JP2001074382A - Regenerative heat exchanging reactor - Google Patents

Regenerative heat exchanging reactor

Info

Publication number
JP2001074382A
JP2001074382A JP25199199A JP25199199A JP2001074382A JP 2001074382 A JP2001074382 A JP 2001074382A JP 25199199 A JP25199199 A JP 25199199A JP 25199199 A JP25199199 A JP 25199199A JP 2001074382 A JP2001074382 A JP 2001074382A
Authority
JP
Japan
Prior art keywords
fluid
reactor
heat
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25199199A
Other languages
Japanese (ja)
Inventor
Saburo Kato
三郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Shimadzu Corp
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Research Institute of Innovative Technology for the Earth RITE filed Critical Shimadzu Corp
Priority to JP25199199A priority Critical patent/JP2001074382A/en
Publication of JP2001074382A publication Critical patent/JP2001074382A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/237Regenerators or recuperators specially adapted for glass-melting furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency regenerative heat exchanging reactor in which the quantity of heat to be discarded can be reduced. SOLUTION: High temperature fluid to be processed discharged from a reactor 1 is introduced through a changeover valve 6 to a regenerative heat exchanger 4 where the temperature of the fluid is lowered by imparting heat to other fluid. Subsequently, it is separated into a production substance, an intermediate production substance and a nonreacted substance by means of a separator 5. The production substance is taken out to the outside of the system and the intermediate production substance and nonreacted substance are transferred through a pump 2 and a changeover valve 7 to a regenerative heat exchanger 3. In the regenerative heat exchanger 3, the intermediate production substance and nonreacted substance are heated again up to the vicinity of reaction temperature by receiving stored heat and transferred to the reactor 1 where they are used for reaction. When the operation is repeated, nonreacted substance and intermediate production substance in high temperature fluid close to the reaction temperature discharged from the reactor 1 are recirculated to the reactor 1 at a temperature close to the reaction temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスや金属を溶
融する窯炉工業分野における溶融炉、焼成を必要とする
セメントやセラミックスなどの製造分野における焼成
炉、石油精製などの石油化学工業分野における分溜塔な
どの再生熱交換式反応器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melting furnace in the kiln industry for melting glass and metal, a firing furnace in the field of manufacturing cement and ceramics requiring firing, and a petrochemical industry such as petroleum refining. The present invention relates to a regenerative heat exchange reactor such as a fractionating tower.

【0002】[0002]

【従来の技術】ガラスや鉄鋼等の金属のように溶融窯に
おいて製造される窯炉工業、セメントやセラミックスな
ど焼成行程を必要とする無機材料工業、石油精製などの
石油化学工業等、化学工業の大部分の分野で流体物質の
加熱、熱伝達、移動、冷却工程が含まれる。これらガラ
ス製造における溶融炉や石油精製における分溜塔等の反
応器で製造された被処理流体物質は反応器から取り出さ
れた後冷却されるが、この時流体物質が有している熱は
熱交換器を用いて回収され、再利用することによりエネ
ルギーの有効利用が図られる。また、反応器から排出さ
れる排ガス、未反応流体等がもつ顕熱も回収され再利用
される。
2. Description of the Related Art The kiln furnace industry, which is manufactured in a melting furnace like metals such as glass and steel, the inorganic material industry which requires a sintering process such as cement and ceramics, the petrochemical industry such as petroleum refining, etc. Most areas involve heating, heat transfer, transfer and cooling steps of the fluid material. The fluid material to be processed, which is produced in a reactor such as a melting furnace in the production of glass or a fractionation tower in petroleum refining, is cooled after being taken out of the reactor. The energy is effectively used by collecting and reusing it using an exchanger. Also, the sensible heat of the exhaust gas, unreacted fluid and the like discharged from the reactor is recovered and reused.

【0003】熱交換器とは一流体から伝熱壁を隔てて他
の流体へ熱を伝える装置であり、伝熱壁の両側の流体と
しては気体、凝縮する蒸気、液体、沸騰する液体などの
種々の組み合わせがある。一般に廃熱の回収を目的とす
る伝熱装置を熱交換器と呼ぶが、ここでは低温側流体の
加熱を目的とする加熱器、高温側流体の冷却を目的とす
る冷却器、一方の流体が凝縮する蒸気の場合で蒸気の凝
縮を目的とする凝縮器、低温側が沸騰する液体の場合で
液体の蒸発を目的とする蒸発器、凝縮潜熱の回収を目的
とする熱交換器等を含む。さらに、流体が有する熱をい
ったん貯えた後、貯えられた熱を他の流体に伝える場合
に用いられる蓄熱器も含む。伝熱壁としては、熱伝導率
が大きく気密なものが要求され、低温では金属、高温で
は炭化珪素などのセラミックスが用いられる。
[0003] A heat exchanger is a device for transferring heat from one fluid to another fluid across a heat transfer wall, and the fluid on both sides of the heat transfer wall includes gas, condensed vapor, liquid, and boiling liquid. There are various combinations. Generally, a heat transfer device for the purpose of recovering waste heat is called a heat exchanger.Here, a heater for the purpose of heating the low-temperature side fluid, a cooler for the purpose of cooling the high-temperature side fluid, It includes a condenser for condensing the vapor in the case of condensing vapor, an evaporator for evaporating the liquid in the case of a liquid having a low boiling temperature, a heat exchanger for recovering the latent heat of condensation, and the like. Further, the present invention also includes a regenerator used to store the heat of a fluid once and then transfer the stored heat to another fluid. The heat transfer wall is required to have a high thermal conductivity and airtightness, and a metal is used at a low temperature, and a ceramic such as silicon carbide is used at a high temperature.

【0004】伝熱装置の構造としては、容積に対する伝
熱面積が大きなことが重要であり、多管型と呼ばれる構
造がもっとも広く用いられる。これは多数の伝熱管の束
を円筒型の胴の中に納めたもので、一方の流体は管内
を、他方の流体は管と胴との間を通して両者の間に伝熱
を行わせるものである。この他に、伝熱管が一本の場合
の二重管型、一本の伝熱管が蛇管である蛇管型などがあ
る。これらは目的物質の製造工程における流体の粘性、
圧力、流量、流体の温度および温度差等の条件により選
択される。
It is important for the structure of the heat transfer device to have a large heat transfer area with respect to the volume, and a structure called a multi-tube type is most widely used. This is a bundle of a number of heat transfer tubes housed in a cylindrical body, with one fluid passing through the inside of the tube and the other fluid passing between the tube and the body to transfer heat between them. is there. In addition, there are a double tube type in which one heat transfer tube is used, a snake tube type in which one heat transfer tube is a snake tube, and the like. These are the viscosity of the fluid in the manufacturing process of the target substance,
It is selected according to conditions such as pressure, flow rate, fluid temperature and temperature difference.

【0005】反応器から排出された被処理流体が有する
熱は熱交換器により回収された後、流体のうち生成物は
反応系外へ取り出され、未反応流体は再び反応器に循環
される。熱交換器において熱を伝えられ加熱された流体
は熱交換器から所定の箇所へ移動され、利用されなけれ
ばならない。そのために加熱された流体は昇圧され、圧
送されることが必要となるが、これには通常ポンプが用
いられる。
[0005] After the heat of the fluid to be treated discharged from the reactor is recovered by the heat exchanger, the product of the fluid is taken out of the reaction system, and the unreacted fluid is circulated again to the reactor. The fluid that is transferred and heated in the heat exchanger must be moved from the heat exchanger to a predetermined location and used. For this purpose, the heated fluid needs to be pressurized and pumped, which is usually done with a pump.

【0006】[0006]

【発明が解決しようとする課題】ガラス、鉄鋼、セメン
ト製造や石油精製など、被処理流体の温度は1000℃
を越えることが少なくないが、この様な高温の被処理流
体から熱交換器を用いて熱を回収する場合、熱交換器に
おいて加熱される流体を同様に高温まで昇温すると、流
体を熱交換器から所定の箇所へ移動させるためにポンプ
を使用することが困難となり熱の再利用はできなくな
る。そのため、熱交換器において加熱される流体の温度
は被処理流体に比べ低温にならざるを得ず、回収された
熱は例えば燃焼用空気または燃料ガスを予熱するのに用
いられる等の、低レベル熱として利用されるのみであっ
た。またこの様な場合、高温流体と低温流体との温度差
が大くなるため熱交換器内における伝熱速度が大きく、
低温側の流体を所定の温度にコントロールすることが難
しくなり、廃棄される熱量が大きくならざるを得なかっ
た。
The temperature of the fluid to be treated, such as glass, steel, cement production, or petroleum refining, is 1000 ° C.
However, when recovering heat from such a high-temperature fluid to be processed using a heat exchanger, the temperature of the fluid to be heated in the heat exchanger is similarly increased to a high temperature. It becomes difficult to use a pump to move the pump from the vessel to a predetermined location, and heat cannot be reused. For this reason, the temperature of the fluid to be heated in the heat exchanger must be lower than that of the fluid to be treated, and the recovered heat can be reduced to a low level such as used for preheating combustion air or fuel gas. It was only used as heat. In such a case, the temperature difference between the high-temperature fluid and the low-temperature fluid increases, so that the heat transfer rate in the heat exchanger is large,
It became difficult to control the fluid on the low temperature side to a predetermined temperature, and the amount of heat to be discarded had to be increased.

【0007】反応器から排出される流体が熱交換器を経
た後、未反応物質および中間生成物質が生成物と分離さ
れ、反応器に循環し再び反応器内で反応に供される再生
熱交換式反応器においては、循環する流体の温度をでき
るだけ高温に維持することにより高い熱効率を得ること
ができるが、流体の移動をポンプにより行う限り流体を
いったん降温する事は避けられない。
After the fluid discharged from the reactor passes through the heat exchanger, unreacted substances and intermediate substances are separated from the products, circulated to the reactor and regenerated in the reactor again for the reaction. In the type reactor, high thermal efficiency can be obtained by maintaining the temperature of the circulating fluid as high as possible, but once the fluid is moved by the pump, it is inevitable that the fluid once cools down.

【0008】本発明は、熱交換器において低温流体の温
度を高温にしても有効に利用でき、循環される流体の温
度を反応温度付近の高温に維持する事が可能で、廃棄さ
れる熱量を小さくできる高効率な再生熱交換式反応器を
提供することを目的とする。
The present invention can be used effectively even when the temperature of a low-temperature fluid in a heat exchanger is high, the temperature of a circulating fluid can be maintained at a high temperature near the reaction temperature, and the amount of heat to be discarded can be reduced. An object of the present invention is to provide a highly efficient regenerative heat exchange reactor that can be reduced in size.

【0009】[0009]

【課題を解決するための手段】本発明の再生熱交換式反
応器は、流体物質の加熱冷却等の処理を行う反応器と、
並列に配置された複数の熱交換器と、反応器から排出さ
れる被処理流体を一方の熱交換器へ導入するための切換
弁と、反応器から排出される被処理流体のうち生成物質
と中間生成物質および未反応物質とを分離する分離器
と、熱交換器で降温された中間生成物質と未反応物質を
昇圧し移動させるためのポンプと、昇圧された中間生成
物質と未反応物質を他方の熱交換器へ導入するための切
換弁とから構成される。
According to the present invention, there is provided a regenerative heat exchange reactor comprising: a reactor for performing processing such as heating and cooling of a fluid substance;
A plurality of heat exchangers arranged in parallel, a switching valve for introducing a fluid to be treated discharged from the reactor into one of the heat exchangers, and a product substance of the fluid to be treated discharged from the reactor. A separator that separates the intermediate product and the unreacted material, a pump that pressurizes and moves the intermediate product and the unreacted material that have been cooled by the heat exchanger, and a pump that pressurizes the intermediate product and the unreacted material. And a switching valve for introduction to the other heat exchanger.

【0010】反応器から排出される反応温度付近にある
高温の被処理流体は先ず一方の熱交換器において熱を他
の流体に与え、被処理流体自身はポンプにより昇圧、移
動させることができる程度に降温された後、分離器へと
移動される。熱交換器において熱を伝えられた流体は熱
交換器中にとどまっており、被処理流体に近い温度まで
昇温される。この時、熱交換器はいわゆる蓄熱器として
作用する。分離器において分離された生成物質は系外へ
と取り出される。次に、反応器から排出される高温の被
処理流体は切換弁により他方の熱交換器に導かれ、熱を
他の流体に与え降温され、分離器において生成物質と中
間生成物質および未反応物質とに分離された後、生成物
質は系外に取り出され、中間生成物質と未反応物質はポ
ンプにより最初に使用された熱交換器に移動される。こ
こで中間生成物質と未反応物質は貯えられている熱を受
け取り、再び反応温度付近まで加熱された後反応器に移
動され、反応に供されることができる。
[0010] The high temperature fluid to be treated, which is discharged from the reactor and is near the reaction temperature, first gives heat to the other fluid in one heat exchanger, and the fluid to be treated is pressurized and moved by a pump. After the temperature is lowered to the separator, it is moved to the separator. The fluid to which the heat has been transferred in the heat exchanger remains in the heat exchanger and is heated to a temperature close to the fluid to be treated. At this time, the heat exchanger acts as a so-called regenerator. The product separated in the separator is taken out of the system. Next, the high-temperature fluid to be treated discharged from the reactor is guided to the other heat exchanger by the switching valve, gives heat to the other fluid, and is cooled down. After that, the product is taken out of the system, and the intermediate product and unreacted material are transferred to the heat exchanger used first by the pump. Here, the intermediate product and the unreacted material receive the stored heat, are heated to near the reaction temperature again, are moved to the reactor, and can be subjected to the reaction.

【0011】以降、切換弁により反応器から排出される
高温の被処理流体は適宜いずれか一方の熱交換器に導か
れ降温された後、分離器で分離された中間生成物質およ
び未反応物質はポンプにより昇圧され、他方の熱交換器
へ移動され反応温度付近に昇温された後、反応器へと移
動されることが繰り返される。この様な操作により、反
応器から排出される高温の被処理流体のうちの未反応物
質および中間生成物質は反応温度付近の温度で再び反応
器に循環されることができ、装置全体として高い熱効率
を得ることができる。また、生成物質は十分に降温され
てから系外に取り出されるので、生成物質により系外に
持ち出される熱量を最小にでき、積極的に廃棄される熱
はない。
[0011] Thereafter, the high-temperature fluid to be treated discharged from the reactor by the switching valve is appropriately guided to one of the heat exchangers and cooled, and then the intermediate product and the unreacted material separated by the separator are separated. The pressure is increased by the pump, moved to the other heat exchanger, raised to near the reaction temperature, and then moved to the reactor repeatedly. By such an operation, the unreacted substances and intermediate products of the high-temperature fluid to be treated discharged from the reactor can be circulated again to the reactor at a temperature close to the reaction temperature, and the overall apparatus has a high thermal efficiency. Can be obtained. Further, since the generated substance is taken out of the system after the temperature is sufficiently lowered, the amount of heat taken out of the system by the generated substance can be minimized, and there is no heat that is actively discarded.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態を、図
面を参照して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0013】この再生熱交換式反応器は図1に示すよう
に、反応器1において反応物質が加熱され、必要な反応
を起こすことにより目的生成物質を得ようとするもので
ある。反応器1には切換弁6を介して2個の再生熱交換
器3、4が並列に接続されている。さらに、目的生成物
質を分離し系外へ取り出すための分離器5が設置されて
いる。ここで、分離器5としては目的生成物質を選択的
に透過する透過膜を利用する、あるいは目的生成物質を
選択的に吸着する吸着剤を利用する等の、周知の種々の
方法を適宜選択して用いることができる。分離器5には
目的生成物を分離された残りの流体を切換弁7を介して
再生熱交換器3、4のいずれかを通り反応器1にまで移
動させるための循環ポンプ2が設置されている。
As shown in FIG. 1, this regenerative heat exchange type reactor is intended to obtain a target product by heating a reactant in a reactor 1 and causing a necessary reaction. Two regenerative heat exchangers 3 and 4 are connected in parallel to the reactor 1 via a switching valve 6. Further, a separator 5 for separating the target product and taking it out of the system is provided. Here, as the separator 5, various well-known methods such as using a permeable membrane that selectively permeates the target product or using an adsorbent that selectively adsorbs the target product are appropriately selected. Can be used. The separator 5 is provided with a circulation pump 2 for moving the remaining fluid from which the target product has been separated to the reactor 1 through the switching valve 7 through one of the regenerative heat exchangers 3 and 4 to the reactor 1. I have.

【0014】この様な構成において、所定の温度に保持
された反応器1の下部より反応物質が供給され、必要な
反応が開始される。反応器1において反応により生成
し、排出される反応温度付近の高温の被処理流体は、目
的生成物質と中間反応物質と未反応物質の混合物質であ
る。この混合物質は切換弁6により先ず再生熱交換器3
に導かれる。再生熱交換器3において、反応温度付近の
高温の混合物質は有している熱を再生熱交換器3内にあ
る他の流体に熱を与え、混合物質自身は分離器5で分離
され循環ポンプ2で昇圧されることができる程度に降温
される。再生熱交換器3において熱を伝えられた流体は
反応温度付近にまで昇温される。混合物質は分離器5に
おいて生成物質が分離され系外に取り出される。ここで
生成物質は十分に降温されており、生成物質により系外
に持ち出される熱は最小にすることができる。残った中
間生成物質および未反応物質は循環ポンプ2によって昇
圧され、移動可能な状態にされる。昇圧された中間生成
物質および未反応物質は切換弁7により再生熱交換器4
に導かれた後、反応器1に導入され再び反応に供され
る。以上は図1において、切換弁6以降の実線で示され
ているルートである。反応器1から排出される混合物質
は上記のルートを循環することで再生熱交換器3におい
て蓄熱可能な範囲内で熱を再生熱交換器3に与えた後、
次に切換弁6により再生熱交換器4に導かれることとな
る。再生熱交換器4において、高温の混合物質は有して
いる熱を再生熱交換器4内にある他の流体に与え、混合
物質自身は分離器5で分離され循環ポンプ2で昇圧され
ることができる程度に十分に降温された後、混合物質は
分離器5において生成物質が分離され系外に取り出され
る。残った中間生成物質および未反応物質は循環ポンプ
2によって昇圧され、移動可能な状態にされる。再生熱
交換器4において熱を伝えられた流体は反応温度付近に
まで昇温される。昇圧された中間生成物質および未反応
物質は切換弁7により再生熱交換器3に導かれる。中間
生成物質および未反応物質は再生熱交換器3において貯
えられている熱を受け取り反応温度付近にまで加熱され
た後、反応器1に導入され再び反応に供される。以上は
図1において、切換弁6以降の破線で示されているルー
トである。
In such a configuration, a reactant is supplied from a lower portion of the reactor 1 maintained at a predetermined temperature, and a necessary reaction is started. The high temperature fluid to be processed, which is generated around the reaction temperature in the reactor 1 and discharged, is a mixture of the target product, the intermediate reactant and the unreacted material. This mixed substance is first supplied to the regenerative heat exchanger 3 by the switching valve 6.
It is led to. In the regenerative heat exchanger 3, the high-temperature mixed substance near the reaction temperature gives heat to other fluids in the regenerative heat exchanger 3, and the mixed substance itself is separated by the separator 5 and circulated by the circulation pump. The temperature is lowered to such an extent that the pressure can be raised at 2. The fluid to which heat has been transferred in the regenerative heat exchanger 3 is heated to near the reaction temperature. The mixed substance is separated in a separator 5 into a product substance and taken out of the system. Here, the temperature of the product is sufficiently lowered, and the heat taken out of the system by the product can be minimized. The remaining intermediate product and unreacted material are pressurized by the circulation pump 2 to be movable. The pressurized intermediate product and unreacted material are supplied to the regenerative heat exchanger 4 by the switching valve 7.
After that, the mixture is introduced into the reactor 1 and again subjected to the reaction. The above is the route indicated by the solid line after the switching valve 6 in FIG. After the mixed substance discharged from the reactor 1 circulates through the above-described route and gives heat to the regenerative heat exchanger 3 within a range where heat can be stored in the regenerative heat exchanger 3,
Next, it is guided to the regenerative heat exchanger 4 by the switching valve 6. In the regenerative heat exchanger 4, the high-temperature mixed substance gives its own heat to another fluid in the regenerative heat exchanger 4, and the mixed substance itself is separated by the separator 5 and pressurized by the circulation pump 2. After the temperature of the mixture has been sufficiently reduced to a value as high as possible, the mixed substance is separated in the separator 5 into product and taken out of the system. The remaining intermediate product and unreacted material are pressurized by the circulation pump 2 to be movable. The fluid to which heat has been transferred in the regenerative heat exchanger 4 is heated to near the reaction temperature. The pressurized intermediate product and unreacted material are led to the regenerative heat exchanger 3 by the switching valve 7. The intermediate product and the unreacted material receive the heat stored in the regenerative heat exchanger 3 and are heated to near the reaction temperature, then introduced into the reactor 1 and subjected to the reaction again. The above is the route indicated by the broken line after the switching valve 6 in FIG.

【0015】以上の操作を繰り返すことにより、反応器
1から排出される反応温度付近の高温の被処理流体のう
ちの未反応物質および中間生成物質は反応温度付近の温
度で再び反応器1に循環されることができ、装置全体と
して高い熱効率を得ることができる。また、反応物質を
系外に取り出す際に持ち出される熱量を最小にすること
ができ、積極的に廃棄される熱は無い。
By repeating the above operation, the unreacted substances and intermediate products of the high temperature fluid to be treated near the reaction temperature discharged from the reactor 1 are circulated again to the reactor 1 at a temperature near the reaction temperature. Therefore, high thermal efficiency can be obtained as a whole device. Further, the amount of heat taken out when the reactants are taken out of the system can be minimized, and no heat is actively discarded.

【0016】再生熱交換器3、4において、反応器1か
ら排出される被処理流体から熱を伝えられる流体として
は、気体、液体いずれでもよく、あるいは昇降温される
際に蒸発、凝縮してもよい。また、再生熱交換器3、4
に蓄熱器を接続し、熱を伝えられる流体を循環させるよ
うにしてもよい。この場合には、流体の速度を増すほど
再生熱交換器3、4の伝熱壁における熱伝導速度が増加
するので、再生熱交換器3、4を小型化でき、効率を高
めることが可能となる。再生熱交換器3、4には、貯え
られる熱量を検出し調整するため、温度検出手段等の検
出器が設置される。再生熱交換器3、4には、被処理流
体が与える熱量を調節し、あるいは与えられる熱量を調
節するため、温度検出手段等の検出器が設置される。
In the regenerative heat exchangers 3 and 4, the fluid that transfers heat from the fluid to be treated discharged from the reactor 1 may be a gas or a liquid, or may be evaporated or condensed when the temperature is raised or lowered. Is also good. Also, the regenerative heat exchangers 3, 4
May be connected to a heat storage device to circulate a fluid capable of transmitting heat. In this case, the heat conduction speed in the heat transfer walls of the regenerative heat exchangers 3 and 4 increases as the speed of the fluid increases, so that the regenerative heat exchangers 3 and 4 can be downsized and the efficiency can be improved. Become. The regenerative heat exchangers 3 and 4 are provided with detectors such as temperature detecting means for detecting and adjusting the amount of heat stored. The regenerative heat exchangers 3 and 4 are provided with detectors such as temperature detecting means for adjusting the amount of heat given by the fluid to be treated or for adjusting the amount of heat given.

【0017】以上、本発明の実施例を説明したが、本発
明は上記実施例に限定されるものではなく、特許請求範
囲に記載された本発明の要旨の範囲内で種々の変更を行
うことができる。例えば、反応物質を反応器1に導入す
る前に再生熱交換器3、4を通すことにより、反応前に
あらかじめ加熱しておくことができ、反応器1における
エネルギー効率を高めることができる。また、3個以上
の再生熱交換器を並列に設置し、3個以上の循環ルート
を作ることにより、再生熱交換器に貯えることのできる
熱量を増加させることができ、装置を安定して操業する
ことができる。反応器1の内部あるいは外周部に熱交換
器を設置し、再生熱交換器3、4において熱を伝えられ
た流体をこの熱交換器に循環させることにより、反応に
必要な熱を供給することが可能である。
The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. Can be. For example, by passing the reactants through the regenerative heat exchangers 3 and 4 before being introduced into the reactor 1, the reactants can be heated before the reaction, and the energy efficiency in the reactor 1 can be increased. In addition, by installing three or more regenerative heat exchangers in parallel and creating three or more circulation routes, the amount of heat that can be stored in the regenerative heat exchangers can be increased, and the equipment can be operated stably. can do. A heat exchanger is installed inside or on the outer periphery of the reactor 1, and the heat transferred to the regenerative heat exchangers 3 and 4 is circulated through the heat exchanger to supply heat required for the reaction. Is possible.

【0018】[0018]

【発明の効果】本発明の再生熱交換式反応器は上記した
ように、複数の再生熱交換器を並列に備えているので、
反応器から排出される反応温度付近の高温の被処理流体
のうちの未反応物質および中間生成物質は一方の再生熱
交換器により降温された後、他方の再生熱交換器により
再び反応温度付近まで昇温され反応器に循環されること
ができ、装置全体として高い熱効率を得ることができ
る。また、反応物質を系外に取り出す際に持ち出される
熱量を最小にすることができ、積極的に廃棄せざるをえ
ない熱がなくなる。
As described above, the regenerative heat exchange type reactor of the present invention has a plurality of regenerative heat exchangers in parallel.
Unreacted substances and intermediate products of the high-temperature fluid to be treated near the reaction temperature discharged from the reactor are cooled down by one regenerative heat exchanger and then returned to near the reaction temperature by the other regenerative heat exchanger. The temperature can be raised and circulated to the reactor, and high thermal efficiency can be obtained as a whole of the apparatus. Further, the amount of heat taken out when the reactants are taken out of the system can be minimized, so that there is no heat that must be positively discarded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の再生熱交換式反応器の一実施例の全体
構成図である。
FIG. 1 is an overall configuration diagram of one embodiment of a regenerative heat exchange reactor of the present invention.

【符号の説明】[Explanation of symbols]

1…反応器 2…循環ポンプ 3、4…再生熱交換器 5…分離器 6、7…切換弁 DESCRIPTION OF SYMBOLS 1 ... Reactor 2 ... Circulation pump 3,4 ... Regenerative heat exchanger 5 ... Separator 6,7 ... Switching valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体物質の加熱冷却等の処理を行う反応器
と、当該反応器から排出される被処理流体の熱を他の流
体へ伝える熱交換器と、熱交換器から流体を前記反応器
に循環させるための循環ポンプからなる再生熱交換式反
応器において、熱交換器を複数個並列に設置するととも
に、前記反応器からの被処理流体の熱を一方の熱交換器
に貯え流体の温度を下げた後、前記循環ポンプにより流
体を昇圧し他方の熱交換器へ送り、その熱交換器に貯え
られた熱により昇温させた後、前記反応器に循環させる
循環系を設けたことを特徴とする再生熱交換式反応器。
1. A reactor for performing a process such as heating and cooling of a fluid substance, a heat exchanger for transferring heat of a fluid to be treated discharged from the reactor to another fluid, and the reaction of the fluid from the heat exchanger In a regenerative heat exchange reactor comprising a circulating pump for circulating in a reactor, a plurality of heat exchangers are installed in parallel, and the heat of the fluid to be treated from the reactor is stored in one of the heat exchangers. After lowering the temperature, the circulation pump pressurizes the fluid by the circulation pump, sends the fluid to the other heat exchanger, raises the temperature by the heat stored in the heat exchanger, and then circulates the fluid through the reactor. A regenerative heat exchange reactor.
JP25199199A 1999-09-06 1999-09-06 Regenerative heat exchanging reactor Withdrawn JP2001074382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25199199A JP2001074382A (en) 1999-09-06 1999-09-06 Regenerative heat exchanging reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25199199A JP2001074382A (en) 1999-09-06 1999-09-06 Regenerative heat exchanging reactor

Publications (1)

Publication Number Publication Date
JP2001074382A true JP2001074382A (en) 2001-03-23

Family

ID=17231031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25199199A Withdrawn JP2001074382A (en) 1999-09-06 1999-09-06 Regenerative heat exchanging reactor

Country Status (1)

Country Link
JP (1) JP2001074382A (en)

Similar Documents

Publication Publication Date Title
EP0304877B1 (en) Heat exchanger for fuel cell power plant reformer
EP0335707A2 (en) Method for transferring heat between process liquor streams
CN102656416A (en) System for recovering waste heat
CN103933916A (en) Heating-cooling method and heating-cooling system utilizing fused salt as carrier
FI90313C (en) Medium liquid heater for plate-like membrane evaporators and method for evaporating the liquid
CN106890474A (en) Residual neat recovering system
US5057010A (en) Furnace for heating process fluid and method of operation thereof
CN102225239A (en) Multilevel heat-exchange distilling device for dreggy organic materials
JP2001074382A (en) Regenerative heat exchanging reactor
US4391617A (en) Process for the recovery of vaporized sublimates from gas streams
EP3559582B1 (en) Heat exchanger and heat exchange method using same
CN105737457A (en) Solvent recovery technology
US6235235B1 (en) System for extracting sodium metal from sodium hydroxide and a reductant of natural gas
JPS63162787A (en) Method and apparatus for cooling cracking gas
CN103357188A (en) Method and equipment for concentrating brackish water
US9480961B2 (en) Fluidized bed reactor
RU2662442C1 (en) Unit of catalytic aromatization of light hydrocarbons and method of its operation
US4408656A (en) Countercurrent heat exchanger for two streams of solids using heat pipes
CN220989718U (en) Crude benzene distillation emission reduction system without water vapor
SU1104349A1 (en) Hardening-evaporating apparatus
EP0063116B1 (en) Apparatus for the recovery of vaporized phthalic anhydride from gas streams
JPH02212592A (en) Device for thermal decomposition of waste material
US4413669A (en) Method of heat extraction from an aqueous carrier medium
KR101732711B1 (en) System and method for heat recovery and usage of furnace
RU2138316C1 (en) Sublimation still

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070403