JP2001066400A - Nuclear spallation container impact force preventing mechanism - Google Patents
Nuclear spallation container impact force preventing mechanismInfo
- Publication number
- JP2001066400A JP2001066400A JP24429899A JP24429899A JP2001066400A JP 2001066400 A JP2001066400 A JP 2001066400A JP 24429899 A JP24429899 A JP 24429899A JP 24429899 A JP24429899 A JP 24429899A JP 2001066400 A JP2001066400 A JP 2001066400A
- Authority
- JP
- Japan
- Prior art keywords
- container
- spallation
- impact force
- liquid metal
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、核破砕容器に大き
な衝撃力が繰り返し加わることを防ぐ簡単な機構に関す
る。即ち、本発明は、加速された陽子を液体金属に入射
して核破砕を起こさせるターゲットにおける核破砕容器
に大きな衝撃力が繰り返し加わることを防ぐ機構に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple mechanism for preventing a large impact force from being repeatedly applied to a spallation vessel. That is, the present invention relates to a mechanism for preventing a large impact force from being repeatedly applied to a spallation vessel in a target that causes spallation by injecting accelerated protons into liquid metal.
【0002】加速器でGeVクラスの高いエネルギーに
加速した陽子ビームを、重い元素の物質(ターゲット)
に打ち込むと、大量の中性子を発生させることができ
る。核物理的には、大きなエネルギーを有する入射粒子
によりターゲットの原子核がばらばらになるので、この
現象を核破砕という。したがって、重い原子、厳密には
原子数密度が高い原子核(例えば、周期律表のTa,
W,Hg,Pb,Bi,Uなど)ほど1個の入射陽子に
対して、より多くの中性子を核破砕で生じさせることが
できる(目安として、20から30個程度が可能)。
又、核破砕で発生するのは、中性子の他に陽子、パイ中
間子などの2次粒子(入射した粒子を1次粒子という)
が発生する。[0002] A proton beam accelerated to a GeV class high energy by an accelerator is converted into a heavy element substance (target).
Can generate a large amount of neutrons. In nuclear physics, the nuclei of the target are separated by incident particles having a large energy, and this phenomenon is called spallation. Accordingly, heavy atoms, strictly speaking, nuclei having a high atomic number density (for example, Ta,
(W, Hg, Pb, Bi, U, etc.) can generate more neutrons by spallation for one incident proton (as a guide, about 20 to 30 neutrons are possible).
In addition, neutrons generate secondary particles such as protons and pions other than neutrons (incident particles are called primary particles).
Occurs.
【0003】これらの中で使用するのは、中性子であ
り、次の用途において使用される。構造生物学(生体タ
ンパク質分子の分子構造解析)、物質科学(波動として
の中性子により物質の奥までみることができる)、消滅
処理技術(長い半減期を持つ原子核種を安定な核や短い
半減期の核に変換する。廃棄物処理の1つ)、材料の照
射、放射性同位元素の製造(ガン治療、生命科学)、物
性の基礎研究において使用される。[0003] Among these, neutrons are used, and are used in the following applications. Structural biology (molecule structure analysis of biological protein molecules), material science (we can see deep into a substance by neutrons as waves), annihilation technology (stable nuclei with a long half-life and stable half-life It is used in waste treatment (1), irradiation of materials, production of radioisotopes (cancer therapy, life science), and basic research on physical properties.
【0004】[0004]
【従来の技術】大強度の陽子を加速して、水銀、鉛、ビ
スマスなどの液体金属に入射してこれらの金属の核破砕
を起こさせるターゲットでは、陽子の入射に伴い熱ネル
ギーがターゲット内に瞬時に蓄積される。その結果、タ
ーゲット内に衝撃波が発生し、それが液体金属中を伝播
し、液体金属を封入した周りの核破砕容器に衝撃的な力
を加える。この衝撃波は核破砕容器壁で反射し、液体金
属中をさらに伝播し、繰り返し容器に力を加えることに
なる。2. Description of the Related Art In a target that accelerates high-intensity protons and impinges on liquid metals such as mercury, lead, and bismuth to cause spallation of these metals, thermal energy is introduced into the target by the incident protons. Instantly accumulated. As a result, a shock wave is generated in the target, which propagates through the liquid metal and applies a shocking force to the surrounding spallation vessel enclosing the liquid metal. This shock wave is reflected by the spallation vessel wall, propagates further through the liquid metal, and repeatedly applies force to the vessel.
【0005】従来のターゲットの核破砕容器には様々な
形が考えられるが、図4に示すように半球形の頭部に茶
筒がついたような形が基本となる。図2は、このような
従来の容器に液体金属を封入して大強度陽子を入射さ
せ、核破砕を起こした場合に容器が受ける力の変化を示
す。そこでは、容器の中心部で発生した衝撃波が伝播
し、容器に第1波が到達した後、500マイクロ秒後に
それ以上の大きな波が押し寄せ、再び容器に力が加わる
ことを示している。Various shapes can be considered for a conventional target spalling container, but a basic shape such as a hemispherical head with a tea caddy as shown in FIG. 4 is fundamental. FIG. 2 shows a change in the force applied to a container when a liquid metal is sealed in such a conventional container and high-intensity protons are incident thereon to cause spallation. There, it is shown that a shock wave generated at the center of the container propagates, and after 500 μs after the first wave reaches the container, a larger wave rushes in 500 μs later and the force is again applied to the container.
【0006】[0006]
【発明が解決しようとする課題】核破砕容器を設計する
上では、このように容器に繰り返しの力を何度もかけた
くない。力が繰り返し容器に加わると、容器の使用寿命
が短くなり、頻繁に容器を交換しなければならず、経済
的にも核破砕施設の運転効率を悪くする。そこで、積極
的に、できれば能動的にエネルギーを吸収してターゲッ
トの核破砕容器に加わる衝撃波によるエネルギーを吸収
する機構が必要になる。In designing a spallation vessel, it is not desirable to apply repetitive forces to the vessel in this way. When force is repeatedly applied to the container, the service life of the container is shortened, the container needs to be replaced frequently, and the operation efficiency of the spallation facility is reduced economically. Therefore, a mechanism is required to actively and preferably absorb energy and absorb energy due to shock waves applied to the target spallation vessel.
【0007】[0007]
【課題を解決するための手段】本発明においては、ター
ゲットの核破砕容器の一部に液体金属が容器と直接接触
しないで自由表面を形成できる空間を設ける機構を設置
した。こうすれば、特別の動力、装置を必要としない
で、簡単に容器に繰り返し作用する大きな力を減らすこ
とが可能となる。According to the present invention, there is provided a mechanism for providing a space in a part of a target spallation container where liquid metal can form a free surface without direct contact with the container. In this way, it is possible to easily reduce the large force that repeatedly acts on the container without requiring any special power or device.
【0008】即ち、本発明のターゲットにおいては、図
1に示すように、半球形の頭部に茶筒がついたような形
の核破砕容器に、水銀、鉛、ビスマスなどの液体金属を
封入し、これに大強度陽子を入射させて核破砕を起こさ
せた際に容器が繰り返し受ける衝撃力を防ぐために、封
入された液体金属の液面上の容器壁に突出部を形成し、
そこに液体金属の自由表面を生じさせることにより、容
器内に発生した衝撃力をこの自由表面の上下動により吸
収して容器壁の受ける衝撃力を防止する構成としたもの
である。That is, in the target of the present invention, as shown in FIG. 1, a liquid metal such as mercury, lead, bismuth, or the like is sealed in a spallation vessel having a hemispherical head with a tea caddy. In order to prevent the impact force that the container repeatedly receives when high intensity protons are incident on this and cause nuclear spallation, a projection is formed on the container wall on the liquid level of the sealed liquid metal,
By forming a free surface of the liquid metal there, the impact force generated in the container is absorbed by the vertical movement of the free surface to prevent the impact force on the container wall.
【0009】[0009]
【発明の実施の形態】本発明の核破砕容器においては、
図1に示されるように、円筒形状の容器本体に大強度陽
子が入射する半球状の頭部が設けられ、この容器本体内
には液体金属が封入充填される。そして、この容器に封
入された液体金属の上表面に当る容器壁に突出部を形成
し、そこに液体金属が容器と直接接触しない自由表面を
形成する空間部を設ける。BEST MODE FOR CARRYING OUT THE INVENTION In the spallation vessel of the present invention,
As shown in FIG. 1, a hemispherical head on which high-intensity protons are incident is provided in a cylindrical container body, and liquid metal is filled and filled in the container body. Then, a projecting portion is formed on the container wall corresponding to the upper surface of the liquid metal sealed in the container, and a space is formed therein to form a free surface where the liquid metal does not directly contact the container.
【0010】このように構成された本発明の容器の半球
形状の頭部に大強度陽子を入射して液体金属に核破砕を
起こさせた場合には、図1に示されるように、容器の中
心部にその長さ方向に沿って熱エネルギーが蓄積され、
それから容器壁に向けての衝撃波が順次発生する。そし
て、その衝撃波が容器の長さ方向に沿って容器内を順次
伝播して容器内壁に繰り返し破壊力を加えることにな
る。In the case where high intensity protons are incident on the hemispherical head of the container of the present invention having the above-described structure to cause the liquid metal to spall, as shown in FIG. Thermal energy accumulates in the center along its length,
Then, a shock wave is sequentially generated toward the container wall. Then, the shock wave sequentially propagates in the container along the length direction of the container, and repeatedly applies a destructive force to the inner wall of the container.
【0011】そこで、本発明においては、核破砕容器に
封入された液体金属の上表面に当る容器壁の少なくとに
も一部に突出部を形成し、そこに液体金属の自由表面を
生じさせることにより、容器内に発生した衝撃波をこの
自由表面の上下動により吸収して容器壁の受ける衝撃力
を防止することができるようにした。以下、本発明を実
施例に基づいて説明する。Therefore, in the present invention, a projecting portion is formed on at least a part of the container wall corresponding to the upper surface of the liquid metal sealed in the spallation container, and a free surface of the liquid metal is generated there. Thus, the shock wave generated in the container can be absorbed by the vertical movement of the free surface, and the impact force applied to the container wall can be prevented. Hereinafter, the present invention will be described based on examples.
【0012】[0012]
【実施例】本発明の核破砕容器を使用して、大強度の陽
子を加速して液体金属に入射した場合に容器に加わる単
位面積当たりの衝撃力の強さを図3に示した。即ち、図
3は、図1に示すように容器の一部で液体金属に自由表
面を作ってあげた場合に、容器が受ける力の変化を示し
ている。FIG. 3 shows the magnitude of impact force per unit area applied to a container when a high-intensity proton is accelerated and incident on liquid metal using the spallation container of the present invention. That is, FIG. 3 shows a change in the force applied to the container when a free surface is formed on the liquid metal in a part of the container as shown in FIG.
【0013】又、図4に示されるような液体金属の自由
表面が設けられていない従来の核破砕容器を使用して、
大強度の陽子を加速して液体金属に入射した場合に容器
に加わる単位面積当たりの衝撃力の強さを図2に示し
た。Further, using a conventional spallation vessel without a free surface of liquid metal as shown in FIG.
FIG. 2 shows the magnitude of impact force per unit area applied to the container when a high-intensity proton is accelerated and incident on liquid metal.
【0014】これらの図2(従来例)及び図3(本発
明)を比較すると、図3には、図2で見られた大きな力
の繰り返しが消えて無くなることがわかる。このような
核破砕技術は世界にはまだ例が無く、従って、容器にこ
の機構を付け加えた例も当然見られない。A comparison between FIG. 2 (conventional example) and FIG. 3 (invention) shows that FIG. 3 shows that the repetition of the large force shown in FIG. 2 disappears. Such a spallation technique is not yet known in the world, and thus there is no example of adding a container to this mechanism.
【0015】[0015]
【発明の効果】本発明によれば、水銀、鉛、ビスマスな
どの液体金属を収容したターゲット容器の一部に液体金
属が容器と直接接触しないで自由表面を形成できる空間
を設けたことにより、特別の動力、装置を必要としない
で、簡単に容器に繰り返し作用する大きな力を減らすこ
とが可能となるという本発明に特有な顕著な効果を有す
る。According to the present invention, a space is provided in a part of a target container containing a liquid metal such as mercury, lead and bismuth so that the liquid metal can form a free surface without directly contacting the container. This has a remarkable effect peculiar to the present invention in that a large force acting repeatedly on the container can be easily reduced without requiring any special power or device.
【図1】 本発明の核破砕容器の構造を示す図である。FIG. 1 is a view showing a structure of a nuclear spallation container of the present invention.
【図2】 本発明の構造の核破砕容器に加わる衝撃力を
表す図である。FIG. 2 is a diagram showing an impact force applied to a spallation vessel having a structure of the present invention.
【図3】 従来の構造の核破砕容器に加わる衝撃力を表
す図である。FIG. 3 is a view showing an impact force applied to a spallation vessel having a conventional structure.
【図4】 従来の核破砕容器の構造を示す図である。FIG. 4 is a view showing the structure of a conventional spallation vessel.
Claims (1)
を入射して核破砕を起こさせるために使用される核破砕
容器において、その容器壁に突出部を形成し、そこに液
体金属の自由表面を生じさせることにより、容器内に発
生した衝撃力をこの自由表面の上下動により吸収して容
器壁の受ける衝撃力を防止する前記容器。1. A spalling vessel for enclosing a liquid metal and injecting high-intensity protons into the spalling vessel to cause spalling, wherein a projection is formed on the vessel wall, and a liquid metal The container wherein the free surface is generated to absorb the impact force generated in the container by the vertical movement of the free surface, thereby preventing the impact force received by the container wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24429899A JP2001066400A (en) | 1999-08-31 | 1999-08-31 | Nuclear spallation container impact force preventing mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24429899A JP2001066400A (en) | 1999-08-31 | 1999-08-31 | Nuclear spallation container impact force preventing mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001066400A true JP2001066400A (en) | 2001-03-16 |
Family
ID=17116667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24429899A Pending JP2001066400A (en) | 1999-08-31 | 1999-08-31 | Nuclear spallation container impact force preventing mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001066400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006084241A (en) * | 2004-09-14 | 2006-03-30 | Japan Atom Energy Res Inst | Diagnosing method and apparatus for spallation neutron source mercury target container |
-
1999
- 1999-08-31 JP JP24429899A patent/JP2001066400A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006084241A (en) * | 2004-09-14 | 2006-03-30 | Japan Atom Energy Res Inst | Diagnosing method and apparatus for spallation neutron source mercury target container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Betti et al. | Inertial-confinement fusion with lasers | |
Tsakiris et al. | Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma | |
Baldwin et al. | Recoilless gamma-ray lasers | |
US7893414B2 (en) | Apparatus and method for absorption of incident gamma radiation and its conversion to outgoing radiation at less penetrating, lower energies and frequencies | |
Barnabé-Heider et al. | Response of superheated droplet detectors of the PICASSO dark matter search experiment | |
EP0441261A2 (en) | A new physical process, method and apparatus for creating and controlling nuclear fusion reactions | |
Liu et al. | High-power laser-plasma interaction | |
Kruer | Interaction of plasmas with intense lasers | |
Shokov et al. | Laser scaling for generation of megatesla magnetic fields by microtube implosions | |
Hu et al. | Above-100 MeV proton beam generation from near-critical-density plasmas irradiated by moderate Laguerre–Gaussian laser pulses | |
JP2001066400A (en) | Nuclear spallation container impact force preventing mechanism | |
US4277305A (en) | Beam heated linear theta-pinch device for producing hot plasmas | |
RU2243621C1 (en) | Method and device for generating directional and coherent gamma-radiation | |
Delone et al. | Atomic stabilisation in a laser field | |
SE1651504A1 (en) | Apparatus for generating muons with intended use in a fusionreactor | |
Greene et al. | Advances in heat transfer | |
Guo et al. | Leveraging radiation reaction via laser-driven plasma fields | |
RU2348051C2 (en) | Method and device for multiple activation of ions in nmr and epr methods | |
Maenchen et al. | Intense electron beam sources for flash radiography | |
Mehrangiz | Application of encapsulated hollow gold nanocluster targets for high-quality and quasi-monoenergetic ions generation | |
RU2190269C1 (en) | Nuclear reactor irradiating device capsule | |
Kuratov et al. | Modeling of laser generation and propagation of electron bunch along thin irradiated wire | |
Yasui et al. | Unsolved Problems | |
Thirolf | Particle Acceleration Driven by High-Power, Short Pulse Lasers | |
Olson | Target physics scaling for Z-pinch inertial fusion energy |