JP2001073166A - Aluminum alloy substrate for magnetic recording medium and its production - Google Patents

Aluminum alloy substrate for magnetic recording medium and its production

Info

Publication number
JP2001073166A
JP2001073166A JP24377399A JP24377399A JP2001073166A JP 2001073166 A JP2001073166 A JP 2001073166A JP 24377399 A JP24377399 A JP 24377399A JP 24377399 A JP24377399 A JP 24377399A JP 2001073166 A JP2001073166 A JP 2001073166A
Authority
JP
Japan
Prior art keywords
layer
acid
aluminum alloy
substrate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24377399A
Other languages
Japanese (ja)
Inventor
Yasushi Kobayashi
恭 小林
Hisatoshi Miyoshi
久利 三好
Hideki Shimada
英樹 島田
Takeshi Ebihara
健 海老原
Yumiko Tsukamoto
由美子 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP24377399A priority Critical patent/JP2001073166A/en
Publication of JP2001073166A publication Critical patent/JP2001073166A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy substrate for a magnetic recording medium good in texturing propeties and laser beam workability and simultaneously having impact resistance equal to or above that of a glass substrate using an inexpensive aluminum alloy good in workability and to provide a method for producing it. SOLUTION: This aluminum alloy substrate for a magnetic recording medium has a four layer structure in which a 1st layer composed of an aluminum alloy, a 2nd layer composed of a non-porous anodically oxidized film, a 3rd layer composed of a porous anodicallyl oxidized film and a electro plating precipitated metallic layer in the pores and a 4th layer composed of an electroless plating precipitated nickel-phosphorous alloy are laminated in the above order. After the formation of the porous anodically oxidized film in the 3rd layer on the 1st layer, the 2nd layer is formed on the space between the 1st layer and the 3rd layer by anodic oxidation, next, metal is electrolytically precipitated into the pores of the porous anodically oxidized film to complete the 3rd layer, and finally, the 4th layer composed of a nickel-phosphorous alloy is electroless- precipitated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子情報処理に用
いられる固定型薄膜磁気記録ディスク(ハードディス
ク)等の高記録密度磁気記録媒体用のアルミニウム合金
基板、特に、アルミニウム合金基材上に無電解めっきニ
ッケル−燐合金層を備えた磁気記録媒体用アルミニウム
合金基板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy substrate for a high-density magnetic recording medium such as a fixed-type thin-film magnetic recording disk (hard disk) used for electronic information processing, and more particularly, to an electroless electroless process on an aluminum alloy substrate The present invention relates to an aluminum alloy substrate for a magnetic recording medium having a plated nickel-phosphorus alloy layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】コンピュータなどの情報処理装置の外部
記憶装置として“ハードディスクドライブ”もしくは
“ハードディスク”と呼称される固定式の磁気記録装置
(磁気ディスク装置)が用いられている。一般に、この
固定式磁気記録装置の記録媒体(磁気ディスク)の基板
としては、アルミニウム合金基板が用いられている。こ
の磁気記録媒体は通常、非磁性のアルミニウム合金基材
を研削により平滑化し、表面清浄化、亜鉛置換処理の
後、無電解ニッケル−燐合金めっきを行ない、さらに研
磨により平滑化し、テキスチャリング処理を行なった
後、非磁性金属下地層、磁性層、保護層、潤滑層を順次
形成して製造されている。
2. Description of the Related Art A fixed magnetic recording device (magnetic disk device) called a "hard disk drive" or "hard disk" is used as an external storage device of an information processing apparatus such as a computer. Generally, an aluminum alloy substrate is used as a substrate of a recording medium (magnetic disk) of the fixed magnetic recording device. This magnetic recording medium is usually smoothed by grinding a non-magnetic aluminum alloy base material, cleaning the surface, performing a zinc substitution treatment, then performing electroless nickel-phosphorus alloy plating, smoothing by polishing, and texturing. After the formation, a non-magnetic metal underlayer, a magnetic layer, a protective layer, and a lubricating layer are sequentially formed to manufacture.

【0003】近年、携帯用コンピュータなどに搭載され
る可搬式の固定磁気ディスク装置に対応するため、作動
時および移動時に磁気ヘッドとの衝突により傷付かない
ように、磁気ディスクに要求される耐衝撃性も加速度3
00G〜600Gと高くなってきている。それに伴い、
上記のようにアルミニウム合金基材にニッケル−燐合金
めっき層を設けた基板では耐衝撃性が不十分になりつつ
ある。そこで、アルミニウム合金基板に代わって、高価
であり加工性は劣るが耐衝撃性に優れたガラス基板が使
用され始めている。
In recent years, in order to cope with a portable fixed magnetic disk device mounted on a portable computer or the like, a shock resistance required for a magnetic disk is required so as not to be damaged by a collision with a magnetic head during operation and movement. Also acceleration 3
It is increasing from 00G to 600G. with this,
The impact resistance of a substrate provided with a nickel-phosphorus alloy plating layer on an aluminum alloy substrate as described above is becoming insufficient. Therefore, glass substrates that are expensive and have poor workability but are excellent in impact resistance have begun to be used instead of aluminum alloy substrates.

【0004】無電解ニッケル 無電解ニッケル−燐合金
めっき層を設けたアルミニウム合金基板には、多くの場
合その表面に研磨により基板円周方向に沿って同心円状
のテキスチャリングを施している。これは、記録再生用
の磁気記録ヘッドと磁気記録媒体との間の摩擦を低減す
ると共に、保磁力を増加させるためである。さらに最近
は、作動時のヘッド浮上量の著しい低減に伴い、基板の
CSSゾーンにレーザービーム加工により微小突起を形
成することも行なわれている。
Electroless nickel An aluminum alloy substrate provided with an electroless nickel-phosphorus alloy plating layer is often provided with concentric texturing along its circumferential direction by polishing its surface. This is to reduce the friction between the magnetic recording head for recording and reproduction and the magnetic recording medium and increase the coercive force. More recently, with the remarkable reduction in the head flying height during operation, fine projections have been formed in the CSS zone of the substrate by laser beam processing.

【0005】しかし、ガラス基板の場合、硬くて加工性
が悪いためテキスチャリングを施すことは困難である。
しかも、一般に透明であるためレーザービームの吸収性
は悪く、また溶融温度も著しく高いため、特定形状の突
起を均一に多数形成することも困難である。その対策と
して、テキスチャリングが可能であって、レーザービー
ム加工により微小突起を均一に形成できる耐衝撃性の高
い基板として、ガラス上にニッケル−燐合金めっき層を
形成することが提案されている。
However, in the case of a glass substrate, it is difficult to perform texturing because it is hard and has poor workability.
In addition, since it is generally transparent, the laser beam absorption is poor, and the melting temperature is extremely high. Therefore, it is difficult to form a large number of projections of a specific shape uniformly. As a countermeasure, it has been proposed to form a nickel-phosphorus alloy plating layer on glass as a substrate having high impact resistance capable of texturing and capable of uniformly forming fine projections by laser beam processing.

【0006】しかし、ガラス上に密着性の良いニッケル
−燐合金めっき層を形成するのは困難であり、これまで
に様々な対応策が検討されているが、十分な密着性は得
られていない。このように従来は、アルミニウム合金基
板は安価で加工性が良好であるが耐衝撃性が不十分であ
り、ガラス基板は耐衝撃性は良好であるが高価で加工性
が悪い上、テキスチャリング性とレーザービーム加工性
を付与するためのニッケル−燐合金めっき層の密着性が
不十分である、という問題があった。
However, it is difficult to form a nickel-phosphorous alloy plating layer having good adhesion on glass, and various countermeasures have been studied so far, but sufficient adhesion has not been obtained. . As described above, conventionally, the aluminum alloy substrate is inexpensive and has good workability but has insufficient impact resistance, and the glass substrate has good impact resistance but is expensive and has poor workability. In addition, there has been a problem that the adhesion of the nickel-phosphorus alloy plating layer for imparting laser beam workability is insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ガラス基板
を用いず、安価で加工性が良好なアルミニウム合金基板
を用い、テキスチャリング性およびレーザービーム加工
性が良好であると同時に、ガラス基板と同等以上の耐衝
撃性を有する磁気記録媒体用アルミニウム合金基板を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention uses an aluminum alloy substrate which is inexpensive and has good workability without using a glass substrate. An object of the present invention is to provide an aluminum alloy substrate for a magnetic recording medium having the same or higher impact resistance.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の磁気記録媒体用アルミニウム合金基板
は、アルミニウム合金から成る第1層、該アルミニウム
合金の陽極酸化により生成した無孔質酸化物層から成る
第2層、該アルミニウム合金の陽極酸化により生成した
多孔質酸化物層と該多孔質酸化物層の孔中に電解めっき
法により析出させた金属層とから成る第3層、および無
電解めっき法により析出させたニッケル−燐合金からな
る第4層が上記順序で積層した4層構造を有することを
特徴とする。
In order to achieve the above object, an aluminum alloy substrate for a magnetic recording medium according to the present invention comprises a first layer made of an aluminum alloy, a non-porous material formed by anodic oxidation of the aluminum alloy. A second layer composed of an oxide layer, a third layer composed of a porous oxide layer formed by anodic oxidation of the aluminum alloy and a metal layer deposited in the pores of the porous oxide layer by electrolytic plating, And a four-layer structure in which a fourth layer made of a nickel-phosphorus alloy deposited by an electroless plating method is laminated in the above order.

【0009】第2層の厚さは15〜90nmであること
が望ましい。第3層の厚さは15〜50μmであること
が望ましい。第4層の厚さは0.5〜15μmであるこ
とが望ましい。典型的には、上記多孔質酸化物層の孔中
に電解めっき法により析出させた金属層は、ニッケル、
コバルト、鉄、錫および銅から成る群から選択された1
種以上の金属から成る。
The thickness of the second layer is preferably 15 to 90 nm. It is desirable that the thickness of the third layer is 15 to 50 μm. It is desirable that the thickness of the fourth layer be 0.5 to 15 μm. Typically, the metal layer deposited by electrolytic plating in the pores of the porous oxide layer is nickel,
One selected from the group consisting of cobalt, iron, tin and copper
It consists of more than one kind of metal.

【0010】典型的には、上記無電解めっき法により析
出させたニッケル−燐合金は燐を9%以上含む非晶質合
金である。典型的には、第2層の無孔質酸化物層は、ホ
ウ酸、リン酸、アジピン酸、酒石酸、クエン酸およびコ
ハク酸から成る群から選択した1種以上の酸を含むpH
4.0〜9.0の電解液中における上記アルミニウム合
金の陽極酸化により生成される。
Typically, the nickel-phosphorus alloy deposited by the above electroless plating method is an amorphous alloy containing 9% or more of phosphorus. Typically, the second non-porous oxide layer comprises a pH comprising one or more acids selected from the group consisting of boric acid, phosphoric acid, adipic acid, tartaric acid, citric acid and succinic acid.
It is produced by anodic oxidation of the above aluminum alloy in an electrolyte of 4.0 to 9.0.

【0011】典型的には、上記第3層の多孔質酸化物層
は、硫酸、シュウ酸、リン酸、クロム酸および酒石酸か
ら成る群から選択した1種以上の酸を含むpH3.0以
下の水溶液中における上記アルミニウム合金の陽極酸化
により生成される。本発明の磁気記録媒体用アルミニウ
ム合金基板を製造する方法は、アルミニウム合金から成
る第1層を準備する工程、陽極酸化により該第1層上に
多孔質酸化物層を形成する工程、陽極酸化により該第1
層と該多孔質酸化物層との間に無孔質酸化物層から成る
第2層を形成する工程、電解めっき法により該多孔質酸
化物層の孔中に金属層を形成し、これにより該多孔質酸
化物層と該金属層とから成る第3層を形成する工程、お
よび無電解めっき法により該第3層上にニッケル−燐合
金から成る第4層を形成する工程を上記順序で行うこと
を特徴とする。
[0011] Typically, the third porous oxide layer has a pH of 3.0 or less containing one or more acids selected from the group consisting of sulfuric acid, oxalic acid, phosphoric acid, chromic acid and tartaric acid. It is produced by anodic oxidation of the above aluminum alloy in an aqueous solution. The method for producing an aluminum alloy substrate for a magnetic recording medium according to the present invention comprises the steps of: preparing a first layer made of an aluminum alloy; forming a porous oxide layer on the first layer by anodic oxidation; The first
Forming a second layer consisting of a non-porous oxide layer between the layer and the porous oxide layer, forming a metal layer in the pores of the porous oxide layer by electrolytic plating, The steps of forming a third layer composed of the porous oxide layer and the metal layer and forming a fourth layer composed of a nickel-phosphorus alloy on the third layer by electroless plating are performed in the above order. It is characterized by performing.

【0012】本発明者は、耐衝撃性として傷の発生およ
び無電解ニッケル−燐合金めっき層の密着性と、磁気記
録媒体用アルミニウム合金基板の層構造との関係につい
て、原理に立ち戻り現象の解明から着手した。先ず、ア
ルミニウム合金基材上に無電解ニッケル−燐合金めっき
層を設けた2層構造に、磁気ヘッドを加速度300Gで
衝突させた際に、基板に傷の付く機構を解析した。その
結果、傷の発生は無電解ニッケル−燐合金めっき層(以
下「Ni−Pめっき層」と略称する)のみの塑性変形に
よるのではなく、下地であるアルミニウム合金基材(以
下「Al合金基材」と略称する)の塑性変形を伴うこと
を見出した。
The present inventor has elucidated the phenomenon returning to the principle regarding the relationship between the occurrence of scratches as impact resistance, the adhesion of the electroless nickel-phosphorus alloy plating layer, and the layer structure of the aluminum alloy substrate for magnetic recording media. Started from. First, the mechanism by which the substrate is damaged when the magnetic head collides with an acceleration of 300 G in a two-layer structure in which an electroless nickel-phosphorus alloy plating layer is provided on an aluminum alloy substrate was analyzed. As a result, the occurrence of scratches is not caused by plastic deformation of only the electroless nickel-phosphorus alloy plating layer (hereinafter abbreviated as "Ni-P plating layer"), but is caused by the base aluminum alloy base material (hereinafter referred to as "Al alloy base layer"). Material ").

【0013】この観察結果から、Ni−Pめっき層の表
面に衝撃荷重が負荷されたときに傷が発生する機構を次
のように考えた。すなわち、Ni−Pめっき層は硬さは
高いが薄いために自身で負担できる荷重が小さいので、
下地のAl合金基材が荷重を負担してNi−Pめっき層
を支持することになる。しかし、Al合金基材は厚さは
大きいが硬さが低いため衝撃荷重が作用した箇所が局所
的に容易に塑性変形してしまい、その上にあるNi−P
めっき層が支持を失って塑性変形し、結局傷が発生して
しまう。
From the observation results, the following was considered as a mechanism for generating a flaw when an impact load is applied to the surface of the Ni—P plating layer. That is, the Ni-P plating layer has a high hardness but a small load that can be borne by itself because it is thin.
The underlying Al alloy substrate bears the load and supports the Ni-P plating layer. However, since the Al alloy base material has a large thickness but a low hardness, a portion where an impact load is applied is easily and locally plastically deformed, and the Ni-P
The plating layer loses support and is plastically deformed, resulting in damage.

【0014】そこで、傷の発生を防止する方法として、
Al合金と比較してはるかにNi−Pめっき層の厚さを
増加させ、この層自身の荷重負担能力を高めた。しか
し、Ni−Pめっき層の厚さを増加させていくと、厚さ
15μmまでは上記の機構による傷が発生し、厚さが1
5μmを超えるとNi−Pめっき層のみの塑性変形によ
り傷が発生するように傷発生機構に変化するだけであっ
た。
Therefore, as a method for preventing the occurrence of scratches,
The thickness of the Ni-P plating layer was much increased as compared with the Al alloy, and the load bearing capacity of this layer itself was enhanced. However, as the thickness of the Ni-P plating layer is increased, the above mechanism causes scratches up to a thickness of 15 μm, and the thickness becomes 1 μm.
When the thickness exceeds 5 μm, only the flaw generation mechanism changes to generate flaws due to plastic deformation of only the Ni—P plating layer.

【0015】このように、Al合金基材上にNi−Pめ
っき層を設けた従来の構造でNi−Pめっき層の厚さを
増加させても、加速度300Gでの磁気ヘッドの衝突に
よる傷発生を防止することはできないことが分かった。
一方、硬さが高く、加速度300Gで傷の付かないガラ
ス基板上に、15μmを超える厚さのNi−Pめっき層
を設けた場合にも、Ni−Pめっき層のみの塑性変形に
より傷が発生することを確認した。
As described above, even if the thickness of the Ni-P plating layer is increased in the conventional structure in which the Ni-P plating layer is provided on the Al alloy base material, even if the thickness of the Ni-P plating layer is increased, the scratches due to the collision of the magnetic head at an acceleration of 300 G Was found to be impossible to prevent.
On the other hand, even when a Ni-P plating layer having a thickness of more than 15 μm is provided on a glass substrate having high hardness and no damage at an acceleration of 300 G, scratches are generated due to plastic deformation of only the Ni-P plating layer. Make sure you do.

【0016】このように、Ni−Pめっき層の厚さが1
5μm以下の場合にはNi−Pめっき層とAl合金基材
の塑性変形による傷が発生し、厚さが15μmを超える
場合にはNi−Pめっき層のみの塑性変形により傷が発
生する。したがって、傷の発生を防止するためには、N
i−Pめっき層の厚さを15μm以下に制限し、同時に
下地のAl合金基材の塑性変形を抑制する必要がある。
As described above, when the thickness of the Ni—P plating layer is 1
When the thickness is less than 5 μm, scratches are caused by plastic deformation of the Ni—P plating layer and the Al alloy base material, and when the thickness exceeds 15 μm, damage is caused by plastic deformation of only the Ni—P plating layer. Therefore, to prevent the occurrence of scratches, N
It is necessary to limit the thickness of the i-P plating layer to 15 μm or less, and at the same time, suppress the plastic deformation of the underlying Al alloy substrate.

【0017】しかしながら、種々の組成のAl合金基材
について検討を重ねたが、300Gの加速度で磁気ヘッ
ドを衝突させて傷の付かない、磁気記録媒体に適した硬
いアルミニウム合金は存在しなかった。そこで、加速度
300Gレベルでの磁気ヘッドの衝突によるAl合金基
材の塑性変形による傷の発生を決定する要因として、硬
度ではなく弾性率および降伏応力に着目した。この着想
に基づき、硬度はNi−Pめっき層よりやや低い多孔質
陽極酸化皮膜(アルマイト皮膜)をAl合金基材上に形
成し、その上に無電解めっきNi−Pめっき層を形成し
た3層構造について検討した。ただし、多孔質陽極酸化
皮膜にそのまま無電解Ni−Pめっきを施してもNi−
Pめっき層の形成反応が起こらないため、多孔質陽極酸
化皮膜の孔中に電解めっきを行ない、析出した金属の上
に無電解Ni−Pめっきを行なった。その際、電解めっ
きにより孔中に析出させる金属は、無電解析出反応の開
始点となるだけであり、種類は特に限定する必要はない
が、電解めっきにより析出させ易い点で、ニッケル、コ
バルト、銅、錫が好ましい。
However, studies were made on Al alloy base materials having various compositions, but there was no hard aluminum alloy suitable for a magnetic recording medium, which was not damaged by collision of a magnetic head at an acceleration of 300 G. Therefore, attention was paid not to the hardness but to the elastic modulus and the yield stress as factors that determine the occurrence of scratches due to the plastic deformation of the Al alloy substrate due to the collision of the magnetic head at the acceleration of 300 G. Based on this idea, a three-layer structure in which a porous anodic oxide film (alumite film) having a hardness slightly lower than that of the Ni-P plating layer is formed on an Al alloy substrate, and an electroless plating Ni-P plating layer is formed thereon. The structure was studied. However, even if the electroless Ni-P plating is applied to the porous anodic oxide film as it is, Ni-
Since the formation reaction of the P plating layer did not occur, electrolytic plating was performed in the pores of the porous anodic oxide film, and electroless Ni-P plating was performed on the deposited metal. At that time, the metal deposited in the pores by electrolytic plating is only a starting point of the electroless deposition reaction, and the type does not need to be particularly limited, but nickel, cobalt, Copper and tin are preferred.

【0018】この3層構造の基板の耐衝撃性を試験した
ところ、300Gの衝撃を負荷しても傷は付かなかっ
た。しかし、磁気ヘッドの衝突部には傷がつかなかった
ものの、その周辺にNi−Pめっき層が浮き上がった剥
離部が見られた。これは、下地の多孔質陽極酸化皮膜に
対するNi−Pめっき層の密着性に原因があると考え、
Ni−Pめっき層の生成状況を調査した。その結果、無
電解Ni−Pめっき層の形成起点となる電解析出金属の
量が孔毎に不均一であることが判明した。すなわち、電
解めっきによって多孔質陽極酸化皮膜の孔の全てに均等
に金属が析出しているわでではなく、孔によって析出量
が大きく異なっており、一部の孔にはまったく析出して
いない。
When the impact resistance of the substrate having the three-layer structure was tested, no damage was found even when a 300 G impact was applied. However, although the collision portion of the magnetic head was not damaged, a peeled portion in which the Ni-P plating layer was lifted was found around the collision portion. This is thought to be due to the adhesion of the Ni-P plating layer to the underlying porous anodic oxide film,
The state of formation of the Ni-P plating layer was investigated. As a result, it was found that the amount of the electrodeposited metal as the starting point of the formation of the electroless Ni-P plating layer was not uniform for each hole. That is, the metal is not uniformly deposited in all the pores of the porous anodic oxide film by electrolytic plating, but the amount of deposition differs greatly depending on the pores, and no metal is precipitated in some of the pores.

【0019】孔中の析出金属上でのNi−Pめっき合金
の無電解析出は、析出金属を起点として開始した後は等
速度で進行する。したがって、個々の孔中での単位時間
当たりのNi−Pめっき合金析出量は、析出起点である
電解析出金属の量に依存する。すなわち、無電解析出の
起点である電解析出金属の量が多いほど、単位時間当た
りのNi−Pめっき合金の無電解析出量は多くなる。そ
のため、無電解析出したNi−Pめっき合金が孔を埋め
て成長し、多孔質陽極酸化皮膜の表面(孔の上端)に到
達するタイミングは、電解析出金属の量が多い孔では早
く、電解析出金属の量が少ない孔では遅い。電解析出金
属の量が多い孔では、Ni−Pめっき合金が早く表面に
達し、更に孔の上端から盛り上がり、多孔質陽極酸化皮
膜の表面上を成長して、隣接した孔を覆ってしまう。覆
われた孔では、孔中のNi−Pめっき合金の析出が停止
するため、孔が完全には充填されずに空洞が残る。その
結果、最終的に多孔質陽極酸化皮膜上に形成されたNi
−Pめっき層は、孔が未充填の空洞として残る箇所では
下地の多孔質陽極酸化皮膜と接合されていないため、密
着強度が低下する。
The electroless deposition of the Ni-P plating alloy on the deposited metal in the holes proceeds at a constant rate after starting from the deposited metal. Therefore, the amount of Ni-P plating alloy deposited per unit time in each hole depends on the amount of electrolytically deposited metal that is the starting point of the deposition. That is, the larger the amount of the electrodeposited metal as the starting point of the electroless deposition, the larger the amount of the electroless deposited Ni-P plating alloy per unit time. Therefore, the timing of the electrolessly deposited Ni-P plating alloy growing to fill the holes and reaching the surface of the porous anodic oxide film (upper end of the holes) is earlier in the holes having a large amount of the electrolytically deposited metal, and the timing is shorter. It is slow for holes with a small amount of analyzed metal. In a hole having a large amount of the electrodeposited metal, the Ni-P plating alloy reaches the surface quickly, rises from the upper end of the hole, grows on the surface of the porous anodic oxide film, and covers the adjacent hole. In the covered hole, the precipitation of the Ni-P plating alloy in the hole stops, so that the hole is not completely filled and a cavity remains. As a result, the Ni finally formed on the porous anodic oxide film
Since the -P plating layer is not bonded to the underlying porous anodic oxide film at the places where the holes remain as unfilled cavities, the adhesion strength is reduced.

【0020】電解析出金属の量が孔毎に異なる原因を検
討した結果、孔の底の部分に存在するバリヤー層の厚さ
が孔毎に異なることが判明した。バリヤー層は下に凸の
湾曲形状を持つ緻密な酸化物層であり、その厚さが異な
ると電気抵抗が異なる。電解めっきの際に、バリヤー層
が薄く電気抵抗が小さい部分では電解析出金属の量が多
くなり、バリヤー層が厚く電気抵抗が大きい部分では電
解析出金属の量が少なくなる。その結果、孔毎に電解析
出金属の量が異なり、その上に無電解析出するNi−P
めっき合金の量が孔毎に異なり、前記の機構によりNi
−Pめっき層の密着強度が低下する。
As a result of examining the cause of the difference in the amount of the electrodeposited metal for each hole, it was found that the thickness of the barrier layer existing at the bottom of the hole differs for each hole. The barrier layer is a dense oxide layer having a downwardly convex curved shape, and when its thickness is different, the electric resistance is different. At the time of electrolytic plating, the amount of the electrodeposited metal is increased in the portion where the barrier layer is thin and the electric resistance is small, and the amount of the electrodeposited metal is small in the portion where the barrier layer is thick and the electric resistance is large. As a result, the amount of electrolytically deposited metal differs for each hole, and Ni-P
The amount of plating alloy is different for each hole, and Ni
-The adhesion strength of the P plating layer is reduced.

【0021】そこで本発明の4層構造においては、従来
の3層構造におけるAl合金基材と多孔質陽極酸化皮膜
との間に無孔質陽極酸化皮膜を形成する。この無孔質陽
極酸化皮膜は平坦で均等な厚さを有しており、これが従
来のバリヤー層に代わり均等な電気抵抗を有するバリヤ
ー層として機能する。これにより、多孔質陽極酸化皮膜
の全ての孔中で均等に金属が電解析出するので、その上
に無電解析出するNi−Pめっき合金の量が均等化さ
れ、全ての孔について空洞が残留することがなく、高い
密着性を有するNi−Pめっき層が得られる。
Therefore, in the four-layer structure of the present invention, a nonporous anodic oxide film is formed between the Al alloy substrate and the porous anodic oxide film in the conventional three-layer structure. The non-porous anodized film has a flat and uniform thickness, which functions as a barrier layer having a uniform electric resistance instead of the conventional barrier layer. As a result, the metal is electrolytically deposited uniformly in all the holes of the porous anodic oxide film, so that the amount of the Ni-P plating alloy that is electrolessly deposited thereon is equalized, and cavities remain in all the holes. Thus, a Ni—P plating layer having high adhesion can be obtained.

【0022】[0022]

【発明の実施の形態】本発明による4層構造の磁気記録
媒体用アルミニウム合金基板の典型的な製造手順は次の
とおりである。図1に本発明の4層構造を示し、図2に
製造手順のフローチャートを示す。アルミニウム合金基
材(第1層)を、酸性溶液中、望ましくはpH3.0以
下の強酸性水溶液中で、陽極酸化し多孔質陽極酸化皮膜
(第3層の主部)を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical procedure for manufacturing an aluminum alloy substrate for a magnetic recording medium having a four-layer structure according to the present invention is as follows. FIG. 1 shows a four-layer structure of the present invention, and FIG. 2 shows a flowchart of a manufacturing procedure. The aluminum alloy substrate (first layer) is anodized in an acidic solution, preferably in a strongly acidic aqueous solution having a pH of 3.0 or less, to form a porous anodic oxide film (main part of the third layer).

【0023】次に、中性溶液中、望ましくはpH4.0
〜9.0の中性塩電解液中で、定電流電解によって50
Vまで昇圧し、アルミニウム合金基材と多孔質陽極酸化
皮膜との間に、典型的な厚さが約70nmの無孔質陽極
酸化皮膜(第2層)を形成する。この第2層が従来のバ
リヤー層に代わり均等な電気抵抗を有するバリヤー層と
して機能する。
Next, in a neutral solution, desirably pH 4.0
~ 9.0 in neutral salt electrolyte by constant current electrolysis
The pressure is increased to V to form a nonporous anodized film (second layer) having a typical thickness of about 70 nm between the aluminum alloy substrate and the porous anodized film. This second layer functions as a barrier layer having a uniform electric resistance instead of the conventional barrier layer.

【0024】次に、多孔質陽極酸化皮膜(第3層の主
部)の孔中に電解めっきによって金属を析出させる(第
3層の残部分)。これを透過型電子顕微鏡により観察す
ると、すべての孔に金属が析出し、しかも析出金属はほ
ぼ同じ高さである。電解析出金属の形態は、(1) 孔の底
から途中までを充填する形態、(2) 孔の底から丁度上端
までを充填する形態、および(3) 孔の底から上端までを
充填し更に多孔質陽極酸化皮膜の表面の一部または全部
を覆う形態、のいずれであってもよい。
Next, a metal is deposited in the pores of the porous anodic oxide film (main part of the third layer) by electrolytic plating (remaining part of the third layer). When this is observed with a transmission electron microscope, the metal is deposited in all the holes, and the deposited metal has almost the same height. The form of the electrodeposited metal is (1) filling the hole from the bottom to the middle, (2) filling the hole from the bottom to just the top, and (3) filling the hole from the bottom to the top. Further, it may be in any form that covers a part or all of the surface of the porous anodic oxide film.

【0025】最後に、無電解めっきを行って無電解ニッ
ケル−燐合金めっき層(第4層)を形成する。この第4
層の形態は、上記第3層の電解析出金属の形態(1),(2),
(3)に応じて、(1) 個々の孔の電解析出金属が充填した
部分の残部を充填して更に成長し、多孔質陽極酸化皮膜
の表面を覆う形態、(2) 孔の上端まで達している電解析
出金属の表面と多孔質陽極酸化皮膜の表面を覆う形態、
および(3) 多孔質陽極酸化皮膜の一部または全部を覆っ
ている電解析出金属の表面と、覆われていない多孔質陽
極酸化皮膜の表面とを覆う形態、のいずれであってもよ
い。
Finally, electroless plating is performed to form an electroless nickel-phosphorus alloy plating layer (fourth layer). This fourth
The form of the layer is the form (1), (2),
According to (3), (1) fill the remaining portion of each hole filled with electrolytic deposition metal and grow further to cover the surface of the porous anodic oxide film, (2) up to the top of the hole A form that covers the surface of the electrodeposited metal that has reached and the surface of the porous anodic oxide film,
And (3) a mode in which the surface of the electrolytically deposited metal covering a part or all of the porous anodic oxide film and the surface of the uncovered porous anodic oxide film are covered.

【0026】本発明による4層構造の磁気記録媒体用ア
ルミニウム合金基板は、第2層〜第4層の各々を望まし
い厚さとすることにより、加速度500Gまでの衝撃試
験では傷が発生せず、周辺部での無電解ニッケル−燐合
金めっき層の剥離も発生しなかった。更に、加速度60
0Gの衝撃試験でも僅かに傷は認められたが、剥離は生
じなかった。
In the aluminum alloy substrate for a magnetic recording medium having a four-layer structure according to the present invention, by setting each of the second to fourth layers to a desired thickness, no scratch is generated in an impact test up to an acceleration of 500G, and the periphery is not affected. No peeling of the electroless nickel-phosphorus alloy plating layer occurred in the portions. Furthermore, acceleration 60
Although slight scratches were observed in the 0G impact test, no peeling occurred.

【0027】アルミニウム合金基材上に形成した多孔質
陽極酸化皮膜は、硬度の点では、無電解ニッケル−燐合
金めっき層とほぼ同程度かむしろ低い。しかし、弾性率
は極めて高く、伸びはほとんど無い。磁気ヘッド衝突に
よる応力が作用する領域は、有限要素法解析によると、
衝突の加速度が300G〜400Gの場合、表面から深
さ15〜50μmの範囲にある。
The hardness of the porous anodic oxide film formed on the aluminum alloy substrate is substantially the same as or lower than that of the electroless nickel-phosphorus alloy plating layer. However, the elastic modulus is extremely high and there is almost no elongation. According to the finite element method analysis, the area where the stress due to the magnetic head collision acts
In the case where the collision acceleration is 300 G to 400 G, the depth is 15 to 50 μm from the surface.

【0028】従来の2層構造のようにアルミニウム合金
基材上に直接、無電解ニッケル−燐合金めっき層を設け
た場合、衝突により発生する応力の集中点は、めっき層
が薄い場合にはアルミニウム合金基材中にあり、めっき
層が厚い場合にはめっき層中にある。応力集中点がアル
ミニウム合金基材中にある場合には、降伏応力の小さい
アルミニウム合金は容易に塑性変形してしまい、付随し
てめっき層も塑性変形してしまい、傷が発生する。応力
集中点がめっき層の中にある場合には、一般にはめっき
層の降伏応力に依存するが、無電解ニッケル−燐合金め
っき層では塑性変形が起きて傷が発生する。このこと
は、ガラス基材上に形成した無電解ニッケル−燐合金め
っき層でも厚い場合には傷がつく事実とも対応する。
When an electroless nickel-phosphorus alloy plating layer is provided directly on an aluminum alloy substrate as in a conventional two-layer structure, the point of concentration of stress generated by collision is limited to aluminum plating when the plating layer is thin. In the alloy base material, when the plating layer is thick, it is in the plating layer. When the stress concentration point is in the aluminum alloy base material, the aluminum alloy having a small yield stress is easily plastically deformed, and the plating layer is also plastically deformed, resulting in damage. When the stress concentration point is in the plating layer, it generally depends on the yield stress of the plating layer. However, in the electroless nickel-phosphorus alloy plating layer, plastic deformation occurs and scratches occur. This also corresponds to the fact that even if the electroless nickel-phosphorus alloy plating layer formed on the glass substrate is thick, the layer is damaged.

【0029】応力集中点に多孔質陽極酸化皮膜を設ける
と、この皮膜が弾性率が大きいため弾性変形し難く、降
伏応力も大きいため塑性変形も生じ難いため、より大き
な荷重に耐えられるようになる。また、弾性率が大きい
ため、無電解ニッケル−燐合金めっき層のみの場合と比
べて応力集中点は浅くなり、多孔質型陽極酸化皮膜のみ
の場合には10〜30μmとなる。第二層の無孔質陽極
酸化皮膜は、更に降伏応力は大きいが、膜厚が極めて薄
いため(数十nm程度)、荷重負担にはほとんど寄与し
ない。したがって、4層構造中の無電解ニッケル−燐合
金めっき層を10μmとした場合、応力集中点は15〜
40μmになると推定できる(衝撃荷重の大きさと、無
電解ニッケル−燐合金めっき層の厚さおよび性質とによ
ってその値は異なる)。この応力集中点を含む領域に弾
性率の高い多孔質陽極酸化皮膜を設けることにより基板
全体の耐衝撃性が向上する。
When a porous anodic oxide film is provided at the stress concentration point, the film has a large elastic modulus and is hardly elastically deformed, and since it has a large yield stress, it is difficult for plastic deformation to occur, so that it can withstand a larger load. . Further, since the elastic modulus is large, the stress concentration point becomes shallower than when only the electroless nickel-phosphorus alloy plating layer is used, and becomes 10 to 30 μm when only the porous type anodic oxide film is used. Although the non-porous anodic oxide film of the second layer has a higher yield stress, it has a very small thickness (about several tens of nm), and thus hardly contributes to load bearing. Therefore, when the electroless nickel-phosphorus alloy plating layer in the four-layer structure is 10 μm, the stress concentration point is 15 to
It can be estimated to be 40 μm (the value differs depending on the magnitude of the impact load and the thickness and properties of the electroless nickel-phosphorus alloy plating layer). By providing a porous anodic oxide film having a high elastic modulus in a region including the stress concentration point, the impact resistance of the entire substrate is improved.

【0030】従来、多孔質陽極酸化皮膜の孔中に電解め
っきにより金属を析出させる際に析出量が孔毎に異なっ
たのは、多孔質陽極酸化皮膜(の孔)の直下にある緻密
な酸化物層であるバリヤー層の形状および厚さが不均一
なためであった。多孔質陽極酸化皮膜は、強酸性の電解
液中での陽極酸化により形成され、その際に強酸の溶解
作用によって多孔質化が起きる。しかし、本来化学的な
溶解反応は必ずしも均一に起きない上、アルミニウム合
金中の微小領域毎の組織や化学組成の変動も不均一溶解
を誘発する。その結果、溶解量に僅かな差が発生する
と、孔の底部に残る皮膜厚さにも僅かな差が発生する。
この僅かな差が、次工程の電解析出時の電気化学的反応
には大きな影響となって現れ、不均一な電解析出を誘発
する。このような酸化物層の形状および厚さの均一化
を、溶解反応の制御による行うのは困難である。そこで
本発明においては、形状および厚さが均一すなわち電気
化学的に均一な無孔質陽極酸化皮膜をアルミニウム合金
基材と多孔質陽極酸化皮膜との間に設けることにより、
実質的にバリヤー層を均一化し、次工程の電解析出反応
の均一化を可能とした。
Conventionally, when a metal is deposited in the pores of a porous anodic oxide film by electrolytic plating, the amount of deposition differs for each hole because the dense oxidized film immediately below (a hole in) the porous anodic oxide film. This is because the shape and thickness of the barrier layer, which is the material layer, are not uniform. The porous anodic oxide film is formed by anodic oxidation in a strongly acidic electrolytic solution. At this time, the porous anodic oxide film is made porous by the action of dissolving the strong acid. However, the chemical dissolution reaction does not necessarily occur uniformly, and variations in the structure and chemical composition of each minute region in the aluminum alloy also induce nonuniform dissolution. As a result, when a slight difference occurs in the amount of dissolution, a slight difference also occurs in the film thickness remaining at the bottom of the hole.
This slight difference has a great effect on the electrochemical reaction at the time of electrolytic deposition in the next step, and induces non-uniform electrolytic deposition. It is difficult to make such an oxide layer uniform in shape and thickness by controlling the dissolution reaction. Therefore, in the present invention, by providing a non-porous anodic oxide film having a uniform shape and thickness, that is, electrochemically uniform, between the aluminum alloy substrate and the porous anodic oxide film,
Substantially, the barrier layer was made uniform, and the next step of the electrolytic deposition reaction was made uniform.

【0031】このような無孔質陽極酸化皮膜の生成させ
る典型的な方法においては、溶解性が極めて乏しく、電
解析出時のpH変化を抑制できる中性領域に緩衝作用を
もち、かつ局部溶解を起こし難い2価アニオンの水溶液
中を用いて陽極酸化する。これにより、多孔質陽極酸化
皮膜の孔中に電解めっきにより均等に金属を析出させる
ことができる。
In a typical method for forming such a nonporous anodic oxide film, the solubility is extremely poor, has a buffering action in a neutral region capable of suppressing a pH change at the time of electrolytic deposition, and has a local dissolution property. Anodization is performed using an aqueous solution of a divalent anion that is unlikely to cause the anodization. Thereby, the metal can be uniformly deposited in the pores of the porous anodic oxide film by electrolytic plating.

【0032】[0032]

【実施例】表1に種々の皮膜構造のアルミニウム合金基
板の耐衝撃性試験結果を示し、表2に第2層〜第4層の
厚さを種々に変えて製造した4層構造の磁気記録媒体用
アルミニウム合金基板の耐衝撃性試験結果を示した。衝
撃試験方法および傷の判定基準は下記のとおりであっ
た。衝撃試験方法 JIS C0041に準ずる。
EXAMPLES Table 1 shows the results of an impact resistance test of aluminum alloy substrates having various film structures, and Table 2 shows magnetic recording of a four-layer structure manufactured by changing the thickness of the second to fourth layers. The results of the impact resistance test of the aluminum alloy substrate for media are shown. The impact test method and the criteria for determining scratches were as follows. Impact test method According to JIS C0041.

【0033】衝撃試験機:振り子式衝撃試験機(吉田精
機(株)製PST−300)傷の判定基準 50倍の光学顕微鏡により傷の有無を観察し、傷の観察
されなかった(表面研磨粗さである3nmより傷が浅
い)ものを「○:傷なし」とし、傷の観察されたものに
ついては触針式粗さ測定機により傷深さを測定し、傷深
さが3〜20nmのものを「△:極めて微細な傷」、傷
深さが20nmを超えるものを「×:傷あり」とした。
Impact tester: Pendulum type impact tester (PST-300 manufactured by Yoshida Seiki Co., Ltd.) The presence or absence of scratches was observed with an optical microscope of 50 times the criteria for determining scratches. (A scratch shallower than 3 nm) is evaluated as “○: no scratch”, and a scratch is observed with a stylus-type roughness meter to measure the scratch depth. The sample was evaluated as “Δ: extremely fine flaw”, and the sample with a flaw depth exceeding 20 nm was evaluated as “×: flawed”.

【0034】本発明による磁気記録媒体用アルミニウム
合金基板は、第1層としてのアルミニウム合金素板を#
4000砥石を用いて研削した後、脱脂処理を施し、第
2層〜第4層を下記の条件で形成した後、第4層の表面
を研磨することにより製造した。以下に第2層以降の形
成条件と耐衝撃性試験結果とを対比させて説明する。
In the aluminum alloy substrate for a magnetic recording medium according to the present invention, the aluminum alloy base plate as the first layer is #
After grinding using a 4000 grindstone, a degreasing treatment was performed, and the second to fourth layers were formed under the following conditions, and then the surface of the fourth layer was polished to manufacture. The following description is made in comparison with the formation conditions of the second and subsequent layers and the results of the impact resistance test.

【0035】上記第1層上に、第3層の主部である多孔
質陽極酸化皮膜を、5〜30wt%硫酸、0.5〜7w
t%シュウ酸、3〜20wt%燐酸、10wt%クロム
酸、1〜5%酒石酸の各水溶液を用いて直流陽極酸化法
によって形成した。いずれの酸の場合もpH3.0以下
であれば多孔質型酸化物層が形成可能であった。皮膜厚
さは、電解電気量により制御した。酸の種類、電解条件
は耐衝撃性に全く影響を及ぼさず、皮膜厚さのみが影響
を及ぼした(実施例2,4,5,6、比較例8,9)。
50μmを超えても良い結果は得られるが、成膜に要す
る時間が長くなり好ましくない。
On the first layer, a porous anodic oxide film as a main part of the third layer is coated with 5 to 30 wt% sulfuric acid, 0.5 to 7 watts.
It was formed by a direct current anodic oxidation method using each aqueous solution of t% oxalic acid, 3-20 wt% phosphoric acid, 10 wt% chromic acid, and 1-5% tartaric acid. With any of the acids, a porous oxide layer could be formed if the pH was 3.0 or less. The film thickness was controlled by the amount of electrolytic electricity. The type of the acid and the electrolysis conditions did not affect the impact resistance at all, but only the thickness of the film (Examples 2, 4, 5, 6 and Comparative Examples 8, 9).
If the thickness exceeds 50 μm, good results can be obtained, but the time required for film formation is undesirably long.

【0036】次に、第2層の無孔質陽極酸化皮膜を、ホ
ウ酸、燐酸、アジピン酸、酒石酸、クエン酸、コハク酸
のうち何れか1種以上のイオンを含むpH4.0〜9.
0の電解液中で陽極酸化することにより形成した。pH
は、アンモニア水、それぞれの酸のナトリウム塩あるい
はカリウム塩の量により調整した。いずれのアニオン種
を用い、いずれの方法でpH調整を行なっても耐衝撃性
に違いは見られなかった。陽極酸化は電流密度0.01
〜10Adm-2の範囲で行なったが、どの電流密度でも
評価結果に差は現れなかった。この時の到達電圧30〜
70Vの場合、第2層厚さは40〜100nmになり、
優れた耐衝撃密着性が得られた(実施例1〜3)。この
範囲未満の電圧およびこの範囲を超える電圧では不均一
な電解めっきとなり耐衝撃密着性は低下した(比較例
6,7)。
Next, the non-porous anodic oxide film of the second layer is formed to a pH of 4.0 to 9.0 containing at least one ion of boric acid, phosphoric acid, adipic acid, tartaric acid, citric acid and succinic acid.
0 in an electrolyte solution. pH
Was adjusted by the amount of aqueous ammonia, sodium salt or potassium salt of each acid. No difference was observed in the impact resistance when the pH was adjusted by any method using any anion species. Anodization has a current density of 0.01
The evaluation was performed in the range of 10 to 10 Adm- 2 , but no difference appeared in the evaluation results at any current density. The ultimate voltage at this time is 30 ~
In the case of 70V, the thickness of the second layer becomes 40 to 100 nm,
Excellent impact resistance was obtained (Examples 1 to 3). Voltages below and above this range resulted in non-uniform electrolytic plating and reduced impact adhesion (Comparative Examples 6 and 7).

【0037】次に、第3層の残部である孔中の電解析出
金属を、ニッケル、コバルトの場合にはホウ酸および硫
酸ニッケルを含むpH4.5の水溶液中で直流陰極電解
を0.5Adm-2の定電流で10秒間行なう電解めっき
により形成した。銅、錫の場合にはそれぞれの硫酸塩水
溶液中pH3.0以下で15Vの交流電解を30秒間行
なって形成した。これらの浴の組成、温度などの条件は
金属を析出させることができればどのような条件でも良
く、耐衝撃性に差は現われなかった。また、析出量も耐
衝撃性に影響を与えず、多孔質陽極酸化皮膜の孔を埋め
尽くすまで析出させても耐衝撃性に差は見られなかっ
た。
Next, the electrodeposited metal in the pores remaining in the third layer was subjected to DC cathodic electrolysis in an aqueous solution of pH 4.5 containing boric acid and nickel sulfate in the case of nickel or cobalt by 0.5 Adm. It was formed by electrolytic plating performed at a constant current of -2 for 10 seconds. In the case of copper and tin, they were formed by performing 15 V AC electrolysis for 30 seconds at pH 3.0 or lower in the respective sulfate aqueous solutions. The conditions such as composition and temperature of these baths may be any conditions as long as the metal can be precipitated, and no difference in impact resistance appears. Also, the amount of precipitation did not affect the impact resistance, and no difference was observed in the impact resistance even when the deposition was performed until the pores of the porous anodic oxide film were completely filled.

【0038】第4層の無電解ニッケル−燐合金めっき層
を、次亜燐酸および硫酸ニッケルを主成分とする市販の
無電解ニッケル−燐合金めっき液(上村工業(株)製。
商品名HDX)を用いて形成した。目標膜厚より3〜5
μm厚く成膜した後、研磨により目標膜厚とした。15
μm以下で良い評価結果を得られた。0.5μm未満で
も耐衝撃性は優れていると考えられるが、テキスチャリ
ング処理を行なうためには0.5μm以上が必要であ
る。
The fourth electroless nickel-phosphorus alloy plating layer was coated with a commercially available electroless nickel-phosphorus alloy plating solution (manufactured by Uemura Kogyo Co., Ltd.) containing hypophosphorous acid and nickel sulfate as main components.
HDX). 3 to 5 from target film thickness
After forming a film having a thickness of μm, the target film thickness was obtained by polishing. Fifteen
Good evaluation results were obtained at μm or less. Although the impact resistance is considered to be excellent even if it is less than 0.5 μm, it is required to be 0.5 μm or more in order to perform texturing.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明によれば、ガラス基板を用いず、
安価で加工性が良好なアルミニウム合金基板を用い、テ
キスチャリング性およびレーザービーム加工性が良好で
あると同時に、ガラス基板と同等以上の耐衝撃性を有す
る磁気記録媒体用アルミニウム合金基板が提供される。
According to the present invention, a glass substrate is not used,
An aluminum alloy substrate for a magnetic recording medium is provided, which uses an aluminum alloy substrate which is inexpensive and has good workability, has good texturing properties and laser beam workability, and has the same or higher impact resistance as a glass substrate. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による4層構造の磁気記録媒体
用アルミニウム合金基板を模式的に示す断面図である。
FIG. 1 is a sectional view schematically showing an aluminum alloy substrate for a magnetic recording medium having a four-layer structure according to the present invention.

【図2】図2は、本発明による4層構造の磁気記録媒体
用アルミニウム合金基板を製造する手順を示すフローチ
ャートである。
FIG. 2 is a flowchart showing a procedure for manufacturing an aluminum alloy substrate for a magnetic recording medium having a four-layer structure according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 5/84 G11B 5/84 Z (72)発明者 島田 英樹 北海道苫小牧市晴海町43番地3 日本軽金 属株式会社苫小牧製造所内 (72)発明者 海老原 健 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 塚本 由美子 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 Fターム(参考) 4K044 AA06 AB08 BA06 BA13 BB04 BB05 BC14 CA15 CA17 CA18 CA59 5D006 CB04 CB07 CB08 DA03 EA02 FA00 5D112 AA02 AA11 AA24 BA05 BA06 EE01 GA29 GA30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G11B 5/84 G11B 5/84 Z (72) Inventor Hideki Shimada 43-3 Harumi-cho, Tomakomai-shi, Hokkaido Nippon Light Metal Inside the Tomakomai Plant, Inc. No. 34 No. 1 Nippon Light Metal Co., Ltd. Group Technology Center F term (reference) 4K044 AA06 AB08 BA06 BA13 BB04 BB05 BC14 CA15 CA17 CA18 CA59 5D006 CB04 CB07 CB08 DA03 EA02 FA00 5D112 AA02 AA11 AA24 BA05 BA06 EE01 GA29 GA30

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金から成る第1層、該ア
ルミニウム合金の陽極酸化により生成した無孔質酸化物
層から成る第2層、該アルミニウム合金の陽極酸化によ
り生成した多孔質酸化物層と該多孔質酸化物層の孔中に
電解めっき法により析出させた金属層とから成る第3
層、および無電解めっき法により析出させたニッケル−
燐合金からなる第4層が上記順序で積層した4層構造を
有することを特徴とする磁気記録媒体用アルミニウム合
金基板。
1. A first layer comprising an aluminum alloy, a second layer comprising a non-porous oxide layer formed by anodic oxidation of the aluminum alloy, a porous layer formed by anodic oxidation of the aluminum alloy, and A metal layer deposited by electroplating in the pores of the porous oxide layer.
Layer and nickel deposited by electroless plating
An aluminum alloy substrate for a magnetic recording medium, having a four-layer structure in which a fourth layer made of a phosphorus alloy is laminated in the above order.
【請求項2】 請求項1記載の基板において、上記第2
層の厚さが15〜90nmであることを特徴とする基
板。
2. The substrate according to claim 1, wherein the second
A substrate having a layer thickness of 15 to 90 nm.
【請求項3】 請求項1記載の基板において、上記第3
層の厚さが15〜50μmであることを特徴とする基
板。
3. The substrate according to claim 1, wherein the third
A substrate characterized in that the layer has a thickness of 15 to 50 μm.
【請求項4】 請求項1記載の基板において、上記第4
層の厚さが0.5〜15μmであることを特徴とする基
板。
4. The substrate according to claim 1, wherein
A substrate characterized in that the layer has a thickness of 0.5 to 15 μm.
【請求項5】 請求項1記載の基板において、上記多孔
質酸化物層の孔中に電解めっき法により析出させた金属
層が、ニッケル、コバルト、鉄、錫および銅から成る群
から選択された1種以上の金属から成ることを特徴とす
る基板。
5. The substrate according to claim 1, wherein the metal layer deposited by electroplating in the pores of the porous oxide layer is selected from the group consisting of nickel, cobalt, iron, tin and copper. A substrate comprising one or more metals.
【請求項6】 請求項1記載の基板において、上記無電
解めっき法により析出させたニッケル−燐合金が燐を9
%以上含む非晶質合金であることを特徴とする基板。
6. The substrate according to claim 1, wherein the nickel-phosphorus alloy deposited by the electroless plating method has a phosphorous content of 9%.
% Of an amorphous alloy.
【請求項7】 請求項1または2記載の基板において、
上記第2層の無孔質酸化物層が、ホウ酸、リン酸、アジ
ピン酸、酒石酸、クエン酸およびコハク酸から成る群か
ら選択した1種以上の酸を含むpH4.0〜9.0の電
解液中における上記アルミニウム合金の陽極酸化により
生成されたことを特徴とする基板。
7. The substrate according to claim 1, wherein
The second nonporous oxide layer has a pH of 4.0 to 9.0 containing at least one acid selected from the group consisting of boric acid, phosphoric acid, adipic acid, tartaric acid, citric acid and succinic acid. A substrate produced by anodic oxidation of the aluminum alloy in an electrolytic solution.
【請求項8】 請求項3記載の基板において、上記第3
層の多孔質酸化物層が、硫酸、シュウ酸、リン酸、クロ
ム酸および酒石酸から成る群から選択した1種以上の酸
を含むpH3.0以下の水溶液中における上記アルミニ
ウム合金の陽極酸化により生成されたことを特徴とする
基板。
8. The substrate according to claim 3, wherein the third
A porous oxide layer formed by anodic oxidation of the aluminum alloy in an aqueous solution containing at least one acid selected from the group consisting of sulfuric acid, oxalic acid, phosphoric acid, chromic acid and tartaric acid at a pH of 3.0 or less. A substrate characterized by being made.
【請求項9】 請求項1記載の磁気記録媒体用アルミニ
ウム合金基板を製造する方法であって、 アルミニウム合金から成る第1層を準備する工程、 陽極酸化により該第1層上に多孔質酸化物層を形成する
工程、 陽極酸化により該第1層と該多孔質酸化物層との間に無
孔質酸化物層から成る第2層を形成する工程、 電解めっき法により該多孔質酸化物層の孔中に金属層を
形成し、これにより該多孔質酸化物層と該金属層とから
成る第3層を形成する工程、および無電解めっき法によ
り該第3層上にニッケル−燐合金から成る第4層を形成
する工程を上記順序で行うことを特徴とする方法。
9. A method for producing an aluminum alloy substrate for a magnetic recording medium according to claim 1, wherein a step of preparing a first layer made of an aluminum alloy is performed, and a porous oxide is formed on the first layer by anodization. Forming a second layer comprising a nonporous oxide layer between the first layer and the porous oxide layer by anodizing; forming the porous oxide layer by electrolytic plating Forming a metal layer in the holes, thereby forming a third layer comprising the porous oxide layer and the metal layer, and a nickel-phosphorus alloy formed on the third layer by electroless plating. Forming a fourth layer comprising the steps of:
【請求項10】 請求項9記載の方法において、上記多
孔質酸化物層の生成を、硫酸、シュウ酸、リン酸、クロ
ム酸および酒石酸から成る群から選択した1種以上の酸
を含むpH3.0以下の水溶液中における陽極酸化によ
り行うことを特徴とする方法。
10. The method according to claim 9, wherein the formation of the porous oxide layer is carried out at a pH of at least one selected from the group consisting of sulfuric acid, oxalic acid, phosphoric acid, chromic acid and tartaric acid. A method characterized by performing by anodic oxidation in an aqueous solution of 0 or less.
【請求項11】 請求項9記載の方法において、上記無
孔質酸化物層の生成を、ホウ酸、リン酸、アジピン酸、
酒石酸、クエン酸およびコハク酸から成る群から選択し
た1種以上の酸を含むpH4.0〜9.0の電解液中に
おける上記アルミニウム合金の陽極酸化により行うこと
を特徴とする方法。
11. The method according to claim 9, wherein the formation of the non-porous oxide layer is performed by using boric acid, phosphoric acid, adipic acid,
A method characterized in that the method is carried out by anodizing the aluminum alloy in an electrolyte having a pH of 4.0 to 9.0 and containing one or more acids selected from the group consisting of tartaric acid, citric acid and succinic acid.
JP24377399A 1999-08-30 1999-08-30 Aluminum alloy substrate for magnetic recording medium and its production Pending JP2001073166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24377399A JP2001073166A (en) 1999-08-30 1999-08-30 Aluminum alloy substrate for magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24377399A JP2001073166A (en) 1999-08-30 1999-08-30 Aluminum alloy substrate for magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JP2001073166A true JP2001073166A (en) 2001-03-21

Family

ID=17108770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24377399A Pending JP2001073166A (en) 1999-08-30 1999-08-30 Aluminum alloy substrate for magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JP2001073166A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273679A1 (en) * 2001-07-05 2003-01-08 CemeCon AG Metallic component with outer function layer and method of production
WO2012054035A1 (en) * 2010-10-21 2012-04-26 Hewlett-Packard Development Company L.P. Adhesion-promoting surface
US8206833B2 (en) 2005-06-17 2012-06-26 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
RU2555366C2 (en) * 2010-08-16 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Method of obtaining anode aluminium oxide with highly ordered porous structure and method of forming arrays of anisotropic nanostructures on its base
JP2019512609A (en) * 2016-03-31 2019-05-16 エイビーエム カンパニー リミテッドAbm Co.,Ltd. Metal part, method of manufacturing the same, and process chamber provided with metal part
CN113316333A (en) * 2021-05-24 2021-08-27 Oppo广东移动通信有限公司 Electronic equipment shell, manufacturing method thereof and electronic equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273679A1 (en) * 2001-07-05 2003-01-08 CemeCon AG Metallic component with outer function layer and method of production
US8206833B2 (en) 2005-06-17 2012-06-26 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
JP5019391B2 (en) * 2005-06-17 2012-09-05 国立大学法人東北大学 Metal oxide film, laminate, metal member and method for producing the same
KR101297489B1 (en) 2005-06-17 2013-08-16 미쓰비시 가가꾸 가부시키가이샤 Metal oxide film, laminate, metal member and process for producing the same
US9476137B2 (en) 2005-06-17 2016-10-25 Tohoku University Metal oxide film, laminate, metal member and process for producing the same
RU2555366C2 (en) * 2010-08-16 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В.Ломоносова" (МГУ) Method of obtaining anode aluminium oxide with highly ordered porous structure and method of forming arrays of anisotropic nanostructures on its base
WO2012054035A1 (en) * 2010-10-21 2012-04-26 Hewlett-Packard Development Company L.P. Adhesion-promoting surface
US10465308B2 (en) 2010-10-21 2019-11-05 Hewlett-Packard Development Company, L.P. Adhesion-promoting surface
JP2019512609A (en) * 2016-03-31 2019-05-16 エイビーエム カンパニー リミテッドAbm Co.,Ltd. Metal part, method of manufacturing the same, and process chamber provided with metal part
CN113316333A (en) * 2021-05-24 2021-08-27 Oppo广东移动通信有限公司 Electronic equipment shell, manufacturing method thereof and electronic equipment

Similar Documents

Publication Publication Date Title
US20190169763A1 (en) Methods for improving adhesion of aluminum films
CN102965719A (en) Low-rate electrochemical etch of thin film metals and alloys
JPWO2011138876A1 (en) Copper foil for printed circuit
US4631112A (en) Surface-treated aluminum alloy substrates for magnetic disks
JP2009185331A (en) Surface glossy magnesium molded article
US20100086733A1 (en) Aluminum alloy substrate and a method of manufacturing the same
JP2001073166A (en) Aluminum alloy substrate for magnetic recording medium and its production
JPH05503316A (en) Methods and products for applying finish coatings to anodizable metal substrates
JP2001209925A (en) Aluminum substrate for magnetic recording medium and method for producing same
TWI470123B (en) Black passivation treatment method of steel surface
US20180087173A1 (en) Nanostructured aluminum alloys for improved hardness
JP4492806B2 (en) Flexible printed wiring board
JP2011076667A (en) Anodizing substrate for magnetic recording medium, magnetic recording medium using the same, and manufacturing method therefor
JPS623423A (en) Substrate for magnetic recording material made of al
JP3135174B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method for producing the same
JP2008202120A (en) Method for producing metallic member provided with film, and metallic member provided with film
JPWO2004107335A1 (en) STAMPER SUBSTRATE AND METHOD FOR MANUFACTURING STAMPER SUBSTRATE
JPH02247822A (en) Production of magnetic disk
JPH0310085A (en) Surface treatment for substrate
JPH0316019A (en) Aluminum substrate
JPH01133218A (en) Production of aluminum substrate for magnetic disk
JPS62125526A (en) Magnetic recording medium
JPH0328399A (en) Surface treatment of substrate
JP2011253602A (en) Aluminum alloy substrate for magnetic recording
JPH03171424A (en) Magnetic disk