JP2001075032A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JP2001075032A
JP2001075032A JP24754099A JP24754099A JP2001075032A JP 2001075032 A JP2001075032 A JP 2001075032A JP 24754099 A JP24754099 A JP 24754099A JP 24754099 A JP24754099 A JP 24754099A JP 2001075032 A JP2001075032 A JP 2001075032A
Authority
JP
Japan
Prior art keywords
optical system
optical
lens
correction
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24754099A
Other languages
Japanese (ja)
Other versions
JP3483129B2 (en
Inventor
Seizo Suzuki
清三 鈴木
Masakane Aoki
真金 青木
Hiromichi Atsumi
広道 厚海
Koji Sakai
浩司 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24754099A priority Critical patent/JP3483129B2/en
Priority to US09/653,330 priority patent/US6509995B1/en
Publication of JP2001075032A publication Critical patent/JP2001075032A/en
Priority to US10/278,810 priority patent/US6801351B2/en
Priority to US10/279,848 priority patent/US6606179B2/en
Application granted granted Critical
Publication of JP3483129B2 publication Critical patent/JP3483129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize an optical scanner by which focusing position deviation in main and sub scanning directions caused in accordance with the change of ambient temperature can be self-corrected in the entire system of an optical system, and a light spot having a small diameter can be formed on a surface to be scanned regardless of temperature change. SOLUTION: As to the optical scanner provided with a light source 1, the optical system 2 coupling a luminous flux from the light source to the successive optical system, an optical deflector 5 reflecting and deflecting the luminous flux from the coupling optical system by a deflecting and reflecting surface 5a, a scanning and image-forming optical system 6 condensing the deflected luminous flux by the optical deflector on a surface 7 to be scanned as the light spot, and a correction optical system 3 self-correcting the focusing position deviation of the light spot on the surface to be scanned caused in accordance with the ambient fluctuation; the system 3 has at least a pair of a resin lens 3a having an anamorphic surface having negative power both in the main scanning direction and in the sub-scanning direction and a glass lens 3b having the anamorphic surface having positive power at least in the sub-scanning direction, and is set between the system 2 and the surface 5a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザープリン
タ、デジタル複写機、ファクシミリ等の画像形成装置の
書込光学系や、計測器、検査装置等に応用される光走査
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a writing optical system of an image forming apparatus such as a laser printer, a digital copying machine, and a facsimile, and an optical scanning apparatus applied to a measuring instrument, an inspection apparatus, and the like.

【0002】[0002]

【従来の技術】光源からの光束を光偏向器で偏向し、走
査光学系で被走査面上に光スポットとして集光して、被
走査面上を走査する光走査装置は、従来からレーザープ
リンタやデジタル複写機、ファクシミリ等に関連して広
く知られている。このような光走査装置において、レン
ズコストを低減させる目的や、特殊なレンズ面形状を実
現する目的で、樹脂製レンズの使用が意図されている。
殊に偏向光束を被走査面上に結像させる走査結像光学系
を構成するレンズ(走査結像レンズ)は、像面湾曲やリ
ニアリティ等の等速特性の良好な補正を目的として特殊
なレンズ面形状が種々提案されているが、このような特
殊なレンズ面形状を実現するためには樹脂製レンズが適
している。一方、周知の如く樹脂製レンズには、温度変
化に伴う体積変化により、レンズ面の曲率や屈折率が変
化し、レンズ性能、特に被走査面上での光スポットの焦
点位置が変化するという問題がある。この焦点位置の変
化は、被走査面上における光スポットのスポット径を増
大させてビーム太りを生じ、光走査の解像度を低下させ
る原因となる。
2. Description of the Related Art An optical scanning device which deflects a light beam from a light source by an optical deflector, condenses it as a light spot on a surface to be scanned by a scanning optical system, and scans the surface to be scanned has conventionally been a laser printer. And a digital copier, a facsimile, and the like. In such an optical scanning device, use of a resin lens is intended for the purpose of reducing the lens cost or realizing a special lens surface shape.
In particular, a lens (scanning image forming lens) constituting a scanning image forming optical system for forming an image of a deflected light beam on a surface to be scanned is a special lens for the purpose of excellent correction of constant velocity characteristics such as field curvature and linearity. Various surface shapes have been proposed, but a resin lens is suitable for realizing such a special lens surface shape. On the other hand, as is well known, the resin lens has a problem that the curvature and the refractive index of the lens surface change due to a volume change due to a temperature change, and the lens performance, particularly the focal position of the light spot on the surface to be scanned changes. There is. This change in the focal position causes an increase in the spot diameter of the light spot on the surface to be scanned, causing beam thickening and causing a reduction in the resolution of optical scanning.

【0003】そこで、樹脂製レンズの温度変化に伴う焦
点位置の変化は、正レンズと負レンズとで互いに逆に発
生するので、上記焦点位置の変化を補正するために、光
源から光偏向器に至る光路上に、樹脂製の走査結像レン
ズと逆のパワーを持つ樹脂製レンズを配備して、走査結
像レンズの温度変化による焦点位置の変化を相殺するこ
とが知られている(特開平8−160330号公報、特
開平8−292388号公報)。ここで、特開平8−1
60330号公報記載の光走査装置は、光源、入射光学
系、偏向器、走査光学系、被走査媒体を含む構成であ
り、入射光学系は、光源からの発散光束を平行光束にす
る第一の光学系(コリメートレンズ)と、該第一の光学
系を介した光源からの光を副走査方向において偏向器近
傍で結像させる第二の光学系とからなり、第一の光学
系、あるいは第二の光学系のいずれかに副走査方向に負
のパワーを持つ樹脂製の光学素子(レンズ)を含む構成
としている。また、特開平8−292388号公報記載
の走査光学装置は、偏向器の偏向位置近傍で結像させる
第1結像部において、副走査方向にのみ負の屈折力を有
し、樹脂を材料とする負レンズを備え、温度補償を行う
構成としている。
Therefore, the change in the focal position due to the change in the temperature of the resin lens occurs in the positive lens and the negative lens in opposite directions. It is known that a resin lens having a power opposite to that of a resin scanning image forming lens is provided on an optical path to reach to cancel a change in a focal position due to a temperature change of the scanning image forming lens (Japanese Patent Laid-Open No. H10-163873). 8-160330, JP-A-8-292388). Here, JP-A-8-1
The optical scanning device described in Japanese Patent No. 60330 has a configuration including a light source, an incident optical system, a deflector, a scanning optical system, and a medium to be scanned, and the incident optical system converts a divergent light beam from the light source into a parallel light beam. An optical system (collimating lens); and a second optical system that forms an image of light from the light source through the first optical system in the sub-scanning direction near the deflector. One of the two optical systems includes a resin optical element (lens) having negative power in the sub-scanning direction. Further, the scanning optical device described in Japanese Patent Application Laid-Open No. 8-292388 has a first image forming portion that forms an image near the deflection position of the deflector, has a negative refractive power only in the sub-scanning direction, and uses resin as a material. A negative lens to perform temperature compensation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術に記載された光走査装置では、光源と光偏向器と
の間に配備される補正用の樹脂製レンズは、副走査方向
にのみ負のパワーを持つレンズであり、主走査方向に関
してはパワーを持たないので、走査結像レンズの温度変
化に伴う主走査方向の焦点位置ずれ(光スポットの結像
位置のずれ)は補正できなかった。また、従来技術にお
ける補正用レンズは、レンズ断面を通常の円弧形状で構
成していたため、補正用レンズによって、かえって波面
収差を劣化させ光スポットの小径化の妨げとなるという
問題があった。
However, in the optical scanning device described in the above prior art, the resin lens for correction provided between the light source and the optical deflector has a negative lens only in the sub-scanning direction. Since the lens has power and does not have power in the main scanning direction, it was not possible to correct the focal position shift (deviation of the light spot imaging position) in the main scanning direction due to the temperature change of the scanning imaging lens. Further, since the correction lens in the related art has a normal circular arc cross section, there is a problem that the correction lens deteriorates the wavefront aberration and hinders the reduction of the diameter of the light spot.

【0005】本発明は上記事情に鑑みなされたものであ
って、偏向光束を被走査面上に結像させる光学系に樹脂
製レンズを用いた場合にも、環境温度の変化に伴う主走
査方向及び副走査方向の焦点位置ずれを光学系の全系で
自己補正し、温度変化に拘わらず被走査面上に小径の光
スポットを形成することができる光走査装置を実現する
ことを課題とする。
The present invention has been made in view of the above circumstances, and even when a resin lens is used in an optical system for forming an image of a deflected light beam on a surface to be scanned, the main scanning direction is affected by a change in environmental temperature. Another object of the present invention is to realize an optical scanning device capable of self-correcting a focal position shift in the sub-scanning direction by an entire optical system and forming a small-diameter light spot on a scanned surface regardless of a temperature change. .

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明に係る光走査装置は、光束を放射
する光源と、該光源からの光束を平行光束もしくは略収
束光束あるいは略発散光束に変換して以後の光学系にカ
ップリングするカップリング光学系と、該カップリング
光学系からの光束を偏向反射面で反射して偏向走査する
光偏向器と、該光偏向器による偏向光束を被走査面上に
光スポットとして集光する走査結像光学系と、環境変動
などに伴う上記被走査面上の光スポットの焦点位置ずれ
を自己補正するための補正光学系を備えている。そして
上記補正光学系は、主走査方向、副走査方向共に負のパ
ワーを持つアナモフィック面を有する樹脂製レンズと、
少なくとも副走査方向に正のパワーを持つアナモフィッ
ク面を有するガラスレンズとを少なくとも1対有し、上
記カップリング光学系と上記偏向反射面の間に設置され
ている(請求項1)。
As a means for solving the above-mentioned problems, an optical scanning device according to the present invention comprises a light source for emitting a light beam, and a light beam from the light source being converted into a parallel light beam, a substantially convergent light beam, or a substantially divergent light beam. A coupling optical system that converts the light into a light beam and couples the light beam to the subsequent optical system; an optical deflector that reflects the light beam from the coupling optical system on a deflecting / reflecting surface to deflect and scan; And a correction optical system for self-correcting the focal position shift of the light spot on the scanned surface due to environmental fluctuations and the like. The correction optical system includes a resin lens having an anamorphic surface having negative power in both the main scanning direction and the sub-scanning direction,
At least one pair of a glass lens having an anamorphic surface having a positive power at least in the sub-scanning direction is provided, and is provided between the coupling optical system and the deflection reflection surface.

【0007】上記請求項1に係る光走査装置において、
アナモフィック面を有する樹脂製レンズとアナモフィッ
ク面を有するガラスレンズからなる補正光学系は保持部
材で一体に保持することが好ましい(請求項2)。そし
て上記請求項2に係る光走査装置において、保持部材で
一体化した補正光学系は、光軸方向に移動調整可能な構
造を有することが好ましい(請求項3)。あるいは上記
請求項2に係る光走査装置において、保持部材で一体化
した補正光学系は、光軸に垂直な方向に回転調整可能な
構造を有することが好ましい(請求項4)。さらに、上
記請求項1,2,3または4に係る光走査装置におい
て、補正光学系のアナモフィック面の少なくとも1面
は、主・副走査方向共に非球面で構成されることが好ま
しい(請求項5)。また、上記請求項1,2,3,4ま
たは5に係る光走査装置において、アナモフィック面を
有する樹脂製レンズとアナモフィック面を有するガラス
レンズの面間隔をLとし、補正光学系全系の副走査方向
の焦点距離をfsとしたとき、条件:0<L/fs<
0.1を満足することが好ましい(請求項6)。
In the optical scanning device according to the first aspect,
It is preferable that the correction optical system composed of a resin lens having an anamorphic surface and a glass lens having an anamorphic surface be integrally held by a holding member. In the optical scanning device according to the second aspect, it is preferable that the correction optical system integrated with the holding member has a structure capable of adjusting the movement in the optical axis direction (claim 3). Alternatively, in the optical scanning device according to the second aspect, it is preferable that the correction optical system integrated with the holding member has a structure capable of rotating and adjusting in a direction perpendicular to the optical axis. Further, in the optical scanning device according to the first, second, third or fourth aspect, it is preferable that at least one of the anamorphic surfaces of the correction optical system is configured to be aspherical in both the main and sub-scanning directions. ). Further, in the optical scanning device according to claim 1, the distance between the resin lens having the anamorphic surface and the glass lens having the anamorphic surface is L, and the sub-scanning of the entire correction optical system is performed. When the focal length in the direction is fs, the condition: 0 <L / fs <
It is preferable to satisfy 0.1 (claim 6).

【0008】[0008]

【発明の実施の形態】以下、本発明の構成、動作及び作
用を図面を参照して詳細に説明する。図1は本発明の一
実施形態を示す図であって、光走査装置を構成する光学
系の配置を主走査平面(光軸と主走査方向に平行な平
面)に展開して示した光学配置説明図である。図1に示
す光学系は、光束を放射する光源1と、この光源1から
の光束を平行光束もしくは略収束光束あるいは略発散光
束に変換して以後の光学系にカップリングするカップリ
ング光学系2と、カップリング光学系2からの光束を偏
向反射面5aで反射して偏向走査する光偏向器5と、光
偏向器5による偏向光束を被走査面7上に光スポットと
して集光する走査結像光学系6と、環境変動などに伴う
上記被走査面上の光スポットの焦点位置ずれを自己補正
するための補正光学系3を備えている。そして補正光学
系3は、主走査方向、副走査方向共に負のパワーを持つ
アナモフィック面を有する樹脂製補正レンズ3aと、少
なくとも副走査方向に正のパワーを持つアナモフィック
面を有するガラス製補正レンズ3bとを少なくとも1対
有し、上記カップリング光学系2と上記偏向反射面5a
の間に設置されている(請求項1)。尚、符号4は光路
折り曲げ用の平面鏡であり、必要に応じて設置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure, operation and operation of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a view showing an embodiment of the present invention, and is an optical arrangement in which the arrangement of an optical system constituting an optical scanning device is developed on a main scanning plane (a plane parallel to the optical axis and the main scanning direction). FIG. The optical system shown in FIG. 1 includes a light source 1 that emits a light beam, and a coupling optical system 2 that converts the light beam from the light source 1 into a parallel light beam, a substantially convergent light beam, or a substantially divergent light beam, and couples the light beam with the subsequent optical system. A light deflector 5 for reflecting the light beam from the coupling optical system 2 on the deflecting / reflecting surface 5a and deflecting and scanning the light; and a scanning device for condensing the deflected light beam by the light deflector 5 on the surface 7 to be scanned as a light spot. An image optical system 6 and a correction optical system 3 for self-correcting the focal position shift of the light spot on the surface to be scanned due to environmental fluctuations and the like are provided. The correction optical system 3 includes a resin correction lens 3a having an anamorphic surface having negative power in both the main scanning direction and the sub-scanning direction, and a glass correction lens 3b having an anamorphic surface having at least positive power in the sub-scanning direction. And the coupling optical system 2 and the deflecting / reflecting surface 5a.
(Claim 1). Reference numeral 4 denotes a plane mirror for bending the optical path, which is installed as necessary.

【0009】ここで、光源1としては半導体レーザが用
いられるが、発光ダイオード(LED)等を利用するこ
ともできる。カップリング光学系2は単数あるいは複数
のレンズで構成されるカップリングレンズであり、光源
1から放射される発散性の光束を平行光束もしくは略収
束光束あるいは略発散光束に変換して以後の光学系(補
正光学系)に適合させるようにカップリングする。この
カップリングレンズ2はガラスレンズでも樹脂製レンズ
でもよいが、温度等の環境変化に影響されにくいガラス
レンズで構成することが好ましい。また、球面収差を除
くためにレンズ面を非球面形状としてもよい。補正光学
系3は主走査及び副走査の両方向に対して、環境変動
(温度、湿度)に伴う焦点位置ずれを補正するものであ
るが(詳細は後述する)、通常は線像結像光学系として
の機能を有し、図2の(a)主走査方向の平面に展開し
た光路図及び(b)副走査方向の平面に展開した光路図
に示すように、カップリングレンズ2からの光束を副走
査方向(図1では紙面に直交する方向)に収束して、光
偏向器5の偏向反射面5a近傍に主走査方向に長い線像
として結像する。光偏向器5はモータの回転軸5bを中
心軸として等速回転する回転多面鏡(ポリゴンミラー)
であり、偏向反射面5aによる反射光束を、ポリゴンミ
ラー5の等速回転により等角速度的に偏向する。尚、光
偏向器としては、ポリゴンミラーの他に、回転単面鏡や
回転2面鏡等を好適に利用できる。走査結像光学系6
は、図1の例では2枚の走査レンズ6a,6bにより構
成され、走査レンズ6a,6bの作用によりポリゴンミ
ラー5からの偏向光束を被走査面7(レーザープリンタ
やデジタル複写機等の画像形成装置では、光導電性の感
光体の感光面等が被走査面となる)上に微小な光スポッ
トとして集光する。尚、走査結像光学系6は、2枚のレ
ンズの組合せに限らず、1枚のレンズで構成したり、3
枚以上のレンズで構成することもできる。また、1枚以
上のレンズと、結像作用を持つ凹面鏡やfθミラー等と
の組合せで構成することもできる。さらに、図1のよう
に走査結像光学系6を2枚の走査レンズ6a,6bで構
成する場合、主・副走査方向の像面湾曲の補正や、等速
特性(リニアリティ、fθ特性)の改善のために、少な
くとも一方の走査レンズにはレンズ面が非球面形状の樹
脂製レンズが用いられる。
Here, a semiconductor laser is used as the light source 1, but a light emitting diode (LED) may be used. The coupling optical system 2 is a coupling lens composed of a single lens or a plurality of lenses. The coupling optical system 2 converts a divergent light beam emitted from the light source 1 into a parallel light beam, a substantially convergent light beam, or a substantially divergent light beam, and thereafter an optical system. (Coupling optical system). The coupling lens 2 may be a glass lens or a resin lens, but is preferably made of a glass lens that is not easily affected by environmental changes such as temperature. Further, the lens surface may have an aspherical shape in order to eliminate spherical aberration. The correction optical system 3 corrects a focal position shift due to environmental fluctuations (temperature and humidity) in both the main scanning direction and the sub-scanning direction (details will be described later), but usually a line image forming optical system. As shown in (a) an optical path diagram developed on a plane in the main scanning direction and (b) an optical path diagram developed on a plane in the sub-scanning direction, the luminous flux from the coupling lens 2 is It converges in the sub-scanning direction (in FIG. 1, the direction orthogonal to the plane of the paper), and forms an image near the deflecting reflection surface 5a of the optical deflector 5 as a long line image in the main scanning direction. The optical deflector 5 is a rotating polygon mirror (polygon mirror) that rotates at a constant speed around the rotation axis 5b of the motor.
Then, the light beam reflected by the deflecting / reflecting surface 5a is deflected at a constant angular speed by rotating the polygon mirror 5 at a constant speed. Incidentally, as the optical deflector, a rotating single-sided mirror, a rotating two-sided mirror, or the like can be suitably used in addition to the polygon mirror. Scanning optical system 6
1 is constituted by two scanning lenses 6a and 6b in the example of FIG. In the apparatus, the light-sensitive surface or the like of the photoconductive photoreceptor becomes a surface to be scanned. The scanning image forming optical system 6 is not limited to a combination of two lenses, but may be constituted by one lens,
It can also be composed of more than one lens. Further, it may be constituted by a combination of one or more lenses and a concave mirror or fθ mirror having an image forming action. Further, when the scanning image forming optical system 6 is composed of two scanning lenses 6a and 6b as shown in FIG. 1, the correction of the curvature of field in the main and sub scanning directions and the uniform velocity characteristics (linearity, fθ characteristics) are performed. For the purpose of improvement, a resin lens having an aspherical lens surface is used for at least one of the scanning lenses.

【0010】次に本発明の特徴である補正光学系3につ
いて説明する。図1,2に示すように、補正光学系3
は、主走査方向、副走査方向で共に負のパワーを持つア
ナモフィック面を有する樹脂製の補正レンズ3aと、少
なくとも副走査方向に正のパワーを持つアナモフィック
面(シリンダ面を含む)を有するガラス製の補正レンズ
3bから構成されており、環境温度の変動に伴う被走査
面7上の主走査方向の結像位置ずれ及び副走査方向の結
像位置ずれを良好に補正すべく、該アナモフィック面の
曲率、線膨張係数、屈折率の温度依存性が最適に定めら
れている。
Next, the correcting optical system 3 which is a feature of the present invention will be described. As shown in FIGS. 1 and 2, the correction optical system 3
Is a resin correction lens 3a having an anamorphic surface having negative power in both the main scanning direction and the sub-scanning direction, and a glass having an anamorphic surface (including a cylinder surface) having at least a positive power in the sub-scanning direction. Of the anamorphic surface in order to satisfactorily correct the imaging position deviation in the main scanning direction and the imaging position deviation in the sub-scanning direction on the scanned surface 7 due to the fluctuation of the environmental temperature. The temperature dependence of the curvature, the coefficient of linear expansion, and the refractive index is optimally determined.

【0011】ここで、補正光学系3の補正レンズ3a,
3bをアナモフィック面とすることにより次の効果が得
られる。 主走査及び副走査の両方向に対して、環境(温度、湿
度)の変動に伴う焦点位置ずれを補正することができ
る。 アナモフィック面を用いることにより、対向面は平面
とすることができるため、これを取り付け基準面とする
ことができ、光学性能を劣化させる偏心の発生が抑えら
れる。 近年の切削、研磨加工技術の発展により、アナモフィ
ック面は比較的容易に加工できるようになってきた。従
って、これまでのようにシリンダ面、球面等を組み合わ
せること無く実現できる。
Here, the correction lenses 3a, 3a of the correction optical system 3
The following effects can be obtained by using 3b as an anamorphic surface. In both main scanning and sub-scanning directions, it is possible to correct a focal position shift due to a change in environment (temperature, humidity). The use of the anamorphic surface allows the opposing surface to be a flat surface, which can be used as a mounting reference surface, thereby suppressing the occurrence of eccentricity that degrades optical performance. With the recent development of cutting and polishing techniques, anamorphic surfaces can be processed relatively easily. Therefore, it can be realized without combining cylinder surfaces, spherical surfaces, and the like as in the past.

【0012】また、本発明は環境(温度、湿度)の変動
に伴う走査結像光学系6(走査レンズ6a,6b)の焦
点位置ずれをポリゴンミラー5の偏向反射面5a以前の
補正光学系3で自己補正するものであり、像面湾曲自体
は基本的には補正しない。従って走査結像光学系6の像
面湾曲(1走査内での焦点ずれの偏差)は予め良好に補
正しておくことが望ましい。そこで、後述する実施例で
は、走査結像光学系6を構成する走査レンズ6a,6b
の面形状をアナモフィック面(例えば、トロイダル面や
特殊トロイダル面)として、図4に示すように像面湾曲
や等速特性(リニアリティ、fθ特性)などの光学性能
を改善している。尚、上記の特殊トロイダル面とは、副
走査断面(主走査方向に直交する仮想的な断面)内の曲
率が、主走査方向において変化するトロイダル面であ
る。
The present invention also provides a correction optical system 3 for correcting the focal position shift of the scanning image forming optical system 6 (scanning lenses 6a and 6b) due to the fluctuation of the environment (temperature and humidity) before the deflection reflecting surface 5a of the polygon mirror 5. And the field curvature itself is not basically corrected. Therefore, it is desirable that the curvature of field (deviation of defocus in one scan) of the scanning imaging optical system 6 be corrected well in advance. Therefore, in an embodiment to be described later, the scanning lenses 6a and 6b constituting the scanning image forming optical system 6 will be described.
The surface shape is made an anamorphic surface (for example, a toroidal surface or a special toroidal surface) to improve optical performance such as field curvature and constant velocity characteristics (linearity, fθ characteristics) as shown in FIG. The special toroidal surface is a toroidal surface in which the curvature in the sub-scanning section (a virtual section orthogonal to the main scanning direction) changes in the main scanning direction.

【0013】次に、図1,2に示す構成の光走査装置に
おいて、アナモフィック面を有する樹脂製補正レンズ3
aとアナモフィック面を有するガラス製補正レンズ3b
からなる補正光学系3は保持部材で一体に保持すること
が好ましく、例えば図3に示すように、補正光学系3の
樹脂製補正レンズ3aとガラス製補正レンズ3bを補正
光学系ユニット3cで一体に保持するように構成する。
また、補正光学系ユニット3cの外形を円筒状に構成し
て、V字形状の溝を有する台座3dに設置することによ
り、上記溝に沿って光軸Oの方向に移動調節したり、光
軸方向に垂直な方向に回転可能な構成とすることができ
る。
Next, in the optical scanning device having the structure shown in FIGS. 1 and 2, a resin correction lens 3 having an anamorphic surface is provided.
a and glass correction lens 3b having an anamorphic surface
The correction optical system 3 is preferably integrally held by a holding member. For example, as shown in FIG. 3, a resin correction lens 3a and a glass correction lens 3b of the correction optical system 3 are integrated by a correction optical system unit 3c. It is configured to be held.
Further, the outer shape of the correction optical system unit 3c is formed in a cylindrical shape, and is mounted on a pedestal 3d having a V-shaped groove so that the correction optical system unit 3c can be moved and adjusted along the groove in the direction of the optical axis O. It can be configured to be rotatable in a direction perpendicular to the direction.

【0014】ここで、補正光学系3を構成する補正レン
ズ3a,3bを図3に示すようにユニット3cで一体に
構成することにより、次のようなメリットがある。 アナモフィック面が複数存在する場合(後述する実施
例では補正光学系の中に2面、走査光学系に4面)、光
軸に直交する面内の回転偏心は大きな波面収差を発生
し、光スポットの太りを発生する。そこで、補正光学系
3の樹脂製補正レンズ3aとガラス製補正レンズ3bを
光学系ユニット3cで一体に保持することにより、補正
光学系3内で発生する波面収差を組み付け調整時に予め
抑えることができる(請求項2)。 一体化された補正光学系を図3のように光軸方向に移
動調整可能な構成とすることにより、補正光学系3を光
学系ユニット3c内に組付けるときに、主・副走査方向
の焦点位置ずれを予め調整することができる(請求項
3)。 一体化された補正光学系を図3のように光軸方向に垂
直な方向に回転可能な構成にすることにより、補正光学
系内の波面収差を保ちつつ、光学系全系の調整が可能と
なる(請求項4)。
The following advantages are obtained by integrally forming the correction lenses 3a and 3b constituting the correction optical system 3 by a unit 3c as shown in FIG. When there are a plurality of anamorphic surfaces (two in the correction optical system and four in the scanning optical system in the embodiment described later), rotational eccentricity in a plane perpendicular to the optical axis generates a large wavefront aberration, and Causes fatness. Therefore, by holding the resin correction lens 3a and the glass correction lens 3b of the correction optical system 3 integrally with the optical system unit 3c, the wavefront aberration generated in the correction optical system 3 can be suppressed in advance during the assembly adjustment. (Claim 2). By making the integrated correction optical system movable and adjustable in the direction of the optical axis as shown in FIG. 3, when the correction optical system 3 is assembled in the optical system unit 3c, the focus in the main and sub-scanning directions can be improved. The displacement can be adjusted in advance (claim 3). By making the integrated correction optical system rotatable in a direction perpendicular to the optical axis direction as shown in FIG. 3, it is possible to adjust the entire optical system while maintaining the wavefront aberration in the correction optical system. (Claim 4).

【0015】ところで、近年、レーザープリンタやデジ
タル複写機等の画像形成装置においては書き込みの高密
度化が進み、1200dpi(ドット/インチ)を超え
る高密度書き込みが実現化されつつある。このような高
密度化に対応するためには被走査面上の光スポットのス
ポット径を小径化する必要があり、そのためには光学系
の高NA化が必要である。高NA化により光学系を透過
する光束が大きくなるため、その際に発生する波面収差
が光スポット径に大きく影響を与え、波面収差が大きす
ぎる場合は小径の光スポットに絞り込むことができな
い。そこで本発明では、補正光学系3を構成する2枚の
補正レンズのアナモフィック面の少なくとも1面は、主
・副走査方向共に非球面で構成されるようにしている。
より具体的には、補正光学系3を構成する補正レンズ3
a,3bが、主走査方向または副走査方向に非円弧を有
する特殊トロイダル面を少なくとも1面有するようにす
ることにより、波面収差を良好に補正することが可能と
なる(請求項5)。補正光学系の具体的な実施例は後述
するが、実施例においては、補正光学系の樹脂製レンズ
3aの光入射側(カップリングレンズ側)の凹のアナモ
フィック面を特殊トロイダル面とすることにより波面収
差を良好に補正している。尚、図5は、補正光学系3の
樹脂製補正レンズ3aの光入射側の凹のアナモフィック
面に(a)通常の円弧のトロイダル面を用いた場合と、
(b)特殊トロイダル面を用いた場合の波面収差を示し
ており、特殊トロイダル面とすることにより波面収差が
良好に補正されることが判る。
In recent years, writing density has been increasing in image forming apparatuses such as laser printers and digital copiers, and high density writing exceeding 1200 dpi (dots / inch) has been realized. In order to cope with such a high density, it is necessary to reduce the spot diameter of the light spot on the surface to be scanned, and for that purpose, it is necessary to increase the NA of the optical system. Since the light flux transmitted through the optical system increases due to the increase in the NA, the wavefront aberration generated at that time greatly affects the light spot diameter. If the wavefront aberration is too large, it is impossible to narrow down the light spot to a small diameter light spot. Therefore, in the present invention, at least one of the anamorphic surfaces of the two correction lenses constituting the correction optical system 3 is configured to be aspherical in both the main and sub-scanning directions.
More specifically, the correction lens 3 constituting the correction optical system 3
By providing at least one special toroidal surface having a non-circular arc in the main scanning direction or the sub-scanning direction, it is possible to satisfactorily correct wavefront aberration (claim 5). Although a specific embodiment of the correction optical system will be described later, in the embodiment, the concave anamorphic surface on the light incident side (coupling lens side) of the resin lens 3a of the correction optical system is formed as a special toroidal surface. Wavefront aberration is well corrected. FIG. 5 shows (a) a case where a normal circular toroidal surface is used for the concave anamorphic surface on the light incident side of the resin correction lens 3a of the correction optical system 3;
(B) The wavefront aberration when a special toroidal surface is used is shown, and it can be seen that the wavefront aberration is favorably corrected by using the special toroidal surface.

【0016】ここで、上記補正光学系3の補正レンズ3
a,3bや、走査結像光学系6の走査レンズ6a,6b
に適用される特殊トロイダル面のレンズ面形状を特定す
るための表現式を説明しておく。ただし、本発明はこの
表現式に限定されるものではない。レンズ面を表現する
にあたり、レンズ面近傍における主走査方向の座標を
Y、副走査方向の座標をZとし、これらの原点を光軸に
取る。レンズ面の一般式を、 f(Y,Z)=fm(Y)+fs(Y,Z) とする。ここで、特殊トロイダル面の主走査断面(レン
ズ光軸を含み、主走査方向に平行な仮想的な断面)内に
おける面形状は非円弧形状をなしており、上記の式の右
辺第1項のfm(Y)は主走査断面内の形状を表し、第2項
のfs(Y,Z)は、主走査方向における座標:Yの位置にお
ける副走査断面(主走査方向に直交する仮想的な断面)
内における形状を表す。
Here, the correction lens 3 of the correction optical system 3
a, 3b and scanning lenses 6a, 6b of the scanning image forming optical system 6.
An expression for specifying the lens surface shape of the special toroidal surface applied to the above will be described. However, the present invention is not limited to this expression. In expressing the lens surface, the coordinates in the main scanning direction near the lens surface are Y, the coordinates in the sub-scanning direction are Z, and their origins are taken as the optical axis. The general formula of the lens surface is f (Y, Z) = fm (Y) + fs (Y, Z). Here, the surface shape of the special toroidal surface in the main scanning cross section (a virtual cross section including the lens optical axis and parallel to the main scanning direction) is a non-arc shape, and the first term on the right side of the above expression fm (Y) represents a shape in the main scanning section, and fs (Y, Z) of the second term is a sub-scanning section at a position of coordinate Y in the main scanning direction (a virtual section orthogonal to the main scanning direction). )
Represents the shape inside.

【0017】以下では、上記主走査断面内の形状をfm
(Y)として、周知の非円弧形状の式、即ち、光軸におけ
る主走査断面内の近軸曲率半径をRm 、光軸からの主走
査方向の距離をY、円錐常数をKm 、高次の係数をAm
1,Am2,Am3,Am4,Am5,・・とするとき、光軸方向
のデプスをXとして次の多項式で表している。 X=f(Y,Z)=fm(Y)+fs(Y,Z) (1) fm(Y)=(Y^2/Rm)/[1+√{1-(1+Km)(Y/Rm)^2}] +Am1・Y+Am2・Y^2+Am3・Y^3+Am4・Y^4+Am5・Y^5+・・ (2) (2)式で、奇数次の係数:Am1,Am3,Am5,・・の何れ
かが0でないとき、非円弧形状は主走査方向に非対称形
状となる。また、偶数次の係数:Am2,Am4,Am6,・・
のみの場合は主走査方向に対称となる。尚、上記の表記
において、例えば「Y^2」は「Y2」を、「Y^3」は
「Y3」を表す。また、上記fs(Y,Z)は、以下のように
表す。 fs(Y,Z)=(Z^2・Cs)/[1+√{1-(1+Ks)(Z・Cs)^2}] +(F0+F1・Y+F2・Y^2+F3・Y^3+F4・Y^4+・・ )・Z +(G0+G1・Y+G2・Y^2+G3・Y^3+G4・Y^4+・・ )・Z^2 +(H0+H1・Y+H2・Y^2+H3・Y^3+H4・Y^4+・・ )・Z^3 +(I0+I1・Y+I2・Y^2+I3・Y^3+I4・Y^4+・・ )・Z^4 +(J0+J1・Y+J2・Y^2+J3・Y^3+J4・Y^4+・・ )・Z^5 +(K0+K1・Y+K2・Y^2+K3・Y^3+K4・Y^4+・・ )・Z^6 +・・ (3) ここで、 Cs=(1/Rs0)+B1・Y+B2・Y^2+B3・Y^3+B4・Y^4+B5・Y^5+・・ (4) Ks=Ks0+C1・Y+C2・Y^2+C3・Y^3+C4・Y^4+C5・Y^5+・・ (5) であり、「Rs0」は、光軸を含む副走査断面内における
近軸曲率半径である。また、Yの奇数次の係数B1,B
3,B5,・・ の何れかが0以外のとき、副走査断面内の
曲率が主走査方向に非対称となる。同様に、係数:C
1,C3,C5,・・、F1,F3,F5,・・、G1,G3,G
5,・・等、非円弧量を表すYの奇数次の係数の何れかが
0以外であるとき、副走査の非円弧量が主走査方向に非
対称となる。後述の実施例では、補正光学系3の光源側
の補正レンズ(樹脂製レンズ)3aの入射面側を上記の
式で表記される特殊トロイダル面とし、また、走査結像
光学系6の2つの走査レンズ6a,6bの4つのレンズ
面を上記の式で表記される特殊トロイダル面としてい
る。
In the following, the shape in the main scanning section is fm
As (Y), a well-known non-arc-shaped equation, that is, the paraxial radius of curvature in the main scanning section in the optical axis is Rm, the distance from the optical axis in the main scanning direction is Y, the conical constant is Km, Coefficient Am
When Am2, Am3, Am4, Am5,..., The depth in the optical axis direction is represented by X, and is represented by the following polynomial. X = f (Y, Z) = fm (Y) + fs (Y, Z) (1) fm (Y) = (Y ^ 2 / Rm) / [1 + √ {1- (1 + Km) (Y / Rm) ^ 2}] + Am1 Y + Am2 Y2 + Am3 Y3 + Am4 Y4 + Am5 Y5 + In the equation (2), the odd-order coefficient : When any of Am1, Am3, Am5,... Is not 0, the non-circular shape becomes an asymmetric shape in the main scanning direction. Further, even-order coefficients: Am2, Am4, Am6,.
In the case where there is only one, it is symmetric in the main scanning direction. In the above description, for example, "Y ^ 2" represents "Y 2 ", and "Y ^ 3" represents "Y 3 ". Further, the above fs (Y, Z) is represented as follows. fs (Y, Z) = (Z ^ 2 ・ Cs) / [1 + √ {1- (1 + Ks) (Z ・ Cs) ^ 2}] + (F0 + F1 ・ Y + F2 ・ Y2 + F3 ・ Y ^ 3 + F4 ・ Y ^ 4 + ・ ・) ・ Z + (G0 + G1 ・ Y + G2 ・ Y ^ 2 + G3 ・ Y ^ 3 + G4 ・ Y ^ 4 + ・ ・) ・ Z ^ 2 + (H0 + H1 Y + H2 Y2 + H3 Y3 + H4 Y4 + ...) Z3 + (I0 + I1Y + I2Y2 + I3Y ^ 3 + I4 ・ Y ^ 4 + ・ ・) ・ Z ^ 4 + (J0 + J1 ・ Y + J2 ・ Y ^ 2 + J3 ・ Y ^ 3 + J4 ・ Y ^ 4 + ・ ・) ・ Z ^ 5 + (K0 + K1 ・ Y + K2 ・ Y ^ 2 + K3 ・ Y ^ 3 + K4 ・ Y ^ 4 + ・ ・) ・ Z ^ 6 + ・ ・ (3) where Cs = (1 / Rs0) + B1・ Y + B2 ・ Y ^ 2 + B3 ・ Y ^ 3 + B4 ・ Y ^ 4 + B5 ・ Y ^ 5 + ・ ・ (4) Ks = Ks0 + C1 ・ Y + C2 ・ Y ^ 2 + C3 ・ Y ^ 3 + C4.Y ^ 4 + C5.Y ^ 5 +... (5), and "Rs0" is a paraxial radius of curvature in the sub-scan section including the optical axis. Also, odd-order coefficients B1, B of Y
When any of 3, B5,... Is not 0, the curvature in the sub-scan section becomes asymmetric in the main scanning direction. Similarly, the coefficient: C
1, C3, C5, ..., F1, F3, F5, ..., G1, G3, G
When any of the odd-order coefficients of Y representing the non-arc amount, such as 5,..., Is other than 0, the non-arc amount in the sub-scan becomes asymmetric in the main scanning direction. In the embodiment described later, the incident surface side of the correction lens (resin lens) 3a on the light source side of the correction optical system 3 is a special toroidal surface expressed by the above equation. The four lens surfaces of the scanning lenses 6a and 6b are special toroidal surfaces represented by the above equations.

【0018】次に本発明では、図1〜3に示す構成の光
走査装置において、アナモフィック面を有する樹脂製レ
ンズ3aとアナモフィック面を有するガラスレンズ3b
の面間隔をLとし、補正光学系3全系の副走査方向の焦
点距離をfsとしたとき、以下の条件: 0.005<L/fs<0.1 を満足することを特徴としている(請求項6)。ここ
で、上記条件の上限の0.1を超えると、環境変動によ
る焦点ずれを補正するためには、光偏向器5の偏向反射
面5aと補正光学系3の間の距離が長くなりすぎるため
レイアウトの制約を受ける。一方、下限の0.005を
超えると樹脂製レンズ3aの負のパワーが大きくなりす
ぎるため、波面収差の劣化を招き、被走査面7上で小径
の光スポットを得ることが難しくなる。尚、後述の実施
例に示す光学系では、 L/fs=1.0/131=0.0076 である。
Next, in the present invention, in the optical scanning device having the structure shown in FIGS. 1 to 3, a resin lens 3a having an anamorphic surface and a glass lens 3b having an anamorphic surface are provided.
Where L is the surface distance of the correction optical system 3 and fs is the focal length of the entire correction optical system 3 in the sub-scanning direction, the following condition is satisfied: 0.005 <L / fs <0.1 ( Claim 6). Here, if the upper limit of 0.1 of the above condition is exceeded, the distance between the deflecting / reflecting surface 5a of the optical deflector 5 and the correction optical system 3 becomes too long in order to correct the defocus due to environmental fluctuation. Subject to layout restrictions. On the other hand, if the lower limit of 0.005 is exceeded, the negative power of the resin lens 3a becomes too large, so that the wavefront aberration is deteriorated and it becomes difficult to obtain a small-diameter light spot on the surface 7 to be scanned. In the optical system shown in the examples described later, L / fs = 1.0 / 131 = 0.0076.

【0019】さて、以上に説明した構成の本発明係る光
走査装置において、補正光学系3により温度補正を行っ
た場合(温度キャンセル方式)と、温度補正を行わない
場合(温度キャンセル無し)の、主・副走査方向の像面
変動量(結像位置ずれ)と像面変動幅を比較した結果を
下記の表1に示す。
Now, in the optical scanning device according to the present invention having the above-described configuration, there are a case where temperature correction is performed by the correction optical system 3 (temperature cancellation method) and a case where temperature correction is not performed (no temperature cancellation). Table 1 below shows the result of comparing the image plane fluctuation amount (imaging position shift) in the main and sub-scanning directions with the image plane fluctuation width.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例】以下に、図1〜3に示した構成の光走査装置
における光学系の具体的な実施例を示す。本実施例にお
いて、光源1は半導体レーザであり、発光波長:655
nmである。カップリングレンズ2は、アルミニウム製
のセル部材に保持された単玉構成のガラスレンズ(FD
10)であり、焦点距離はf=22.0mm、出射光は
平行光束である。尚、本実施例では、カップリングレン
ズ2の出射側のレンズ面を面番号0として、補正光学系
3の樹脂製補正レンズ3aの入射面側を面番号1、出射
面側を面番号2とし、ガラス製補正レンズ3bの入射面
側を面番号3、出射面側を面番号4とする。また、偏向
反射面5aの面番号を5とし、走査結像光学系6を構成
する2つの走査レンズ6a,6bは、入射面側から順に
面番号を6,7,8,9とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the optical system in the optical scanning device having the structure shown in FIGS. In this embodiment, the light source 1 is a semiconductor laser, and has an emission wavelength of 655.
nm. The coupling lens 2 is a single lens glass lens (FD) held by an aluminum cell member.
10), the focal length is f = 22.0 mm, and the emitted light is a parallel light beam. In the present embodiment, the lens surface on the exit side of the coupling lens 2 is surface number 0, the entrance surface side of the resin correction lens 3a of the correction optical system 3 is surface number 1, and the exit surface side is surface number 2. The incident surface side of the glass correction lens 3b is surface number 3, and the outgoing surface side is surface number 4. The surface number of the deflecting / reflecting surface 5a is 5, and the two scanning lenses 6a and 6b constituting the scanning imaging optical system 6 are 6, 7, 8, and 9 in order from the incident surface side.

【0022】光偏向器5を構成するポリゴンミラーの偏
向反射面5aは平面で自然集光点:∞であり、このポリ
ゴンミラーは、偏向反射面数:6面、内接円半径:25
mmのものであり、回転中心軸5bと反射点(偏向光束
の主光線が、走査レンズ6a,6bの光軸と平行になる
ときの、上記光線と偏向反射面との交点位置)とは、上
記光軸方向に距離:10.7mm離れ、主走査方向に距
離:22.69mm離れている。また、偏向光束の主光
線が走査レンズ6a,6bの光軸と平行になる状態にお
いて、この主光線と、光源側から偏向反射面に入射する
光束の主光線とが成す角度(即ち、ポリゴンミラーへの
入射角)は60度である。また、画角は−38度〜+3
8度である。
The deflecting / reflecting surface 5a of the polygon mirror constituting the optical deflector 5 is a plane and has a natural light condensing point: ∞. This polygon mirror has six deflecting / reflecting surfaces and an inscribed circle radius of 25.
mm, and the rotation center axis 5b and the reflection point (the point of intersection between the light beam and the deflecting reflection surface when the principal ray of the deflecting light beam is parallel to the optical axis of the scanning lenses 6a and 6b) The distance in the optical axis direction is 10.7 mm, and the distance in the main scanning direction is 22.69 mm. When the principal ray of the deflected light beam is parallel to the optical axes of the scanning lenses 6a and 6b, the angle formed by the principal ray and the principal ray of the light beam incident on the deflecting reflection surface from the light source side (that is, a polygon mirror) Incident angle) is 60 degrees. The angle of view is -38 degrees to +3.
8 degrees.

【0023】補正光学系3は焦点距離:f=131mm
であり、樹脂製の補正レンズ3aは、屈折率:n=1.
52716であり、面番号で第1面が凹形状の特殊トロ
イダル面、第2面が平面である。また、ガラス製の補正
レンズ3bは、屈折率:n=1.514332(BK
7)であり、面番号で第3面が凸形状のトロイダル面、
第4面が平面である。走査結像光学系6のポリゴンミラ
ー5側の走査レンズ6aは、樹脂製で屈折率:n=1.
52716であり、面番号で第6面が凹形状の特殊トロ
イダル面、第7面が副走査断面の曲率が非対称な凸形状
の特殊トロイダル面である。また、被走査面7側の走査
レンズ6bは、樹脂製で屈折率:n=1.52716で
あり、面番号で第8面が副走査断面の曲率が非対称な凹
形状の特殊トロイダル面、第9面が主・副走査断面共に
非円弧の凸形状の特殊トロイダル面である。ここで、前
述の近軸曲率半径:Rm、Rs0、光軸上の面間隔:xに
対する光学系のレンズデータを以下に示す。
The correction optical system 3 has a focal length: f = 131 mm
The resin-made correction lens 3a has a refractive index: n = 1.
52716, where the first surface is a special toroidal surface having a concave shape and the second surface is a flat surface. The glass correction lens 3b has a refractive index: n = 1.543332 (BK
7) is a toroidal surface in which the third surface is convex in the surface number;
The fourth surface is a plane. The scanning lens 6a on the polygon mirror 5 side of the scanning imaging optical system 6 is made of resin and has a refractive index: n = 1.
52716, and the sixth surface is a special toroidal surface having a concave shape in the surface number, and the seventh surface is a special toroidal surface having a convex shape in which the curvature of the sub-scanning section is asymmetric. The scanning lens 6b on the scanning surface 7 side is made of resin and has a refractive index of n = 1.52716, and the eighth surface has a concave toroidal special toroidal surface having an asymmetric sub-scanning section curvature. Nine surfaces are special toroidal surfaces having a convex shape that is non-circular in both the main and sub-scan sections. Here, lens data of the optical system with respect to the above-described paraxial curvature radii: Rm, Rs0, and the surface interval on the optical axis: x are shown below.

【0024】 面番号 Rm Rs0 x 補正レンズ3a 1 -100.9 -17.76 3.0 2 ∞ ∞ 1.0 補正レンズ3b 3 100.0 15.0 3.0 4 ∞ ∞ 140.64 偏向反射面5a 5 ∞ ∞ 72.560 走査レンズ6a 6 -242.186 242.337 31.572 7 -83.064 138.908 81.808 走査レンズ6b 8 -239.054 -78.986 9.854 9 -218.790 -26.516 145.001 Surface number Rm Rs0 x Correction lens 3a 1 -100.9 -17.76 3.0 2 ∞ ∞ 1.0 Correction lens 3b 3 100.0 15.0 3.0 4 ∞ ∞ 140.64 Deflection / reflection surface 5a 5 ∞ ∞ 72.560 Scanning lens 6a 6 -242.186 242.337 31.572 7- 83.064 138.908 81.808 Scanning lens 6b 8 -239.054 -78.986 9.854 9 -218.790 -26.516 145.001

【0025】また、上記樹脂製補正レンズ3aの第1
面、及び走査レンズ6a,6bの第6面〜第9面の特殊
トロイダル面のレンズ面形状を特定するための前述の式
(1)〜(5)における各係数の値を以下に示す。尚、以下
に示す各係数データにおいて、数値の末尾に付けられた
Eとそれに続く数値は10のベキ乗を掛けることを表し
ており、例えば「E-15」は「×10-15」を意味してい
る。
The first lens 3a of the resin correction lens 3a
The above-described formula for specifying the lens surfaces of the special toroidal surfaces of the surfaces and the sixth to ninth surfaces of the scanning lenses 6a and 6b.
The values of the coefficients in (1) to (5) are shown below. In addition, in each coefficient data shown below, the E added to the end of the numerical value and the numerical value following the numerical value represent that a power of 10 is multiplied. For example, “E-15” means “× 10 −15 ” are doing.

【0026】 第1面: Am1,Am2,Am3,Am4,Am5,・・=0 B2=-2.9712E-05 , B4=-8.5101E-07 , B6=4.1938E-09 C0=1.8861E+00 , C1=4.5792E-02 , C3=-5.6507E-04 I0=-3.0182E-05 , I1=-9.6650E-07 , I3=1.2955E-08 K0=-1.4683E-06 , K1=4.9604E-08 , K3=1.2755E-08The first surface: Am1, Am2, Am3, Am4, Am5,... = 0 B2 = −2.9712E-05, B4 = −8.5101E-07, B6 = 4.1938E-09 C0 = 1.8861E + 00, C1 = 4.5792E-02, C3 = -5.6507E-04 I0 = -3.0182E-05, I1 = -9.6650E-07, I3 = 1.2955E-08 K0 = -1.4683E-06, K1 = 4.9604E-08 , K3 = 1.2755E-08

【0027】 第6面: Am2=6.9335E-01 , Am4=-3.7002E-09 , Am6=5.3962E-12 Am8=-2.6877E-14 , Am10=3.2892E-18 B2=-1.0850E-05 , B4=4.4623E-09 , B6=-1.4980E-12 B8=-1.1955E-15 , B10=1.4318E-18 , B12=-3.5225E-22 B14=-2.8072E-25 , B16=1.3039E-28Surface 6: Am2 = 6.9335E-01, Am4 = -3.7002E-09, Am6 = 5.3962E-12 Am8 = -2.6877E-14, Am10 = 3.2892E-18 B2 = -1.0850E-05, B4 = 4.4623E-09, B6 = -1.4980E-12 B8 = -1.1955E-15, B10 = 1.4318E-18, B12 = -3.5225E-22 B14 = -2.8072E-25, B16 = 1.039E-28

【0028】 第7面: Am2=-2.3702E-01 , Am4=5.2751E-08 , Am6=-2.0673E-13 Am8=6.1916E-16 , Am10=-2.1272E-18 B1=1.1285E-05 , B3=8.2414E-09 , B5=-8.3701E-12 B7=1.6093E-15 , B9=1.0336E-19 Surface 7: Am2 = -2.3702E-01, Am4 = 5.2751E-08, Am6 = -2.0673E-13 Am8 = 6.1916E-16, Am10 = -2.1272E-18 B1 = 1.1285E-05, B3 = 8.2414E-09, B5 = -8.3701E-12 B7 = 1.6093E-15, B9 = 1.0336E-19

【0029】 第8面: Am2=-9.0813E+00 , Am4=-1.3697E-10 , Am6=-1.0361E-12 Am8=-1.5020E-16 , Am10=-1.2669E-21 , Am12=-4.0301E-25 Am14=5.7340E-30 , Am16=1.6885E-33 B1=1.5474E-06 , B3=2.8010E-10 , B5=-1.2492E-13 B7=2.5220E-17 , B9=-3.6112E-21 , B11=2.9135E-25 B13=-1.6452E-29 , B15=1.7857E-33 , B17=-1.0747E-37Surface 8: Am2 = -9.0813E + 00, Am4 = -1.3697E-10, Am6 = -1.0361E-12 Am8 = -1.5020E-16, Am10 = -1.2669E-21, Am12 = -4.0301 E-25 Am14 = 5.7340E-30, Am16 = 1.6885E-33 B1 = 1.5474E-06, B3 = 2.8010E-10, B5 = -1.2492E-13 B7 = 2.5220E-17, B9 = -3.6112E- 21, B11 = 2.9135E-25 B13 = -1.6452E-29, B15 = 1.7857E-33, B17 = -1.0747E-37

【0030】 第9面: Am2=-7.4453E+00 , Am4=-7.0557E-08 , Am6=1.9461E-13 Am8=-1.3606E-16 , Am10=-5.2312E-21 , Am12=-2.0517E-29 Am14=-2.4196E-34 B2=-1.1619E-08 , B4=-2.2670E-11 , B6=-1.5740E-15 B8=-4.5789E-20 , B10=-3.8438E-24 , B12=-7.4648E-28 B14=-5.8757E-32 , B16=1.1024E-36 , B18=1.5980E-40 C0=-3.1492E-01 I0=3.1657E-06 , I1=-1.3699E-09 , I2=1.2086E-10 I3=4.1379E-12 , I4=3.0682E-13 , I5=-7.2697E-15 I6=-1.1934E-16 , I7=4.3896E-18 , I8=1.3145E-20 I9=-1.2026E-21 , I10=-2.1378E-24 , I11=1.7132E-25 I12=7.8714E-28 , I13=-1.3127E-29 , I14=-1.2411E-31 I15=5.1005E-34 , I16=8.2218E-36 , I17=-7.8048E-39 I18=-1.9700E-40 K0=3.3658E-08 , K1=5.7068E-11 , K2=-1.1867E-11 K3=-1.6517E-13 , K4=-6.3184E-15 , K5=3.0942E-16 K6=-1.4550E-18 , K7=-1.9660E-19 , K8=3.0045E-21 K9=5.6936E-23 , K10=-9.5063E-25 , K11=-8.6717E-27 K12=1.3624E-28 , K13=7.2210E-31 , K14=-1.0155E-32 K15=-3.1157E-35 , K16=3.8226E-37 , K17=5.4542E-40 K18=-5.7217E-42 Ninth surface: Am2 = -7.4453E + 00, Am4 = -7.0557E-08, Am6 = 1.9461E-13 Am8 = -1.3606E-16, Am10 = -5.2312E-21, Am12 = -2.0517E -29 Am14 = -2.4196E-34 B2 = -1.1619E-08, B4 = -2.2670E-11, B6 = -1.5740E-15 B8 = -4.5789E-20, B10 = -3.8438E-24, B12 = -7.4648E-28 B14 = -5.8757E-32, B16 = 1.1024E-36, B18 = 1.5980E-40 C0 = -3.1492E-01 I0 = 3.1657E-06, I1 = -1.3699E-09, I2 = 1.2086E-10 I3 = 4.1379E-12, I4 = 3.0682E-13, I5 = -7.2697E-15 I6 = -1.1934E-16, I7 = 4.3896E-18, I8 = 1.3145E-20 I9 = -1.2026 E-21, I10 = -2.1378E-24, I11 = 1.7132E-25 I12 = 7.8714E-28, I13 = -1.3127E-29, I14 = -1.2411E-31 I15 = 5.1005E-34, I16 = 8.2218 E-36, I17 = -7.8048E-39 I18 = -1.9700E-40 K0 = 3.3658E-08, K1 = 5.7068E-11, K2 = -1.1867E-11 K3 = -1.6517E-13, K4 =- 6.3184E-15, K5 = 3.0942E-16 K6 = -1.4550E-18, K7 = -1.9660E-19, K8 = 3.004 5E-21 K9 = 5.6936E-23, K10 = -9.5063E-25, K11 = -8.6717E-27 K12 = 1.364E-28, K13 = 7.2210E-31, K14 = -1.0155E-32 K15 = -3.1157 E-35, K16 = 3.8226E-37, K17 = 5.4542E-40 K18 = -5.7217E-42

【0031】[0031]

【発明の効果】以上説明したように、請求項1に係る光
走査装置においては、補正光学系は、主走査方向、副走
査方向共に負のパワーを持つアナモフィック面を有する
樹脂製レンズと、少なくとも副走査方向に正のパワーを
持つアナモフィック面を有するガラスレンズとを少なく
とも1対有し、カップリング光学系と偏向反射面の間に
設置されるので、環境温度の変動に伴う被走査面上の主
走査方向の結像位置ずれ及び副走査方向の結像位置ずれ
を良好に補正すべく、上記補正用のレンズのアナモフィ
ック面の曲率、線膨張係数、屈折率の温度依存性を最適
に定めることにより、主走査及び副走査の両方向に対し
て、環境(温度、湿度)の変動に伴う焦点位置ずれを補
正することができる。また、アナモフィック面を用いる
ことにより、対向面は平面とすることができるため、こ
れを取り付け基準面とすることができ、光学性能を劣化
させる偏心の発生が抑えられる。
As described above, in the optical scanning device according to the first aspect, the correction optical system includes at least a resin lens having an anamorphic surface having negative power in both the main scanning direction and the sub-scanning direction. It has at least one pair of a glass lens having an anamorphic surface having a positive power in the sub-scanning direction, and is provided between the coupling optical system and the deflecting / reflecting surface. Optimal determination of the temperature dependence of the curvature, linear expansion coefficient, and refractive index of the anamorphic surface of the lens for correction in order to properly correct the imaging position deviation in the main scanning direction and the imaging position deviation in the sub-scanning direction. Accordingly, it is possible to correct a focus position shift due to a change in environment (temperature and humidity) in both the main scanning direction and the sub-scanning direction. Also, by using the anamorphic surface, the opposing surface can be made flat, so that it can be used as a mounting reference surface, and the occurrence of eccentricity that degrades optical performance is suppressed.

【0032】請求項2に係る光走査装置においては、上
記請求項1の構成に加えて、アナモフィック面を有する
樹脂製レンズとアナモフィック面を有するガラスレンズ
からなる補正光学系は保持部材で一体に保持することに
より、補正光学系内で発生する波面収差を組み付け調整
時に予め抑えることができる。請求項3に係る光走査装
置においては、上記請求項2の構成に加えて、保持部材
で一体化した補正光学系は、光軸方向に移動調整可能な
構造を有することにより、補正光学系を光学系ユニット
内に組付けるときに、主・副走査方向の焦点位置ずれを
予め調整することができる。請求項4に係る光走査装置
においては、上記請求項2の構成に加えて、保持部材で
一体化した補正光学系は、光軸に垂直な方向に回転調整
可能な構造を有することにより、補正光学系内の波面収
差を保ちつつ、光学系全系の調整が可能となる。請求項
5に係る光走査装置においては、上記請求項1,2,3
または4の構成に加えて、補正光学系のアナモフィック
面の少なくとも1面は、主・副走査方向共に非球面で構
成されることにより、波面収差を良好に補正することが
できる。請求項6に係る光走査装置においては、上記請
求項1,2,3,4または5の構成に加えて、アナモフ
ィック面を有する樹脂製レンズとアナモフィック面を有
するガラスレンズの面間隔をLとし、補正光学系全系の
副走査方向の焦点距離をfsとしたとき、条件:0<L
/fs<0.1を満足することにより、波面収差を良好
に補正して小径の光スポットを得ることができる。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, a correction optical system including a resin lens having an anamorphic surface and a glass lens having an anamorphic surface is integrally held by a holding member. By doing so, the wavefront aberration that occurs in the correction optical system can be suppressed in advance during assembly adjustment. In the optical scanning device according to the third aspect, in addition to the configuration of the second aspect, the correction optical system integrated by the holding member has a structure that can be moved and adjusted in the optical axis direction. When assembling in the optical system unit, the focal position shift in the main / sub-scanning direction can be adjusted in advance. In the optical scanning device according to the fourth aspect, in addition to the configuration of the second aspect, the correction optical system integrated by the holding member has a structure capable of rotating and adjusting in a direction perpendicular to the optical axis, so that the correction is performed. It is possible to adjust the entire optical system while maintaining the wavefront aberration in the optical system. In the optical scanning device according to the fifth aspect, the first, second, and third aspects of the invention are described.
Alternatively, in addition to the configuration of 4, at least one of the anamorphic surfaces of the correction optical system is formed of an aspheric surface in both the main and sub-scanning directions, so that the wavefront aberration can be satisfactorily corrected. In the optical scanning device according to the sixth aspect, in addition to the configuration of the first, second, third, fourth, or fifth aspect, a surface distance between a resin lens having an anamorphic surface and a glass lens having an anamorphic surface is L, When the focal length of the entire correction optical system in the sub-scanning direction is fs, the condition: 0 <L
By satisfying /fs<0.1, it is possible to satisfactorily correct the wavefront aberration and obtain a small-diameter light spot.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す図であって、光走査
装置を構成する光学系の配置を主走査平面に展開して示
した光学配置説明図である。
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is an explanatory view of an optical arrangement in which an arrangement of an optical system constituting an optical scanning device is developed on a main scanning plane.

【図2】図1に示す光走査装置の光源から偏向反射面に
至る光路上の光学系配置の説明図であり、(a)は主走
査方向の平面に展開した光路図、(b)は副走査方向の
平面に展開した光路図である。
2A and 2B are explanatory diagrams of an optical system arrangement on an optical path from a light source to a deflecting / reflecting surface of the optical scanning device shown in FIG. 1, wherein FIG. 2A is an optical path diagram developed on a plane in a main scanning direction, and FIG. FIG. 4 is an optical path diagram developed on a plane in the sub-scanning direction.

【図3】補正光学系のレンズを一体化した構成の一例を
示す斜視図である。
FIG. 3 is a perspective view illustrating an example of a configuration in which lenses of a correction optical system are integrated.

【図4】実施例に示す走査結像光学系を用いた場合の像
面湾曲と等速特性を示す図である。
FIG. 4 is a diagram showing field curvature and constant velocity characteristics when the scanning image forming optical system shown in the embodiment is used.

【図5】補正光学系のアナモフィック面に、トロイダル
面を使用した時と、特殊トロイダル面を使用した時の波
面収差を示す図である。
FIG. 5 is a diagram illustrating wavefront aberrations when a toroidal surface is used as an anamorphic surface of a correction optical system and when a special toroidal surface is used.

【符号の説明】[Explanation of symbols]

1:光源 2:カップリングレンズ 3:補正光学系 3a:樹脂製補正レンズ 3b:ガラス製補正レンズ 3c:補正光学系ユニット 3d:台座 4:平面鏡 5:光偏向器(ポリゴンミラー) 5a:偏向反射面 6:走査結像光学系 6a,6b:走査レンズ 7:被走査面 1: light source 2: coupling lens 3: correction optical system 3a: resin correction lens 3b: glass correction lens 3c: correction optical system unit 3d: pedestal 4: plane mirror 5: optical deflector (polygon mirror) 5a: deflection reflection Surface 6: Scanning optical system 6a, 6b: Scanning lens 7: Scanned surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 厚海 広道 東京都大田区中馬込1丁目3番6号・株式 会社リコー内 (72)発明者 酒井 浩司 東京都大田区中馬込1丁目3番6号・株式 会社リコー内 Fターム(参考) 2H045 AA01 CA34 CA44 CA54 CA67 CB04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiromichi Atsumi 1-3-6 Nakamagome, Ota-ku, Tokyo, Ricoh Co., Ltd. (72) Inventor Koji Sakai 1-3-6 Nakamagome, Ota-ku, Tokyo No./F-term in Ricoh Co., Ltd. (Reference) 2H045 AA01 CA34 CA44 CA54 CA67 CB04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光束を放射する光源と、該光源からの光束
を平行光束もしくは略収束光束あるいは略発散光束に変
換して以後の光学系にカップリングするカップリング光
学系と、該カップリング光学系からの光束を偏向反射面
で反射して偏向走査する光偏向器と、該光偏向器による
偏向光束を被走査面上に光スポットとして集光する走査
結像光学系と、環境変動などに伴う上記被走査面上の光
スポットの焦点位置ずれを自己補正するための補正光学
系を備えた光走査装置において、 上記補正光学系は、主走査方向、副走査方向共に負のパ
ワーを持つアナモフィック面を有する樹脂製レンズと、
少なくとも副走査方向に正のパワーを持つアナモフィッ
ク面を有するガラスレンズとを少なくとも1対有し、上
記カップリング光学系と上記偏向反射面の間に設置され
ることを特徴とする光走査装置。
1. A light source for emitting a light beam, a coupling optical system for converting a light beam from the light source into a parallel light beam, a substantially convergent light beam, or a substantially divergent light beam, and coupling to a subsequent optical system; A light deflector that reflects light beams from the system on a deflecting / reflecting surface to deflect and scan, a scanning image forming optical system that condenses the light beams deflected by the light deflector as a light spot on a surface to be scanned, and environmental fluctuations. An optical scanning device comprising a correction optical system for self-correcting the focal position shift of the light spot on the surface to be scanned, wherein the correction optical system has an anamorphic having negative power in both the main scanning direction and the sub-scanning direction. A resin lens having a surface,
An optical scanning device comprising at least one pair of a glass lens having an anamorphic surface having at least a positive power in a sub-scanning direction, and being provided between the coupling optical system and the deflecting reflection surface.
【請求項2】請求項1記載の光走査装置において、アナ
モフィック面を有する樹脂製レンズとアナモフィック面
を有するガラスレンズからなる補正光学系を保持部材で
一体に保持したことを特徴とする光走査装置。
2. The optical scanning device according to claim 1, wherein a correction optical system comprising a resin lens having an anamorphic surface and a glass lens having an anamorphic surface is integrally held by a holding member. .
【請求項3】請求項2記載の光走査装置において、保持
部材で一体化した補正光学系が光軸方向に移動調整可能
な構造を有することを特徴とする光走査装置。
3. The optical scanning device according to claim 2, wherein the correction optical system integrated by the holding member has a structure capable of adjusting the movement in the optical axis direction.
【請求項4】請求項2記載の光走査装置において、保持
部材で一体化した補正光学系が光軸に垂直な方向に回転
調整可能な構造を有することを特徴とする光走査装置。
4. The optical scanning device according to claim 2, wherein the correction optical system integrated by the holding member has a structure capable of rotating and adjusting in a direction perpendicular to the optical axis.
【請求項5】請求項1,2,3または4記載の光走査装
置において、補正光学系のアナモフィック面の少なくと
も1面が主・副走査方向共に非球面で構成されることを
特徴とする光走査装置。
5. The optical scanning device according to claim 1, wherein at least one of the anamorphic surfaces of the correction optical system is formed as an aspheric surface in both the main and sub scanning directions. Scanning device.
【請求項6】請求項1,2,3,4または5記載の光走
査装置において、アナモフィック面を有する樹脂製レン
ズとアナモフィック面を有するガラスレンズの面間隔を
Lとし、補正光学系全系の副走査方向の焦点距離をfs
としたとき、条件: 0<L/fs<0.1 を満足することを特徴とする光走査装置。
6. The optical scanning device according to claim 1, wherein the distance between the resin lens having the anamorphic surface and the glass lens having the anamorphic surface is L, and the entire distance of the correction optical system is set. The focal length in the sub-scanning direction is fs
Wherein the optical scanning device satisfies the following condition: 0 <L / fs <0.1.
JP24754099A 1999-09-01 1999-09-01 Optical scanning device Expired - Fee Related JP3483129B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24754099A JP3483129B2 (en) 1999-09-01 1999-09-01 Optical scanning device
US09/653,330 US6509995B1 (en) 1999-09-01 2000-08-31 Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus
US10/278,810 US6801351B2 (en) 1999-09-01 2002-10-24 Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus
US10/279,848 US6606179B2 (en) 1999-09-01 2002-10-25 Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24754099A JP3483129B2 (en) 1999-09-01 1999-09-01 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2001075032A true JP2001075032A (en) 2001-03-23
JP3483129B2 JP3483129B2 (en) 2004-01-06

Family

ID=17165026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24754099A Expired - Fee Related JP3483129B2 (en) 1999-09-01 1999-09-01 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3483129B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365570A (en) * 2001-06-05 2002-12-18 Ricoh Co Ltd Image surface adjusting method and line image forming optical system for optical scanner, the optical scanner and imaging apparatus
JP2003043391A (en) * 2001-07-30 2003-02-13 Ricoh Co Ltd Scanning image formation optical system, optical scanner and imaging apparatus
US6961164B2 (en) * 2001-01-19 2005-11-01 Ricoh Company, Ltd. Scanning optics with optical elements formed of resin and optical scanning device and image forming apparatus using the same
US8223418B2 (en) 2008-02-05 2012-07-17 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
JP2013238798A (en) * 2012-05-17 2013-11-28 Ricoh Co Ltd Optical scanner and image forming apparatus
CN114706280A (en) * 2022-05-18 2022-07-05 广东科视光学技术股份有限公司 DI lithography machine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610127B2 (en) 2010-03-11 2014-10-22 株式会社リコー Optical scanning apparatus and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961164B2 (en) * 2001-01-19 2005-11-01 Ricoh Company, Ltd. Scanning optics with optical elements formed of resin and optical scanning device and image forming apparatus using the same
JP2002365570A (en) * 2001-06-05 2002-12-18 Ricoh Co Ltd Image surface adjusting method and line image forming optical system for optical scanner, the optical scanner and imaging apparatus
JP2003043391A (en) * 2001-07-30 2003-02-13 Ricoh Co Ltd Scanning image formation optical system, optical scanner and imaging apparatus
JP4495883B2 (en) * 2001-07-30 2010-07-07 株式会社リコー Scanning imaging optical system, optical scanning device, and image forming apparatus
US8223418B2 (en) 2008-02-05 2012-07-17 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
JP2013238798A (en) * 2012-05-17 2013-11-28 Ricoh Co Ltd Optical scanner and image forming apparatus
CN114706280A (en) * 2022-05-18 2022-07-05 广东科视光学技术股份有限公司 DI lithography machine system
CN114706280B (en) * 2022-05-18 2022-10-18 广东科视光学技术股份有限公司 DI lithography machine system

Also Published As

Publication number Publication date
JP3483129B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP3478491B2 (en) Scanning imaging lens / optical scanning device and image forming apparatus
JP3961377B2 (en) Optical scanning apparatus and image forming apparatus
JP3337510B2 (en) Optical scanning device
JP3483141B2 (en) Scanning optical system, optical scanning device, and image forming apparatus
JP3453737B2 (en) Scanning imaging optical system / optical scanning device and image forming apparatus
US20030072065A1 (en) Optical scanning device, line-image forming optical system therein, imaging adjustment method in the device and image forming apparatus
JPH10142543A (en) Optical scanning device
JP2003322814A (en) Optical scanner and image forming apparatus
JP4227334B2 (en) Scanning optical system
JP3620767B2 (en) Reflective scanning optical system
JP2007140418A (en) Light scanning device and scanning optical system
JP3483129B2 (en) Optical scanning device
JP4346835B2 (en) Scanning optical system
JP2000002847A (en) Scanning optical device and multi-beam scanning optical device
JP4293780B2 (en) Scanning optical system
JP4345856B2 (en) Laser scanner
JP2000267030A (en) Optical scanning device
JP2005173221A (en) Optical scanning device and image forming apparatus
JP4837596B2 (en) Optical scanning apparatus and image forming apparatus
JP4902279B2 (en) Image forming apparatus
JP2010072050A (en) Optical scanner and method of adjusting optical scanner
JP2006098737A (en) Optical scanner and image forming apparatus
JPH06109995A (en) Optical scanning device
JP4914563B2 (en) Optical scanning device
JP2001324689A (en) Multibeam scanning optical system, multibeam scanning device, multibeam scanning method and image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees