ファンによる
通風を前記固定子巻線の端部先端側に指向させるガイド
部材を設けたことを特徴とする回転電機。
3. An outer shell comprising a cylindrical stator frame and bearing brackets provided at both ends thereof and having bearings.
A stator mounted and fixed to the inner peripheral surface of the stator frame, a rotor corresponding to the stator and mounted between the bearing brackets via a rotating shaft, and a side of the rotor. An axial fan mounted and fixed to the rotating shaft, an inlet formed on the outer shell and located at an upstream side of the axial flow fan and an outlet located at a downstream side of the axial fan, and provided in the outer shell. An end portion of the stator winding, which has a cylindrical portion adjacent to a radial end portion of the axial flow fan so as to partition between an upstream side and a downstream side of the axial flow fan, and is located in a downstream region. And a guide member for directing ventilation by the axial flow fan toward the distal end of the stator winding at the downstream extending end of the tubular portion of the partition. A rotating electric machine comprising a member.
JP25459899A 1999-09-08 1999-09-08 Dynamo-electric machine Pending JP2001078391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25459899A JP2001078391A (en) 1999-09-08 1999-09-08 Dynamo-electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25459899A JP2001078391A (en) 1999-09-08 1999-09-08 Dynamo-electric machine

Publications (1)

Publication Number Publication Date
JP2001078391A true JP2001078391A (en) 2001-03-23

Family

ID=17267273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25459899A Pending JP2001078391A (en) 1999-09-08 1999-09-08 Dynamo-electric machine

Country Status (1)

Country Link
JP (1) JP2001078391A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109549A (en) * 2004-10-01 2006-04-20 Hitachi Ltd Permanent magnet dynamo-electric machine and wind force power generating system
US20110127862A1 (en) * 2008-07-21 2011-06-02 Siemens Aktiengesellschaft Electric machine having radial dividers for guiding cooling air
JP2014140288A (en) * 2012-12-20 2014-07-31 Yaskawa Electric Corp Rotary electric machine and housing of the same
KR20160002152U (en) * 2014-12-12 2016-06-22 현대중공업 주식회사 Induction Motor
WO2020157464A1 (en) * 2019-01-30 2020-08-06 Cummins Generator Technologies Limited Deflector for rotating electrical machine
CN115864715A (en) * 2022-12-08 2023-03-28 扬州大劲电机制造有限公司 Durable motor for electric tool of long-life
EP4181360A1 (en) * 2021-11-16 2023-05-17 Rolls-Royce plc Electric machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109549A (en) * 2004-10-01 2006-04-20 Hitachi Ltd Permanent magnet dynamo-electric machine and wind force power generating system
KR20060051920A (en) * 2004-10-01 2006-05-19 가부시끼가이샤 히다치 세이사꾸쇼 Rotary electric machine using permanent magnet and wind turbine system
JP4572647B2 (en) * 2004-10-01 2010-11-04 株式会社日立製作所 Permanent magnet rotating electrical machine and wind power generation system
US20110127862A1 (en) * 2008-07-21 2011-06-02 Siemens Aktiengesellschaft Electric machine having radial dividers for guiding cooling air
US8614528B2 (en) * 2008-07-21 2013-12-24 Siemens Aktiengesellschaft Electric machine having radial dividers for guiding cooling air
JP2014140288A (en) * 2012-12-20 2014-07-31 Yaskawa Electric Corp Rotary electric machine and housing of the same
KR20160002152U (en) * 2014-12-12 2016-06-22 현대중공업 주식회사 Induction Motor
KR200490109Y1 (en) 2014-12-12 2019-09-26 현대일렉트릭앤에너지시스템(주) Induction Motor
WO2020157464A1 (en) * 2019-01-30 2020-08-06 Cummins Generator Technologies Limited Deflector for rotating electrical machine
EP4181360A1 (en) * 2021-11-16 2023-05-17 Rolls-Royce plc Electric machine
CN115864715A (en) * 2022-12-08 2023-03-28 扬州大劲电机制造有限公司 Durable motor for electric tool of long-life
CN115864715B (en) * 2022-12-08 2023-09-12 扬州大劲电机制造有限公司 Durable motor for electric tool with long service life

Similar Documents

Publication Publication Date Title
RU2399141C1 (en) Electric machine with rotor cooled inside
US8487490B2 (en) Electric rotating machine
RU2408964C2 (en) Electrical machine
US9755467B2 (en) Open-type induction motor
JP2005057957A (en) Motor
CN105307821A (en) Electric power tool
JPH10234157A (en) Motor
JP2007089255A (en) Dynamo-electric machine
CN111725928B (en) Rotating electric machine and rotor shaft
JP2001078390A (en) Dynamo-electric machine
JP5050538B2 (en) Motor cooling structure
JP2001078391A (en) Dynamo-electric machine
JP4635563B2 (en) Electric blower
JP2016159381A (en) Electric work machine
EP0062680B1 (en) Cooling unit for a normal and reversely rotatable motor
WO2021250248A1 (en) Air flow control apparatus
RU2101836C1 (en) Electrical machine
KR100948154B1 (en) Cooling device for electric motor
JP2001238395A (en) Fully enclosed motor fitted with cooling rib
EP3643925A1 (en) Electric air blower, electric vacuum cleaner, and hand drier device
JP3048052B1 (en) Motor for driving vehicle
JPH08214499A (en) Rotary electric machine
JPH0779542A (en) Air cooling structure for salient pole electric rotating machine
JPH0993868A (en) Main motor for vehicle
JP2006180655A (en) Totally-enclosed main motor for vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907

A521 Written amendment

Effective date: 20041104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100128

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees