JP2001068346A - Controller of transformer in electric power plant power supply facility - Google Patents

Controller of transformer in electric power plant power supply facility

Info

Publication number
JP2001068346A
JP2001068346A JP24091699A JP24091699A JP2001068346A JP 2001068346 A JP2001068346 A JP 2001068346A JP 24091699 A JP24091699 A JP 24091699A JP 24091699 A JP24091699 A JP 24091699A JP 2001068346 A JP2001068346 A JP 2001068346A
Authority
JP
Japan
Prior art keywords
transformer
generator
power
cooling
main transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24091699A
Other languages
Japanese (ja)
Inventor
Toshiya Morita
俊也 守田
Masashi Sugiyama
政司 杉山
Koji Nishi
孝司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP24091699A priority Critical patent/JP2001068346A/en
Publication of JP2001068346A publication Critical patent/JP2001068346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To save a consumed power amount and prolong a lifetime of cooling facilities by a method wherein release signals of a generator switch and a field system circuit-breaker are inputted to a controller of the cooling facilities of a transformer in an electric power plant power supply facilities, and a cooling means of a major transformer is stopped by this controller. SOLUTION: A controller 20 supplies power from a generator 1 to a power system via a major transformer 3 in a state such that a generator switch 6 and a field system circuit-breaker 15 are closed. When the generator 1 is stopped in this state, the generator 1 is stopped according to a stop command to the generator 1 and a release command to the generator switch 6 and the field system circuit-breaker 15 from the controller 20, also the generator switch 6 and the field system circuit-breaker 15 are released, and a stop command is outputted also to an induced motor 18A to stop the induced motor 18A. Accordingly, an oil is circulated for natural cooling between the major transformer 3 and a cooling facility 12. In the generator power supply facility, a consumed power amount of the cooling facility is saved in proportion to non- operation of the induced motor 18A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電フ゜ラントにお
ける所内主要変圧器の冷却設備制御方式に係わり、特に
導油風冷若しくは送油風冷方式の変圧器、発電機同期方
式として低圧同期方式を適用する発電所電源設備におけ
る変圧器の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system control system for a main transformer in a power plant in a power plant, and particularly to a low pressure synchronous system as an oil-conducting air-cooling or oil-supplying air-cooling transformer and a generator synchronous system. The present invention relates to a control device for a transformer in a power plant power supply facility.

【0002】[0002]

【従来の技術】発電フ゜ラントにおける発電機と電力系
統を同期併入させる方法としては、主変圧器の高圧側に
ある主遮断器により同期併入する方法(高圧同期方式)
と、発電機−主変圧器間(主変圧器低圧側)に設置する
発電機用負荷開閉器により同期併入する方法(低圧同期
方式)の二種類がある。
2. Description of the Related Art As a method of synchronizing a generator and an electric power system in a power generation plant, a method of synchronizing and merging with a main circuit breaker on a high voltage side of a main transformer (high-voltage synchronous system) is known.
And a method of synchronizing with a generator load switch installed between the generator and the main transformer (low voltage side of the main transformer) (low-voltage synchronous system).

【0003】これまで原子力フ゜ラントにおいて一般的
に適用されてきた高圧同期方式では、図4に示すように
発電機1と主変圧器2及び所内変圧器4が電気的に分離
できないため、フ゜ラント(発電機1)の起動及び停止
時の所内への電源供給は、別途、電力系統と接続される
起動変圧器5より実施される。従って、高圧同期方式に
おける主変圧器2の責務は発電機1の発生電力を電力系
統電圧に昇圧して送電するのみであり、主要変圧器2の
冷却設備12は発電機1の運転と連動させて運転するこ
とで、問題はなかった。3は主遮断器である。
[0003] In the high-pressure synchronous method generally used in nuclear power plants, the generator 1 and the main transformer 2 and the in-house transformer 4 cannot be electrically separated as shown in FIG. The power supply to the place when the machine 1) is started and stopped is separately performed by a starting transformer 5 connected to a power system. Therefore, the duty of the main transformer 2 in the high-voltage synchronous system is only to increase the power generated by the generator 1 to the power system voltage and to transmit the power, and the cooling equipment 12 of the main transformer 2 is linked with the operation of the generator 1. There was no problem with driving. 3 is a main circuit breaker.

【0004】一方、今後建設が予定されている次期原子
力フ゜ラントの多くが、低圧同期方式にて計画してい
る。低圧同期方式は、図5に示すように発電機1と主変
圧器2の二次側、及び所内変圧器4の間に発電機用負荷
開閉器6を設置し、この発電機用負荷開閉器6により発
電機1と電力系統を同期併入する方式である。また、上
記発電機用負荷開閉器6により、発電機1と主変圧器2
及び所内変圧器3を電気的に分離することが可能となる
ため、フ゜ラント起動/停止時(発電機起動/停止時)
は発電機用負荷開閉器6を開放する事により、フ゜ラン
ト所内電力を電力系統から主変圧器2を介して受電する
事が可能となり、高圧同期方式では必須の設備であった
起動変圧器5を合理化できる。尚、発電所の所内電源設
備として特開昭58−148635号公報、特開平9−
137735号公報を挙げることができる。
[0004] On the other hand, many of the next nuclear plants to be constructed in the future are planning to use a low-pressure synchronous system. In the low-voltage synchronous system, a generator load switch 6 is installed between the generator 1 and the secondary side of the main transformer 2 and between the in-plant transformer 4 as shown in FIG. 6 is a system in which the generator 1 and the power system are synchronously incorporated. Further, the generator 1 and the main transformer 2 are connected by the generator load switch 6.
In addition, since it becomes possible to electrically isolate the in-house transformer 3, when starting / stopping the coolant (when starting / stopping the generator)
By opening the load switch 6 for the generator, it becomes possible to receive the power inside the plant from the power system via the main transformer 2, and the start-up transformer 5, which is an essential equipment in the high-voltage synchronous system, Can be streamlined. In addition, Japanese Patent Application Laid-Open No. 58-148635 and Japanese Patent Application Laid-Open
No. 137735 can be mentioned.

【0005】[0005]

【発明が解決しようとする課題】このため、低圧同期方
式を採用するフ゜ラントの主変圧器2は、発電機1の電
力を電力系統に送電する以外に、発電機起動時及びフ゜
ラント定検時など発電機停止時は電力系統から所内電源
系に電源を供給するという責務も担う事となる。フ゜ラ
ント停止時、所内電力系統が必要とする電力量は主変圧
器容量の数%程度であるにも係わらず、主変圧器2の冷
却設備を運転させると、消費電力量が多くなると共に、
冷却設備例えばホ゜ンプ、モータファンの寿命が短くな
る。
For this reason, the main transformer 2 of the plant adopting the low-voltage synchronous system not only transmits the electric power of the generator 1 to the power system but also starts the generator and performs regular inspection of the plant. When the generator is stopped, it is also responsible for supplying power from the power system to the in-house power system. When the plant is stopped, the amount of power required by the power system in the office is about several percent of the capacity of the main transformer, but when the cooling equipment of the main transformer 2 is operated, the power consumption increases,
The life of cooling equipment such as pumps and motor fans is shortened.

【0006】本発明の目的は、フ゜ラント停止時に主変
圧器の冷却設備の運転を停止することにより、消費電力
量を節約すると共に、冷却設備の寿命を長くすることが
出来る発電所電源設備における変圧器の制御装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to stop the operation of the cooling system of the main transformer when the plant is stopped, thereby saving power consumption and extending the life of the cooling system. To provide a control device for the vessel.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、主変圧器の一次側を電力系統に接続し、主変圧器の
二次側と発電機とを発電機用負荷開閉器を介して直列に
接続し、主変圧器の二次側と発電機用負荷開閉器との間
より励磁電源変圧器と所内変圧器との各々を分岐接続
し、励磁電源変圧器の二次側に界磁用遮断器を介して発
電機用界磁巻線に接続した発電所電源設備において、発
電機負荷開閉器と界磁用遮断器との開放信号を発電所電
源設備における変圧器の冷却設備の制御装置に入力し、
本制御装置により主変圧器の冷却手段を停止することに
ある。
To achieve the above object, a primary side of a main transformer is connected to a power system, and a secondary side of the main transformer and a generator are connected via a generator load switch. Connected in series, branch-connected each of the excitation power transformer and the in-house transformer from the secondary side of the main transformer and the load switch for generator, and set the magnetic field to the secondary side of the excitation power transformer. In a power plant power supply connected to a generator field winding via a circuit breaker, the open signal between the generator load switch and the field circuit breaker is used to control the transformer cooling equipment in the power plant power supply. Input to the device,
The control device stops the cooling means of the main transformer.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施例を図1な
いし図3により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0009】図1は低圧同期方式を採用した原子力プラ
ントの全体概略系統図である。この図1において原子炉
8の炉心で発生した蒸気は、蒸気調整弁9及び主蒸気管
を介して高圧タービン10及び低圧タービン11に導か
れ、これらに連結された発電機1を駆動し、発電を行
う。発電機用負荷開閉器6は閉動作により発電機1を電
力系統へ低圧同期し、電力を主変圧器2にて昇圧し電力
系統に送電すると共に、所内変圧器4を介して所内負荷
例えば受電遮断器4Aに電力を供給する。
FIG. 1 is an overall schematic diagram of a nuclear power plant employing a low-pressure synchronous system. In FIG. 1, the steam generated in the core of the nuclear reactor 8 is guided to a high-pressure turbine 10 and a low-pressure turbine 11 via a steam regulating valve 9 and a main steam pipe, and drives a generator 1 connected thereto to generate electric power. I do. The generator load switch 6 synchronizes the generator 1 to the electric power system at a low voltage by closing operation, boosts the electric power by the main transformer 2 and transmits the electric power to the electric power system, and also loads the internal load, for example, the power receiving via the internal transformer 4. Power is supplied to the circuit breaker 4A.

【0010】発電機用負荷開閉器6と主変圧器2間の分
券式励磁装置は励磁電源変圧器13、サイリスタ整流器
14、界磁遮断器15、発電機用界磁巻線15A等から
構成される。上記励磁装置は分岐回路からの発電機出力
の一部を界磁回路が必要とする直流電圧相当の交流電圧
にするため、励磁電源変圧器13で降圧し、励磁電源変
圧器13の二次側(低圧側)の出力をサイリスタ整流器
14にて交流から直流に変換し、発電電圧保持のために
必要な界磁電流を発電機1へ供給する。また発電機1の
起動時は所内直流電源より初励磁装置を介し発電機に初
期励磁電流が供給される。
The ticket-type exciting device between the generator load switch 6 and the main transformer 2 includes an exciting power transformer 13, a thyristor rectifier 14, a field circuit breaker 15, a generator field winding 15A, and the like. Is done. In order to convert a part of the generator output from the branch circuit into an AC voltage equivalent to the DC voltage required by the field circuit, the exciting device lowers the voltage with the exciting power transformer 13 and the secondary side of the exciting power transformer 13. The output of the (low voltage side) is converted from AC to DC by the thyristor rectifier 14 and the field current necessary for maintaining the generated voltage is supplied to the generator 1. When the generator 1 is started, an initial excitation current is supplied to the generator from the in-house DC power supply via the initial excitation device.

【0011】フ゜ラント停止時、発電機用負荷開閉器6
は開放しており、発電機1と主変圧器2及び所内変圧器
4は電気的に分離されている。所内の電力は電力系統よ
り主変圧器2及び所内変圧器4を介して給電される。こ
の場合、主変圧器2の通過電力は所内電力のみであり、
これは主変圧器2の容量の数%程度例えば約5%であ
る。
When the plant is stopped, the generator load switch 6
Is open, and the generator 1, the main transformer 2, and the in-house transformer 4 are electrically separated. Power in the plant is supplied from the power system via the main transformer 2 and the plant transformer 4. In this case, the electric power passing through the main transformer 2 is only the in-house electric power,
This is about several percent of the capacity of the main transformer 2, for example, about 5%.

【0012】フ゜ラント起動時、原子炉8より発生した
蒸気は、蒸気調整弁9及び主蒸気管を介して高圧ターヒ
゛ン10及び低圧ターヒ゛ン11に導かれ、これらと機
械的に接続された発電機1を駆動し、発電を開始する。
発電機1より発生した電力は、発電機用負荷開閉器6の
閉動作に伴う発電機1と電力系統との同期併入により、
主変圧器2を介して電力系統の電圧まで引き上げられた
後、電力系統により送電される一方、一部の電力は所内
変圧器4を介して所内電源系に供給される。この時の主
変圧器2の通過電力は、発電機1の発生電力相当分であ
り、ほぼ定格容量となる。主変圧器2の構成は図2によ
り説明する。
At the time of starting the fuel, the steam generated from the reactor 8 is guided to the high-pressure turbine 10 and the low-pressure turbine 11 via the steam regulating valve 9 and the main steam pipe, and the generator 1 mechanically connected to the high-pressure turbine 10 and the low-pressure turbine 11. Drive and start power generation.
The electric power generated from the generator 1 is synchronized with the generator 1 and the electric power system due to the closing operation of the generator load switch 6, and
After being raised to the voltage of the power system via the main transformer 2, the power is transmitted by the power system, while a part of the power is supplied to the power system via the power transformer 4. At this time, the electric power passing through the main transformer 2 is equivalent to the electric power generated by the generator 1, which is almost the rated capacity. The configuration of the main transformer 2 will be described with reference to FIG.

【0013】一般に、変圧器の冷却は、容量及び用途に
より自冷及び風冷、水冷方式等の種類がある。また、風
冷、水冷方式を採用している変圧器においても、一般に
変圧器容量の数%〜数十%の自冷容量を持っている。原
子力発電所の主変圧器2の容量は1000MVA〜20
00MVA級であり、冷却方式としては導油風冷方式を
採用している。導油風冷方式の概略構成図を図2に示
す。
In general, there are various types of cooling of the transformer, such as self-cooling, air cooling, and water cooling, depending on the capacity and application. Further, a transformer employing a wind-cooling or water-cooling system generally has a self-cooling capacity of several% to several tens% of the capacity of the transformer. The capacity of the main transformer 2 of the nuclear power plant is 1000 MVA to 20
It is a 00MVA class and employs an oil-guiding air cooling system as a cooling system. FIG. 2 shows a schematic configuration diagram of the oil guiding air cooling system.

【0014】導油風冷方式は図2に示すような主変圧器
本体16と冷却設備(ユニットクーラ)12との間を油
導管17Aにより連通し、油導管17Aの一部に設けた
導油ホ゜ンフ゜17を駆動し、油を主変圧器本体16と
冷却設備12との間を循環させ主変圧器本体16内の鉄
心及び巻線を冷却する方式であり、冷却効率が高い方式
である。油は冷却設備12の誘導電動機18Aを駆動し
てファン18を回転した時の冷風により冷却する。油導
管17Aの一部には主変圧器本体16と冷却設備(ユニ
ットクーラ)12とを分離する分離装置19を取り付け
ている。
In the oil-guiding air cooling system, an oil conduit 17A communicates between a main transformer main body 16 and a cooling facility (unit cooler) 12 as shown in FIG. This is a method in which the horn 17 is driven to circulate oil between the main transformer main body 16 and the cooling facility 12 to cool the iron core and the windings in the main transformer main body 16 and have a high cooling efficiency. The oil is cooled by the cool air when the fan 18 is rotated by driving the induction motor 18A of the cooling facility 12. A separator 19 for separating the main transformer main body 16 and the cooling facility (unit cooler) 12 is attached to a part of the oil conduit 17A.

【0015】分離装置19は図1に示すように制御装置
20に接続している。制御装置20は発電機1、発電機
用負荷開閉器6、界磁遮断器15、冷却設備(ユニット
クーラ)12に接続している。制御装置20の作用を図
1により説明する。
The separation device 19 is connected to a control device 20 as shown in FIG. The control device 20 is connected to the generator 1, the generator load switch 6, the field circuit breaker 15, and the cooling facility (unit cooler) 12. The operation of the control device 20 will be described with reference to FIG.

【0016】図1の状態で発電機用負荷開閉器6、界磁
遮断器15が閉じている状態で、発電機1からの電力は
主変圧器3を介して電力系統に送電している。この状態
で発電機1を停止する場合、制御装置20から発電機1
への停止指令、発電機用負荷開閉器6、界磁遮断器15
への開放指令により、発電機1が停止すると共に、発電
機用負荷開閉器6、界磁遮断器15が開放され(つま
り、AND条件の成立により)、誘導電動機18Aにも
停止指令が出されて、誘導電動機18も停止する。よっ
て、油は主変圧器3と冷却設備12との間を自然冷却循
環する。この場合、主変圧器2を通過する電力は所内電
力のみであり、主変圧器2の自己容量にて充分に対応で
きることによる。この結果、本発明の発電所電源設備で
は誘導電動機18Aが運転しない分だけ、冷却設備の消
費電力量を節約する。
In the state shown in FIG. 1, when the generator load switch 6 and the field breaker 15 are closed, the electric power from the generator 1 is transmitted to the electric power system via the main transformer 3. When the generator 1 is stopped in this state, the controller 1
Command, generator load switch 6 and field breaker 15
, The generator 1 is stopped, the generator load switch 6 and the field breaker 15 are opened (that is, the AND condition is satisfied), and a stop command is also issued to the induction motor 18A. Then, the induction motor 18 also stops. Therefore, the oil circulates naturally between the main transformer 3 and the cooling facility 12. In this case, the electric power passing through the main transformer 2 is only the in-house power, and the self-capacity of the main transformer 2 can sufficiently cope with it. As a result, in the power plant equipment of the present invention, the power consumption of the cooling equipment is reduced by the amount that the induction motor 18A does not operate.

【0017】また誘導電動機18Aは運転していない分
だけ、誘導電動機18Aの寿命を延ばすことができるの
で、冷却設備の寿命を長くすることが出来る。また変流
器4Bで所内電力を検出し、制御装置20に入力し、常
に制御装置20で検出値を監視し、冷却設備12の駆動
が必要な値になった時は、必要分だけ誘導電動機18A
を運転する。この場合、誘導電動機18Aを周波数制御
にしていれば、全誘導電動機18Aが低速運転している
ので、早急の負荷に対して、立ち上げを早く、最大負荷
に早く到達できる。
Further, the life of the induction motor 18A can be extended as much as the operation of the induction motor 18A is not performed, so that the life of the cooling equipment can be extended. In addition, the electric power in the station is detected by the current transformer 4B, input to the control device 20, and the detected value is constantly monitored by the control device 20. When the drive of the cooling equipment 12 becomes a necessary value, the induction motor is necessary only. 18A
To drive. In this case, if the induction motor 18A is frequency-controlled, since all the induction motors 18A are operating at a low speed, it is possible to quickly start up and quickly reach the maximum load for an urgent load.

【0018】更に、制御装置20から分離装置19に主
変圧器本体16と冷却設備(ユニットクーラ)12とを
分離する指令により、分離装置19の図示していないバ
ルブを閉じて、主変圧器本体16からの油が漏れるのを
防止すると共に、分離した冷却設備(ユニットクーラ)
12を保守、点検をする。
Further, in accordance with a command for separating the main transformer main body 16 and the cooling facility (unit cooler) 12 from the control device 20 to the separating device 19, a valve (not shown) of the separating device 19 is closed, and the main transformer main body is separated. Prevents oil from leaking from 16 and separate cooling equipment (unit cooler)
12 is maintained and inspected.

【0019】図3のブロック図は主変圧器3の冷却設備
12、分離装置19、発電機1を制御する制御装置20
の動作ロシ゛ック図を示している。
FIG. 3 is a block diagram showing a cooling system 12 for the main transformer 3, a separating device 19, and a control device 20 for controlling the generator 1.
The operation logic diagram of FIG.

【0020】冷却設備(ユニットクーラ)12の運転条
件は、主変圧器3が閉じていること、発電機用負荷開閉
器6が閉じていること、冷却設備(ユニットクーラ)1
2の運転条件が成立していること、分離装置19が不動
作であること、冷却設備(ユニットクーラ)12が自動
運転モードであること、等のAND条件23の成立によ
り、冷却設備(ユニットクーラ)12の運転条件が成立
する。AND条件23の成立が1個でも不成立であれ
ば、冷却設備(ユニットクーラ)12の運転条件は成立
しない。
The operating conditions of the cooling facility (unit cooler) 12 are that the main transformer 3 is closed, the load switch 6 for the generator is closed, and the cooling facility (unit cooler) 1 is closed.
2 and the cooling device (unit cooler) 12 is in the automatic operation mode, etc., and the cooling condition (unit cooler) is satisfied. 12) The 12 operating conditions are satisfied. If at least one of the AND conditions 23 is not satisfied, the operating condition of the cooling facility (unit cooler) 12 is not satisfied.

【0021】分離装置19の動作条件は、発電機用負荷
開閉器6の閉条件であること、界磁遮断器15の開条件
であること、分離装置19起動指令が出されているこ
と、等のAND条件22の成立により、分離装置19の
分離動作条件が成立する。AND条件22の成立が1個
でも不成立であれば、分離装置19の分離条件は成立し
ない。
The operating conditions of the separation device 19 are that the generator load switch 6 is closed, that the field circuit breaker 15 is open, that the separation device 19 activation command is issued, and the like. Are satisfied, the separation operation condition of the separation device 19 is satisfied. If at least one of the AND conditions 22 is not satisfied, the separation condition of the separation device 19 is not satisfied.

【0022】発電機用負荷開閉器6の投入条件は、主変
圧器3と冷却設備12とが接続していることを制御装置
20で確認していること、発電機用負荷開閉器6の投入
条件が成立していること、等のAND条件24の成立に
より、発電機用負荷開閉器6の投入条件が成立する。A
ND条件24の成立が1個でも不成立であれば、発電機
用負荷開閉器6の投入条件は成立しない。
The conditions for turning on the generator load switch 6 are as follows: the control device 20 confirms that the main transformer 3 and the cooling facility 12 are connected, and the turning on of the generator load switch 6 When the AND condition 24 such as the condition is satisfied, the closing condition of the generator load switch 6 is satisfied. A
If at least one of the ND conditions 24 is not satisfied, the closing condition of the generator load switch 6 is not satisfied.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、発電機
用負荷開閉器、界磁遮断器の開放条件により、冷却設備
の誘導電動機も停止させることができる。この結果、本
発明の発電所電源設備では誘導電動機が運転しない分だ
け、冷却設備の消費電力量を節約することが出来ると共
に、冷却設備の寿命を長くすることが出来る。また、こ
れらの付属設備を主変圧器と分離することにより、主変
圧器の運転中のも係わらず、これらの付属設備の保守.
点検が可能となる。
As described above, according to the present invention, the induction motor of the cooling facility can be stopped according to the open condition of the load switch for the generator and the field breaker. As a result, in the power plant power supply equipment of the present invention, the power consumption of the cooling equipment can be saved and the life of the cooling equipment can be prolonged by the amount that the induction motor does not operate. In addition, by separating these accessories from the main transformer, maintenance of these accessories can be performed even while the main transformer is operating.
Inspection becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である発電所電源設備の電力系
統図。
FIG. 1 is a power system diagram of a power plant power supply equipment according to an embodiment of the present invention.

【図2】図1で使用した変圧器の概略構成図である。FIG. 2 is a schematic configuration diagram of a transformer used in FIG.

【図3】図1で使用した制御装置の動作ロシ゛ックを示
す図である。
FIG. 3 is a diagram showing operation logic of the control device used in FIG. 1;

【図4】従来の高圧同期方式を採用した発電所電源設備
の電力系統図。
FIG. 4 is a power system diagram of a power plant power supply system employing a conventional high-voltage synchronous system.

【図5】従来の低圧同期方式を採用した発電所電源設備
の電力系統図。
FIG. 5 is a power system diagram of a power supply facility of a power plant employing a conventional low-voltage synchronous system.

【符号の説明】[Explanation of symbols]

1…発電機、2…主変圧器、3…主遮断器、4…所内変
圧器、6…発電機用負荷開閉器、12…冷却設備、13
…励磁電源変圧器、14…サイリスタ整流器、15…界
磁遮断器、16…主変圧器本体、18…冷却ファン、1
8A…誘導電動機、19…設備分離装置、20…制御装
置。
DESCRIPTION OF SYMBOLS 1 ... Generator, 2 ... Main transformer, 3 ... Main circuit breaker, 4 ... In-house transformer, 6 ... Generator load switch, 12 ... Cooling equipment, 13
... Exciting power supply transformer, 14 ... Thyristor rectifier, 15 ... Field circuit breaker, 16 ... Main transformer main body, 18 ... Cooling fan, 1
8A: induction motor, 19: equipment separating device, 20: control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 政司 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立事業所内 (72)発明者 西 孝司 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 Fターム(参考) 5E050 CA04 CB04 CB05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masashi Sugiyama 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Works, Ltd. (72) Koji Nishi 3-2-2 Sachimachi, Hitachi-shi, Ibaraki No. 1 Hitachi Engineering Co., Ltd. F-term (reference) 5E050 CA04 CB04 CB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発電機から発電機用負荷開閉器及び主変
圧器を介して電力系統に接続し、主変圧器の二次側と発
電機用負荷開閉器との間より励磁電源変圧器と所内変圧
器との各々を分岐接続し、励磁電源変圧器の二次側に界
磁用遮断器を接続し、主変圧器に冷却手段を備えた発電
所電源設備において、発電機用負荷開閉器と界磁用遮断
器とを開放するAND条件により、冷却手段を停止する
制御装置を備えていることを特徴とする発電所電源設備
における変圧器の制御装置。
A generator is connected to a power system via a generator load switch and a main transformer, and an exciting power supply transformer is connected between a secondary side of the main transformer and the generator load switch. In a power plant power plant equipped with a branch transformer and a field circuit breaker connected to the secondary side of the exciting power supply transformer and a cooling means in the main transformer, a load switch for the generator is connected. A control device for a transformer in a power plant power plant, comprising: a control device for stopping a cooling means in accordance with an AND condition for opening a field circuit breaker.
【請求項2】 上記冷却手段を構成する複数のモータフ
ァンと制御装置との間を接続することを特徴とする請求
項1に記載の発電所電源設備における変圧器の制御装
置。
2. The control device for a transformer in a power plant according to claim 1, wherein a plurality of motor fans constituting the cooling means are connected to the control device.
【請求項3】 上記所内変圧器に流れる電力を変流器で
検出した検出電力を制御装置で監視し、主変圧器が冷却
を必要とす電力に成ったら、必要とす電力分だけ冷却手
段にて主変圧器を冷却することを特徴とする請求項1に
記載の発電所電源設備における変圧器の制御装置。
3. A control device monitors the power detected by the current transformer detecting the power flowing through the in-house transformer, and if the main transformer requires power to be cooled, cooling means for the required power. The control device for a transformer in a power plant power supply facility according to claim 1, wherein the main transformer is cooled at (1).
【請求項4】 上記主変圧器と冷却手段との間に設備分
離装置を設け、設備分離装置の制御を制御装置で行うこ
とを特徴とする請求項1に記載の発電所電源設備におけ
る変圧器の制御装置。
4. The transformer according to claim 1, wherein an equipment separating device is provided between the main transformer and the cooling means, and the control of the equipment separating device is performed by a control device. Control device.
JP24091699A 1999-08-27 1999-08-27 Controller of transformer in electric power plant power supply facility Pending JP2001068346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24091699A JP2001068346A (en) 1999-08-27 1999-08-27 Controller of transformer in electric power plant power supply facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24091699A JP2001068346A (en) 1999-08-27 1999-08-27 Controller of transformer in electric power plant power supply facility

Publications (1)

Publication Number Publication Date
JP2001068346A true JP2001068346A (en) 2001-03-16

Family

ID=17066579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24091699A Pending JP2001068346A (en) 1999-08-27 1999-08-27 Controller of transformer in electric power plant power supply facility

Country Status (1)

Country Link
JP (1) JP2001068346A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340524A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Self-excited generator exciting device
JP2009530844A (en) * 2006-03-22 2009-08-27 ソンファン イム Transformer cooling device using power generation cycle
CN113782302A (en) * 2021-08-17 2021-12-10 国网江苏省电力有限公司南通供电分公司 Heat dissipation device for outdoor transformer
CN114664064A (en) * 2022-04-25 2022-06-24 中广核核电运营有限公司 Alarm device and transformer system of cooler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340524A (en) * 2005-06-03 2006-12-14 Hitachi Ltd Self-excited generator exciting device
JP2009530844A (en) * 2006-03-22 2009-08-27 ソンファン イム Transformer cooling device using power generation cycle
CN113782302A (en) * 2021-08-17 2021-12-10 国网江苏省电力有限公司南通供电分公司 Heat dissipation device for outdoor transformer
CN113782302B (en) * 2021-08-17 2023-08-08 国网江苏省电力有限公司南通供电分公司 Heat abstractor for be used for outdoor transformer
CN114664064A (en) * 2022-04-25 2022-06-24 中广核核电运营有限公司 Alarm device and transformer system of cooler
CN114664064B (en) * 2022-04-25 2023-12-05 中广核核电运营有限公司 Alarm device of cooler and transformer system

Similar Documents

Publication Publication Date Title
US6093975A (en) Turbogenerator/motor control with synchronous condenser
EP0901218B1 (en) Turbogenerator/motor controller
US6031294A (en) Turbogenerator/motor controller with ancillary energy storage/discharge
US5097195A (en) AC exciter for VSCF starter/generator
US6882060B2 (en) Turbine generating apparatus
US20040080165A1 (en) Turbogenerator/motor controller with ancillary energy storage/discharge
CA2826437A1 (en) Voltage control in a doubly-fed induction generator wind turbine system
JP2009303471A (en) Controller of permanent magnet generator
WO2015123523A1 (en) Power system for providing an uninterruptible power supply to an external load
JP2001068346A (en) Controller of transformer in electric power plant power supply facility
JP4055189B2 (en) Power supply for emergency motors for power plants
CN109274300B (en) Starting and excitation system and method for gas turbine generator set
JPH08116629A (en) Power supply for circulating pump for reactor
US10823148B2 (en) Wind turbines and methods
JPH07332012A (en) Gas turbine static type starting system
US20110018350A1 (en) Power back-up system with a dc-dc converter
AU2012265005B2 (en) Method for operating a generator in an electrical system, and electrical system having such a generator
US11923800B2 (en) Saturable reactors in generator control units
WO2019094918A2 (en) Engine driven generator for providing welding power
CN209896953U (en) Automatic excitation withdrawing device of large three-machine brushless excitation generator
JP2009047087A (en) Pumping power generation device and its control method
Horvath Concepts, configurations, & benefits of motor starting and operation with MV AC adjustable speed drives
JPS59143992A (en) Reactor isolation cooling system
KR200309454Y1 (en) Excitation System by Using Auxiliary Winding for Marine Generator
JPS61177199A (en) Turbo-generator system