JP2001065560A - Method for forecasting life of material for rolling bearing and rolling bearing having long life discriminated by forecasting life - Google Patents

Method for forecasting life of material for rolling bearing and rolling bearing having long life discriminated by forecasting life

Info

Publication number
JP2001065560A
JP2001065560A JP24512799A JP24512799A JP2001065560A JP 2001065560 A JP2001065560 A JP 2001065560A JP 24512799 A JP24512799 A JP 24512799A JP 24512799 A JP24512799 A JP 24512799A JP 2001065560 A JP2001065560 A JP 2001065560A
Authority
JP
Japan
Prior art keywords
life
rolling bearing
inclusion
bearing material
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24512799A
Other languages
Japanese (ja)
Other versions
JP4204146B2 (en
Inventor
Kikuo Maeda
喜久男 前田
Hiroshi Murakami
裕志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP24512799A priority Critical patent/JP4204146B2/en
Publication of JP2001065560A publication Critical patent/JP2001065560A/en
Application granted granted Critical
Publication of JP4204146B2 publication Critical patent/JP4204146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method to precisely forecast the life of a material for a rolling bearing in a short time and a rolling bearing to ensure discrimination of a long life through forecasting. SOLUTION: Frequency distribution of each of inclusion sizes into which a nonmetallic inclusion is classified by a kind is employed as a parameter of the degree of an internal defect of a material by which unevenness in the life of a rolling bearing is widely influenced. By using a life forecasting formula incorporating frequency distribution quantified by mathematical expression, a life of a material for a rolling bearing is high-precisely forecasted in a short time without executing a rolling life test.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、転がり軸受用材
料の寿命予測方法と、寿命予測で長寿命を識別保証した
転がり軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the life of a material for a rolling bearing, and a rolling bearing in which a long life is identified and assured by estimating the life.

【0002】[0002]

【従来の技術】転がり軸受の寿命は、軸受用材料の表面
に生じる剥離現象で決まる場合が殆どである。この剥離
現象は、軸受用材料の転動接触による一種の疲労破損で
あり、材料の化学成分や硬度に依存する強度因子と、材
料に内在する非金属介在物に依存する内部欠陥因子とが
関与する。前者の強度因子は主として剥離寿命のレベル
に影響し、後者の内部欠陥因子は剥離寿命のばらつきを
大きく左右する。
2. Description of the Related Art In many cases, the life of a rolling bearing is determined by a peeling phenomenon occurring on the surface of a bearing material. This peeling phenomenon is a kind of fatigue failure due to rolling contact of the bearing material, and involves a strength factor that depends on the chemical composition and hardness of the material and an internal defect factor that depends on nonmetallic inclusions contained in the material. I do. The former strength factor mainly affects the level of the peel life, and the latter internal defect factor largely affects the variation of the peel life.

【0003】前記内部欠陥因子は、不可避的に存在する
非金属介在物の数とそのサイズの分布に影響されると考
えられており、同一鋼種、すなわち強度因子が同じレベ
ルであっても、転がり軸受の寿命は10倍以上の寿命比
でばらつくのが一般的であった。このため、転がり軸受
の製造に際しては、軸受寿命はばらつくものとの前提に
立ち、各ロットに対して10個以上の試験片を準備して
転動寿命試験を行っている。
[0003] The internal defect factor is considered to be affected by the number of unavoidable non-metallic inclusions and the distribution of their size. Even if the same steel type, that is, the strength factor is at the same level, the rolling defect of the rolling bearing is reduced. In general, the life varied at a life ratio of 10 times or more. For this reason, when manufacturing rolling bearings, on the premise that the bearing life varies, ten or more test pieces are prepared for each lot and a rolling life test is performed.

【0004】転動寿命試験は、試験片を数GPa程度の
最大接触応力で相手試片と転動させ、試験片が剥離等で
破損するまでの転動サイクル数を調査するものであり、
長寿命のものは破損するまでの転動サイクル数が108
のオーダを越えるものもある。通常、試験片には円筒状
や円板状のものが用いられ、相手試片には円筒状や球状
のものが用いられる。この転動寿命試験では、全試験片
の10%が破損する寿命(転動サイクル数)をL10と
して、このL10で各ロット毎の軸受寿命を評価してい
る。
In the rolling life test, a test piece is rolled with a mating test piece at a maximum contact stress of about several GPa, and the number of rolling cycles until the test piece is damaged by peeling or the like is investigated.
For long life products, the number of rolling cycles before breaking is 10 8
There are some that exceed the order. Usually, a cylindrical or disk-shaped test piece is used, and a cylindrical or spherical test piece is used as a counterpart test piece. In this rolling life test, the life (the number of rolling cycles) at which 10% of all test pieces are damaged is defined as L10, and the bearing life of each lot is evaluated using this L10.

【0005】一方、近年鋼材の製造工程における各種清
浄化処理技術が発達し、鋼材中の非金属介在物は大幅に
減少している。このため、転がり軸受用材料としても、
非金属介在物の少ない鋼材が供給され、長寿命の転がり
軸受が製造されるようになっている。
[0005] On the other hand, in recent years, various cleaning treatment techniques in the steel manufacturing process have been developed, and nonmetallic inclusions in the steel have been greatly reduced. For this reason, as a material for rolling bearings,
Steel materials with less nonmetallic inclusions are supplied, and long-life rolling bearings are manufactured.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の軸受寿
命の評価方法では、各ロットに対して10個以上の試験
片について、各試験片が破損するまで転動寿命試験を行
う必要があり、多大な時間を要する問題がある。また、
上述したように、転がり軸受用材料として、非金属介在
物の少ない鋼材が使用されるようになっているので、各
試験片が破損するまでの転動サイクル数が108 を越え
るものも多く、転動寿命試験に要する時間はさらに長く
なっている。
In the above-described conventional method for evaluating the life of a bearing, it is necessary to perform a rolling life test on at least 10 test pieces for each lot until each test piece is broken. There is a problem that takes a lot of time. Also,
As described above, as a rolling bearing material, a steel material having a small amount of non-metallic inclusions is used, so that the number of rolling cycles before each test piece is broken often exceeds 10 8 , The time required for the rolling life test is even longer.

【0007】この転動寿命試験の時間を短縮するために
は、試験における負荷荷重(最大接触応力)を高めて加
速試験とすることが考えられるが、負荷荷重を高める
と、通常の軸受の使用における破損モードと異なる破損
現象が現れ、実使用に即した軸受寿命を評価できない場
合がある。
In order to shorten the rolling life test time, it is conceivable to increase the applied load (maximum contact stress) in the test to perform an accelerated test. In some cases, a failure phenomenon different from the failure mode in the above appears, and it may not be possible to evaluate the bearing life according to actual use.

【0008】そこで、この発明の課題は、短時間で転が
り軸受用材料の寿命を精度よく予測する方法と、寿命予
測で長寿命を識別保証した転がり軸受を提供することで
ある。
It is an object of the present invention to provide a method for accurately estimating the life of a rolling bearing material in a short time, and to provide a rolling bearing in which a long life is identified and guaranteed by life estimation.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明の転がり軸受用材料の寿命予測方法は、
各種類別の非金属介在物について、転がり軸受用材料の
所定の被検面積における介在物サイズの度数分布を、材
料の内部欠陥度合いのパラメータとする数式Yを作成
し、この数式Yを包含する予測式により、転がり軸受用
材料の寿命を予測する方法を採用したものである。
In order to solve the above-mentioned problems, a method for estimating the life of a rolling bearing material according to the present invention is described below.
For each type of non-metallic inclusions, a formula Y is created that uses the frequency distribution of the size of the inclusions in a predetermined test area of the rolling bearing material as a parameter of the degree of internal defect of the material, and a prediction that includes the formula Y This adopts a method of estimating the life of the rolling bearing material by the equation.

【0010】すなわち、転がり軸受の寿命のばらつきを
大きく左右する材料の内部欠陥度合いのパラメータとし
て、非金属介在物を種類別に分けた各介在物サイズの度
数分布を採用し、この度数分布を数式で定量化したもの
を寿命予測式に組み込むことにより、転動寿命試験なし
で転がり軸受用材料の寿命を精度よく予測できるように
した。
That is, as a parameter of the degree of internal defect of a material that greatly affects the variation in the life of a rolling bearing, a frequency distribution of each inclusion size obtained by classifying nonmetallic inclusions by type is adopted, and this frequency distribution is expressed by a mathematical formula. By incorporating the quantified value into the life prediction formula, the life of the rolling bearing material can be predicted with high accuracy without a rolling life test.

【0011】前記数式Yとしては、次式で表現されるも
のを採用することができる。
The formula Y can be expressed by the following formula.

【0012】 Y= exp{α1 ・(A系非金属介在物の影響指数)+α2 ・(B+C系非金属 介在物の影響指数)+β} (1) 前記数式Yとしては、次式で表現されるものも採用する
ことができる。
Y = exp {α 1 · (index of influence of non-metallic inclusions of A series) + α 2 · (index of influence of non-metallic inclusions of B + C) + β} (1) What is done can also be adopted.

【0013】 Y= exp{α3 ・(B+C系非金属介在物の影響指数)+β2 } (2) ここに、非金属介在物の分類:JIS法によるもの k:介在物サイズ(離散変数;μm) f(k) :介在物サイズkの度数分布(離散化した分布)
の近似式 α1 、α2 、α3 、β1 、β2 、γ:定数 m:任意の整数 前記各数式Yを指数関数としたのは、転がり軸受の寿命
の内部欠陥因子によるばらつきの分布は、ワイブル分布
に代表される指数分布に近いからである。前記影響指数
において、度数分布の近似式f(k) に重み係数kr を乗
じたのは、サイズkの大きい介在物ほど前記内部欠陥因
子として大きく作用するからである。
Y = exp {α 3 · (B + C-based non-metallic inclusion index) + β 2 } (2) where the classification of non-metallic inclusions is based on the JIS method k: Inclusion size (discrete variable; μm) f (k): Frequency distribution of inclusion size k (discrete distribution)
Α 1 , α 2 , α 3 , β 1 , β 2 , γ: constant m: any integer The above-mentioned formula Y is an exponential function because of the distribution of the variation of the life of a rolling bearing due to internal defect factors. Is close to an exponential distribution represented by the Weibull distribution. In the influence index, the approximation formula f (k) of the frequency distribution is multiplied by the weight coefficient k r because inclusions having a larger size k act more as the internal defect factor.

【0014】また、所定の転動試験後におけるX線回折
での半価幅の低下量Xを材料の強度パラメータとし、こ
の半価幅の低下量Xを前記予測式に包含させることによ
り、転がり軸受用材料の寿命予測に前記強度因子の影響
を取り込み、寿命予測精度をさらに向上させることがで
きる。なお、半価幅の低下量Xを調べるための転動試験
は、試験片が破損するまで行う必要がないので、転動寿
命試験よりは遙に短時間で終了することができる。
[0014] Further, the reduction amount X of the half width in X-ray diffraction after a predetermined rolling test is used as the strength parameter of the material, and the reduction amount X of the half width is included in the above-mentioned prediction formula, whereby the rolling is performed. The influence of the strength factor is taken into the life prediction of the bearing material, and the life prediction accuracy can be further improved. Note that the rolling test for examining the reduction X of the half-value width does not need to be performed until the test piece is broken, and therefore can be completed in a much shorter time than the rolling life test.

【0015】本発明者らは、転がり軸受用材料の強度因
子は、材料の転動に伴う組織変化や材質変化の生じ難さ
に依存すると考え、表1に示す3チャージの鋼種につい
て、それぞれ熱処理条件を標準焼入れと浸炭窒化処理の
2種類に変えた計6種類の鋼材に対して、転動寿命試験
と一定時間転動毎にX線回折の半価幅を測定する転動試
験を行った。転動寿命試験と転動試験の試験条件は表2
に示す通りである。
The present inventors believe that the strength factor of the rolling bearing material depends on the structural change and the difficulty of the material change accompanying the rolling of the material. A rolling life test and a rolling test to measure the half-width of X-ray diffraction for each rolling over a certain period of time were performed on a total of six types of steel, with the conditions changed to two types of standard quenching and carbonitriding. . Table 2 shows the test conditions for the rolling life test and rolling test.
As shown in FIG.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】前記半価幅の測定は、材料表面近傍におけ
る複数の深さ位置で行い、転動時間に対して各深さ位置
における実測半価幅をプロットしたものを累乗分布で近
似し、1000分および2000分転動後の半価幅の低
下量Xを求めた。
The half width is measured at a plurality of depth positions in the vicinity of the material surface, and the measured half width at each depth position is plotted against the rolling time by approximating a power distribution. The reduction amount X of the half-value width after rolling for 2,000 minutes and 2,000 minutes was determined.

【0019】図1に、半価幅の低下量Xと転動寿命試験
から求めた寿命L10との関係をプロットしたグラフの
例を示す。図1(a)は、材料表面における2000分
転動後の半価幅の低下量Xと寿命L10との関係、図1
(b)は、材料表面から0.1mm深さの位置における
1000分転動後の半価幅の低下量Xと寿命L10との
関係である。いずれの場合も両者は高い線形の相関関係
を示し、半価幅の低下量Xが大きくなると寿命L10は
直線的に低下する。この結果に基づいて、転がり軸受用
材料の強度因子を表現する強度パラメータとして半価幅
の低下量Xを用いるようにした。
FIG. 1 shows an example of a graph in which the relationship between the reduction amount X of the half width and the life L10 obtained from the rolling life test is plotted. FIG. 1A shows the relationship between the reduction amount X of the half width at 2000 minutes after rolling on the material surface and the life L10.
(B) is a relationship between the reduction amount X of the half-value width after rolling for 1000 minutes at a position 0.1 mm deep from the material surface and the life L10. In both cases, the two show a high linear correlation, and the life L10 decreases linearly with an increase in the half value width X. Based on this result, the half value width reduction X was used as a strength parameter expressing the strength factor of the rolling bearing material.

【0020】前記半価幅の低下量Xを前記予測式に包含
させる形としては、低下量Xを線形表現で組み込んだ次
式を採用することができる。
As a form in which the reduction amount X of the half width is included in the prediction formula, the following expression incorporating the reduction amount X in a linear expression can be adopted.

【0021】 予測寿命 = Y・(a・X+b) (4) ここに、 a、b:定数 さらに、この発明の転がり軸受用材料の寿命予測方法
は、JIS法分類によるB+C系非金属介在物につい
て、転がり軸受用材料の部分被検面積における介在物サ
イズの分布に基づいて、転がり軸受用材料の所定寸法に
相当する断面積または体積中での前記介在物の最大サイ
ズを、極値統計法を用いて推定し、この推定された介在
物の最大サイズにより、転がり軸受用材料の寿命を予測
する方法も採用することができる。
Predicted life = Y · (a · X + b) (4) where a and b are constants. Further, the life prediction method of the rolling bearing material of the present invention is based on B + C non-metallic inclusions according to JIS classification. The maximum size of the inclusions in a cross-sectional area or volume corresponding to a predetermined dimension of the rolling bearing material is determined by an extreme value statistical method, based on the distribution of the inclusion sizes in the partial test area of the rolling bearing material. A method of estimating the life of the rolling bearing material based on the estimated maximum size of the inclusion can also be adopted.

【0022】この寿命予測方法は、介在物サイズの分布
をわずかの部分被検面積で測定し、極値統計法を用いて
軸受部品相当の寸法における介在物の最大サイズを推定
し、この介在物の推定最大サイズで転がり軸受用材料の
寿命を予測する簡便法であり、上述した各寿命予測方法
に比べると予測精度は若干低下する。被検面積での介在
物の測定には画像解析法等を用いることができる。
In this life prediction method, the size distribution of inclusions is measured with a small area to be inspected, the maximum size of inclusions in dimensions equivalent to a bearing component is estimated using an extreme value statistical method, and the size of the inclusions is estimated. This is a simple method for estimating the life of the rolling bearing material at the estimated maximum size described above, and the prediction accuracy is slightly lower than each of the life estimation methods described above. An image analysis method or the like can be used for measuring inclusions in the area to be inspected.

【0023】対象とする介在物としてB+C系非金属介
在物を選定したのは、以下の理由による。
The B + C non-metallic inclusions were selected as inclusions for the following reasons.

【0024】本発明者らは、非金属介在物の形態や大き
さが異なる約20の鋼材について、表2に示した試験条
件での転動寿命試験と、画像解析装置を用いた非金属介
在物の調査を行った。画像解析による非金属介在物の調
査は、サンプルの被検面積を300mm2 として、2値
化分別処理によりA系非金属介在物とB+C系非金属介
在物を分類し、それぞれの種類のものについて各介在物
の面積を測定した。この測定結果に基づいて、極値統計
法により各サンプルの30000mm2 断面における最
大介在物の面積Smax を推定し、各系の非金属介在物に
ついて、このSmax と転動寿命試験から求めた寿命L1
0との相関関係を調べた。
The present inventors conducted a rolling life test on about 20 steel materials having different forms and sizes of nonmetallic inclusions under the test conditions shown in Table 2 and a nonmetallic inclusion test using an image analyzer. The thing was investigated. Investigation of non-metallic inclusions by image analysis was conducted by classifying the A-type nonmetallic inclusions and B + C-type nonmetallic inclusions by binarization and fractionation processing with the sample area of the sample being 300 mm 2. The area of each inclusion was measured. Based on this measurement result, the area Smax of the largest inclusion in the 30,000 mm 2 section of each sample was estimated by the extreme value statistical method, and for the nonmetallic inclusions of each system, the Smax and the life L1 obtained from the rolling life test were determined.
The correlation with 0 was examined.

【0025】図2(a)は、B+C系非金属介在物のS
max(B+C)の平方根と寿命L10との関係、図2(b)
は、A系非金属介在物のSmax(A)の平方根と寿命L10
との相関関係を示す。B+C系非金属介在物の√(Sma
x(B+C))と寿命L10は、次式に示す比例関係にあり、
良い相関を示す。
FIG. 2 (a) shows the S + of B + C-based nonmetallic inclusions.
Relationship between the square root of max (B + C) and the life L10, FIG. 2 (b)
Is the square root of Smax (A) and the life L10 of the A-based nonmetallic inclusion.
The correlation with is shown. + (Sma of B + C non-metallic inclusions
x (B + C)) and the life L10 are in a proportional relationship shown in the following equation.
Show good correlation.

【0026】 L10 ∝{√(Smax(A))}-2.16 (5) 一方、A系非金属介在物の√(Smax(A))は寿命L10
とあまり相関が認められず、√(Smax(A))を説明変量
に加えて重回帰分析を行っても、寿命L10との重相関
係数は高くなるが、自由度二重調整寄与率は却って低く
なる。この知見に基づいて、簡便な転がり軸受用材料の
寿命予測方法として、B+C系非金属介在物の推定最大
サイズを用いる方法を採用した。
L10 {(Smax (A))} -2.16 (5) On the other hand, {(Smax (A)) of the A-based nonmetallic inclusion indicates the life L10
And a multiple regression analysis with √ (Smax (A)) added to the explanatory variable, the multiple correlation coefficient with the life L10 is high, but the degree of freedom double adjustment contribution rate is On the contrary, it gets lower. Based on this finding, a method using the estimated maximum size of B + C-based nonmetallic inclusions was adopted as a simple method for estimating the life of a rolling bearing material.

【0027】また、この発明の転がり軸受は、JIS法
分類によるA系非金属介在物およびB+C系非金属介在
物について、転がり軸受用材料の所定の被検面積におけ
る、各介在物の面積の平方根n(μm)の離散化した度
数分布をそれぞれ指数関数f(n) で近似し、以下の数式
0 で表現される予測寿命L10(10%が破損する寿
命)が9×107 以上となるように識別した転がり軸受
用材料を用いた構成を採用したものである。
Further, the rolling bearing according to the present invention is characterized in that, for A type nonmetallic inclusions and B + C type nonmetallic inclusions according to the JIS method classification, the square root of the area of each inclusion in a predetermined test area of the rolling bearing material. The discrete frequency distributions of n (μm) are each approximated by an exponential function f (n), and the expected life L10 (lifetime at which 10% is damaged) expressed by the following formula Y 0 is 9 × 10 7 or more. A configuration using the rolling bearing material identified as above is employed.

【0028】 Y0 = exp{−9.52×10-6・(A系非金属介在物の影響指数)−6.94×10-5・ (B+C系非金属介在物の影響指数)+18.63 } (6) ここに、 f(n) =d1 ・ exp(−d2 ・n) (8) d1 、d2 :回帰定数 図3は、被検面積300mm2 におけるB+C系非金属
介在物の面積の平方根n(μm)の度数分布を画像解析
装置により測定した例を示す。平方根nは1μmおきに
離散化した変数であり、例えば、n=4μmの度数は、
3.5μm≦n<4.5μmの範囲の介在物の度数を表
す。この他にもいくつかの鋼材について度数分布を測定
したが、いずれの度数分布も図3に示したような指数分
布であったので、介在物の面積の平方根nの度数分布を
指数関数f(n) で近似した。なお、n≧31の度数は十
分に小さな値となるので、影響指数の算出に際しては無
視した。また、従来の代表的な軸受用鋼SUJ2の寿命
L10の平均値は6×10 7 程度であるので、前記予測
寿命L10の識別値をその1.5倍長寿命の9×107
とした。
Y0= Exp {−9.52 × 10-6・ (Influence index of A-type nonmetallic inclusions)-6.94 x 10-Five・ (B + C-based non-metallic inclusion index) + 18.63 + (6) where f (n) = d1Exp (-dTwo・ N) (8) d1, DTwo: Regression constant Fig. 3 shows the test area 300mmTwoB + C non-metals in Japan
Image analysis of frequency distribution of square root n (μm) of inclusion area
The example which measured with the apparatus is shown. Square root n every 1 μm
It is a discretized variable. For example, the frequency of n = 4 μm is
The frequency of inclusions in the range of 3.5 μm ≦ n <4.5 μm is shown.
You. Measure frequency distribution of several other steel materials
However, all frequency distributions have exponential components as shown in FIG.
Since it was cloth, the frequency distribution of the square root n of the area of the inclusion was
It was approximated by an exponential function f (n). Note that the frequency of n ≧ 31 is ten
Since it is a small value per minute, there is no
I watched. In addition, the life of the conventional typical bearing steel SUJ2
The average value of L10 is 6 × 10 7Degree, so the prediction
The identification value of the life L10 is set to 9 × 10 which is 1.5 times longer7
And

【0029】この発明の転がり軸受は、JIS法分類に
よるB+C系非金属介在物について、転がり軸受用材料
の所定の被検面積における、介在物の面積の平方根n
(μm)の離散化した度数分布をそれぞれ指数関数f
(n) で近似し、以下の数式Y0 で表現される予測寿命L
10(10%が破損する寿命)が9×107 以上となる
ように識別した転がり軸受用材料を用いた構成も採用す
ることができる。
According to the rolling bearing of the present invention, for the B + C-based nonmetallic inclusions according to the JIS method classification, the square root n of the area of the inclusions in the predetermined test area of the material for the rolling bearings
(Μm) is represented by an exponential function f
(n), and the expected life L expressed by the following formula Y 0
A configuration using a rolling bearing material identified so that 10 (lifetime at which 10% is damaged) is 9 × 10 7 or more can also be adopted.

【0030】 Y0 = exp{−8.94×10-5・(B+C系非金属介在物の影響指数)+18.13 } (9) ここに、 f(n) =d1 ・ exp(−d2 ・n) (8) d1 、d2 :回帰定数 この発明の転がり軸受は、JIS法分類によるA系非金
属介在物およびB+C系非金属介在物について、転がり
軸受用材料の所定の被検面積における、各介在物の面積
の平方根n(μm)の離散化した度数分布をそれぞれ指
数関数f(n) で近似するとともに、この材料の2000
分間の転動試験後における材料表面のX線回折での半価
幅の低下量をX(°)とし、以下の数式Y1 で表現され
る予測寿命L10(10%が破損する寿命)が9×10
7 以上となるように識別した転がり軸受用材料を用いた
構成も採用することができる。
Y 0 = exp {−8.94 × 10 −5 · (influence index of B + C-based nonmetallic inclusion) +18.13} (9) f (n) = d 1 · exp (−d 2 · n) (8) d 1 , d 2 : regression constant The rolling bearing of the present invention is an A type nonmetallic inclusion and a B + C type nonmetallic inclusion according to the JIS classification. With respect to the object, the discretized frequency distribution of the square root n (μm) of the area of each inclusion at a predetermined test area of the rolling bearing material is approximated by an exponential function f (n), and the 2000
Minutes of the decrease in the half width of the X-ray diffraction of the material surface after the rolling test and X (°), the following equation Y 1 expected life L10 represented by (lifetime 10% damage) of 9 × 10
A configuration using a rolling bearing material identified to be 7 or more can also be adopted.

【0031】 Y1 =Y0 ・(−2.79X+4.01) (10) ここに、 Y0 = exp{−9.52×10-6・(A系非金属介在物の影響指数)−6.94×10-5・ (B+C系非金属介在物の影響指数)+18.63 } (11) f(n) =d1 ・ exp(−d2 ・n) (13) d1 、d2 :回帰定数 さらに、この発明の転がり軸受は、JIS法分類による
各B+C系非金属介在物について、転がり軸受用材料の
所定の部分被検面積における、介在物の面積Sの分布に
基づいて、材料の所定寸法に相当する断面積または体積
中での前記面積Sの最大値Smax を極値統計法により推
定し、この推定した最大値Smax の平方根が12.2μ
m以下と識別された転がり軸受用材料を用いた構成も採
用することができる。
Y 1 = Y 0 · (−2.79X + 4.01) (10) Here, Y 0 = exp {−9.52 × 10 −6. (Influence index of A-type nonmetallic inclusion) −6.94 × 10 − 5. (B + C-based nonmetallic inclusion index) + 18.63} (11) f (n) = d 1 · exp (−d 2 · n) (13) d 1 , d 2 : regression constant Further, the rolling bearing of the present invention rolls for each B + C non-metallic inclusion according to the JIS classification. The maximum value Smax of the area S in the cross-sectional area or volume corresponding to the predetermined dimension of the material is determined by the extreme value statistical method based on the distribution of the area S of the inclusion in the predetermined partial test area of the bearing material. And the square root of the estimated maximum value Smax is 12.2 .mu.m.
A configuration using a rolling bearing material identified as m or less can also be employed.

【0032】前記最大値Smax の平方根の識別値12.
2μmは、図2(a)に示したB+C系非金属介在物の
Smax(B+C)の平方根と寿命L10との相関関係に基づい
て決定したものであり、L10=9×107 に相当す
る。
11. An identification value of the square root of the maximum value Smax.
2 μm is determined based on the correlation between the square root of Smax (B + C) of the B + C-based nonmetallic inclusion and the life L10 shown in FIG. 2A, and corresponds to L10 = 9 × 10 7 . I do.

【0033】[0033]

【発明の実施の形態】以下、この発明の実施形態を実施
例に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples.

【0034】[0034]

【実施例】(実施例1)軸受用鋼SUJ2およびSUJ
3についてそれぞれ3チャージと、表1に示したC鋼に
ついて1チャージの鋼材を溶製した。各チャージで溶製
した鋼材を標準焼入れしたものと、SUJ2、SUJ3
各1チャージ(表3中のA1、B1)およびC鋼の1チ
ャージ(表3中のC)で溶製した鋼材については浸炭窒
化処理したものも用意し、これらの各鋼材から転動寿命
試験および転動試験用の試験片と、非金属介在物測定用
のサンプルを作製した。
EXAMPLES (Example 1) Bearing steel SUJ2 and SUJ2
For each of the three steels, three charges were prepared, and for the C steel shown in Table 1, one charge of the steel material was melted. Standard quenched steel material melted at each charge, SUJ2, SUJ3
For the steel materials produced by one charge (A1, B1 in Table 3) and one charge of C steel (C in Table 3), carbonitrided steels were also prepared, and rolling life tests were performed from these steel materials. In addition, a test piece for a rolling test and a sample for measuring nonmetallic inclusions were produced.

【0035】[0035]

【表3】 [Table 3]

【0036】表3に示す各鋼材について、2000分間
の転動試験前後の試験片表面におけるX線回折の半価幅
の測定と、画像解析装置による各サンプルの被検面積3
00mm2 における非金属介在物サイズの度数分布測定
を行った。また、本発明の転がり軸受用材料の寿命予測
方法の予測精度を検証するために、各鋼材毎に10個ず
つの試験片について転動寿命試験を行い、寿命L10の
実測値を求めた。なお、転動寿命試験と転動試験の試験
条件は、表2に示したものと同じである。
For each steel material shown in Table 3, measurement of the half-value width of X-ray diffraction on the surface of the test piece before and after the rolling test for 2000 minutes, and the area of the sample 3
A frequency distribution measurement of the nonmetallic inclusion size at 00 mm 2 was performed. In addition, in order to verify the prediction accuracy of the method for estimating the life of the rolling bearing material of the present invention, a rolling life test was performed on ten test pieces for each steel material, and an actual measured value of the life L10 was obtained. The test conditions of the rolling life test and the rolling test are the same as those shown in Table 2.

【0037】前記介在物サイズの度数分布は、A系非金
属介在物とB+C系非金属介在物とに分け、介在物面積
の平方根n(μm)を1μmおきに離散化して求めた。
これらの各度数分布を(13)式を用いて指数関数に近
似し、(11)式および(12)式により、材料の内部
欠陥度合いのパラメータである数式Y0 の値を算出し
た。
The frequency distribution of the inclusion size was determined by dividing the A-based non-metallic inclusions and the B + C-based non-metallic inclusions and discretizing the square root n (μm) of the inclusion area every 1 μm.
Each of these frequency distribution of (13) is approximated to an exponential function with, (11) the formula and (12), and calculates the value of the equation Y 0 is a parameter of an internal defect degree of the material.

【0038】一方、転動試験前後の半価幅の測定値か
ら、2000分転動後の半価幅の低下量X(°)を求
め、(10)式により寿命L10の予測値を算出した。
On the other hand, from the measured values of the half width before and after the rolling test, the reduction amount X (°) of the half width after rolling for 2000 minutes was obtained, and the predicted value of the life L10 was calculated by the equation (10). .

【0039】表3に各鋼材の寿命L10の予測値と実測
値を対比して示す。予測値と実測値の比は0.73〜
1.77の範囲に入っており、同一鋼種であっても10
倍以上の寿命比でばらつく転がり軸受用材料の寿命L1
0を精度よく予測できることがわかる。
Table 3 shows a comparison between the predicted value and the actually measured value of the life L10 of each steel material. The ratio between the predicted value and the measured value is 0.73 ~
1.77, and even 10
Life L1 of rolling bearing material that fluctuates at more than twice the life ratio
It can be seen that 0 can be accurately predicted.

【0040】この実施例では、表3中のA1、B1、C
の各チャージのものを浸炭窒化した材料と、B1チャー
ジのものを標準焼入れした材料を、寿命L10が9×1
7以上と識別して軸受用材料として用い、長寿命の転
がり軸受を製造するようにした。 (実施例2)約20チャージの軸受用鋼SUJ2を標準
焼入れした鋼材について、非金属介在物測定用のサンプ
ルを用意し、画像解析装置により各サンプルの被検面積
300mm2 における非金属介在物サイズの度数分布を
測定した。また、実施例1と同様に、表2に示した試験
条件で転動寿命試験を行い、この寿命予測方法の予測精
度を検証するために、実測の寿命L10を求めた。
In this embodiment, A1, B1, C in Table 3
A material obtained by carbo-nitriding each of the charged materials and a material obtained by standard quenching of the charged B1 were charged with a life L10 of 9 × 1
Identified as 0 7 or used as a material for bearings and so as to produce a rolling bearing of long lifetime. (Example 2) A sample for measuring non-metallic inclusions was prepared from a steel material obtained by standard quenching of about 20 charge bearing steel SUJ2, and the size of the non-metallic inclusions at a test area of 300 mm 2 of each sample was prepared by an image analyzer. Was measured. Further, as in Example 1, a rolling life test was performed under the test conditions shown in Table 2, and an actually measured life L10 was obtained in order to verify the prediction accuracy of the life prediction method.

【0041】前記介在物サイズの度数分布は、実施例1
と同様に、A系非金属介在物とB+C系非金属介在物と
に分け、介在物面積の平方根n(μm)を1μmおきに
離散化して求めた。測定した各度数分布を(8)式を用
いて指数関数に近似し、(7)式で求めた各非金属介在
物の影響指数を、(6)式と(9)式に代入し、寿命L
10の予測値としてそれぞれの数式Y0 の値を算出し
た。
The frequency distribution of the inclusion sizes is shown in Example 1.
Similarly to the above, it was divided into A-based nonmetallic inclusions and B + C-based nonmetallic inclusions, and the square root n (μm) of the inclusion area was discretized every 1 μm. Each measured frequency distribution is approximated to an exponential function using equation (8), and the influence index of each non-metallic inclusion determined by equation (7) is substituted into equations (6) and (9) to obtain a life span. L
The value of each formula Y 0 was calculated as 10 predicted values.

【0042】図4は、各鋼材について求めた寿命L10
の予測値と実測値の相関関係を示す。図4(a)は、A
系非金属介在物とB+C系非金属介在物の両者の度数分
布を採用した(6)式の予測値Y0 を採用したもの、図
4(b)は、B+C系非金属介在物のみの度数分布を採
用したものである。
FIG. 4 shows the life L10 obtained for each steel material.
The correlation between the predicted value and the actually measured value is shown. FIG.
FIG. 4 (b) shows the frequency of only the B + C non-metallic inclusions when the predicted value Y 0 of the equation (6) is adopted, which employs the frequency distributions of both the system nonmetallic inclusions and the B + C nonmetallic inclusions. The distribution is adopted.

【0043】寿命L10の予測値Y0 は、図4(a)に
おいては実測値の0.44〜2.41倍の範囲、図4
(b)では、実測値の0.39〜2.62倍の範囲にあ
り、いずれも高い予測精度が得られている。なお、
(6)式と(9)式で求めた各予測値Y0 について自由
度二重調整寄与率を調べたところ、A系非金属介在物も
含めた(6)式のY0 の方が寄与率が高く、統計的に有
意であることが確かめられた。 (実施例3)実施例2と同じ鋼材について、画像解析装
置により各サンプルの被検面積300mm2 におけるB
+C系非金属介在物サイズの度数分布を測定し、極値統
計法により各サンプルの30000mm2 断面における
最大介在物の面積Smax を推定した。図2(a)に示し
たグラフは、この最大介在物の面積Smax の平方根と、
実施例2で求めた寿命L10の実測値との相関関係であ
る。
The predicted value Y 0 of the life L10 is in the range of 0.44 to 2.41 times the actually measured value in FIG.
In (b), the measured value is in the range of 0.39 to 2.62 times the measured value, and high prediction accuracy is obtained in each case. In addition,
When the degree of freedom double adjustment contribution rate was examined for each predicted value Y 0 obtained by the equations (6) and (9), Y 0 in the equation (6) including the A-based nonmetallic inclusions contributed more. The rate was confirmed to be high and statistically significant. (Embodiment 3) For the same steel material as in Embodiment 2 , B was measured by using an image analyzer on each of the test areas of 300 mm 2 .
The frequency distribution of the size of the + C-based nonmetallic inclusion was measured, and the area Smax of the largest inclusion in the 30,000 mm 2 section of each sample was estimated by the extreme value statistical method. The graph shown in FIG. 2A shows the square root of the area Smax of the largest inclusion,
9 is a correlation with the measured value of the life L10 obtained in the second embodiment.

【0044】このグラフにおいて寿命L10=9×10
7 に相当する面積Smax の平方根12.2μmを識別値
とし、推定最大介在物サイズが12.2μm以下のもの
を軸受用材料として用い、長寿命の転がり軸受を製造す
るようにした。
In this graph, the life L10 = 9 × 10
A square root of 12.2 μm of the area Smax corresponding to 7 was used as a discrimination value, and a material having an estimated maximum inclusion size of 12.2 μm or less was used as a bearing material to produce a long-life rolling bearing.

【0045】この寿命予測方法の予測精度は、実施例1
および2で示した方法よりは劣るが、簡便法として採用
することができる。
The prediction accuracy of this life prediction method is described in the first embodiment.
Although it is inferior to the method shown in 2 and 2, it can be adopted as a simple method.

【0046】[0046]

【発明の効果】以上のように、この発明の転がり軸受用
材料の寿命予測方法は、転がり軸受の寿命のばらつきを
大きく左右する材料の内部欠陥度合いのパラメータとし
て、非金属介在物を種類別に分けた各介在物サイズの度
数分布を採用し、この度数分布を数式で定量化したもの
を組み込んだ寿命予測式を用いるようにしたので、転動
寿命試験を実施することなく、短時間で転がり軸受用材
料の寿命を精度よく予測することができる。
As described above, the method for estimating the life of a rolling bearing material according to the present invention classifies nonmetallic inclusions by type as a parameter of the degree of internal defects of the material which largely affects the variation in the life of the rolling bearing. The frequency distribution of each inclusion size was adopted, and the life prediction formula incorporating the quantified frequency distribution was used.Therefore, rolling bearings were completed in a short time without conducting rolling life tests. The life of the application material can be accurately predicted.

【0047】さらに、所定の転動試験後におけるX線回
折での半価幅の低下量Xを材料の強度パラメータとし、
この半価幅の低下量Xを前記寿命予測式に包含させるこ
とにより、転がり軸受用材料の寿命予測に前記強度因子
の影響を取り込み、寿命予測精度をさらに向上させるこ
とができる。
Further, the reduction amount X of the half width at X-ray diffraction after the predetermined rolling test is used as the strength parameter of the material,
By including the reduced amount X of the half width in the life prediction formula, the influence of the strength factor can be taken into the life prediction of the rolling bearing material, and the life prediction accuracy can be further improved.

【0048】また、この発明の転がり軸受は、上述した
各寿命予測式を用いて算出した寿命L10が9×107
以上の材料を識別し、この識別された材料を用いて製造
するようにしたので、長寿命を高精度で保証することが
できる。
In the rolling bearing of the present invention, the life L10 calculated by using the above-described life prediction formulas is 9 × 10 7.
Since the above-mentioned materials are identified and manufactured using the identified materials, long life can be guaranteed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】a、bは、それぞれX線回折での半価幅の低下
量と寿命L10との相関関係を示すグラフ
FIGS. 1a and 1b are graphs each showing a correlation between a reduction amount of a half width at X-ray diffraction and a life L10.

【図2】a、bは、それぞれ非金属介在物の推定最大サ
イズと寿命L10との相関関係を示すグラフ
FIGS. 2A and 2B are graphs each showing a correlation between an estimated maximum size of a nonmetallic inclusion and a life L10.

【図3】非金属介在物のサイズの度数分布の例を示すグ
ラフ
FIG. 3 is a graph showing an example of a frequency distribution of sizes of nonmetallic inclusions.

【図4】a、bは、それぞれ実施例2の寿命予測方法で
求めた寿命L10の予測値と実測値の相関関係を示すグ
ラフ
4A and 4B are graphs each showing a correlation between a predicted value of the life L10 obtained by the life prediction method of the second embodiment and an actually measured value.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 各種類別の非金属介在物について、転が
り軸受用材料の所定の被検面積における介在物サイズの
度数分布を、材料の内部欠陥度合いのパラメータとする
数式Yを作成し、この数式Yを包含する予測式により、
転がり軸受用材料の寿命を予測するようにした転がり軸
受用材料の寿命予測方法。
For each type of non-metallic inclusions, a formula Y is created which uses the frequency distribution of the size of the inclusions in a predetermined test area of the rolling bearing material as a parameter of the degree of internal defect of the material. By the prediction formula including Y,
A method for estimating the life of a rolling bearing material, wherein the method predicts the life of the rolling bearing material.
【請求項2】 前記数式Yが以下のように表現されるも
のである請求項1に記載の転がり軸受用材料の寿命予測
方法。 Y= exp{α1 ・(A系非金属介在物の影響指数)+α
2 ・(B+C系非金属介在物の影響指数)+β1 } ここに、 非金属介在物の分類:JIS法によるもの k:介在物サイズ(離散変数;μm) f(k) :介在物サイズkの度数分布(離散化した分布)
の近似式 α1 、α2 、β1 、γ:定数 m:任意の整数
2. The method for estimating the life of a rolling bearing material according to claim 1, wherein the equation Y is expressed as follows. Y = exp {α 1 · (Influence index of A-based nonmetallic inclusion) + α
2・ (B + C effect index of non-metallic inclusions) + β 1 } Here, classification of non-metallic inclusions: JIS method k: Inclusion size (discrete variable; μm) f (k): Frequency distribution of inclusion size k (discrete distribution)
Α 1 , α 2 , β 1 , γ: constant m: arbitrary integer
【請求項3】 前記数式Yが以下のように表現されるも
のである請求項1に記載の転がり軸受用材料の寿命予測
方法。 Y= exp{α3 ・(B+C系非金属介在物の影響指数)
+β2 } ここに、 非金属介在物の分類:JIS法によるもの k:介在物サイズ(離散変数;μm) f(k) :介在物サイズkの度数分布(離散化した分布)
の近似式 α3 、β2 、γ:定数 m:任意の整数
3. The method for estimating the life of a rolling bearing material according to claim 1, wherein the formula Y is expressed as follows. Y = exp {α 3 · (B + C effect index of nonmetallic inclusions)
+ Β 2 } Here, classification of non-metallic inclusions: JIS method k: Inclusion size (discrete variable; μm) f (k): Frequency distribution of inclusion size k (discrete distribution)
Α 3 , β 2 , γ: constant m: arbitrary integer
【請求項4】 所定の転動試験後におけるX線回折での
半価幅の低下量Xを材料の強度パラメータとし、この半
価幅の低下量Xを前記予測式に包含させた請求項1乃至
3のいずれかに記載の転がり軸受用材料の寿命予測方
法。
4. The method according to claim 1, wherein a reduction amount X of the half width in X-ray diffraction after a predetermined rolling test is used as a strength parameter of the material, and the reduction amount X of the half width is included in the prediction formula. 4. The method for predicting the life of a rolling bearing material according to any one of the above-mentioned items.
【請求項5】 前記半価幅の低下量Xを以下のように前
記予測式に包含させた請求項4に記載の転がり軸受用材
料の寿命予測方法。 予測寿命 = Y・(a・X+b) ここに、 a、b:定数
5. The method for predicting the life of a rolling bearing material according to claim 4, wherein the reduction amount X of the half width is included in the prediction formula as follows. Expected life = Y · (a · X + b) where a and b are constants
【請求項6】 JIS法分類によるB+C系非金属介在
物について、転がり軸受用材料の部分被検面積における
介在物サイズの分布に基づいて、転がり軸受用材料の所
定寸法に相当する断面積または体積中での前記介在物の
最大サイズを、極値統計法を用いて推定し、この推定さ
れた介在物の最大サイズにより、転がり軸受用材料の寿
命を予測するようにした転がり軸受用材料の寿命予測方
法。
6. A cross-sectional area or volume corresponding to a predetermined dimension of a rolling bearing material based on a distribution of inclusion sizes in a partial test area of the rolling bearing material for B + C-based nonmetallic inclusions according to JIS classification. The maximum size of the inclusions in the, the extreme value statistical method is used to estimate, the estimated maximum size of the inclusions, the life of the rolling bearing material to predict the life of the rolling bearing material, Forecasting method.
【請求項7】 JIS法分類によるA系非金属介在物お
よびB+C系非金属介在物について、転がり軸受用材料
の所定の被検面積における、各介在物の面積の平方根n
(μm)の離散化した度数分布をそれぞれ指数関数f
(n) で近似し、以下の数式Y0 で表現される予測寿命L
10(10%が破損する寿命)が9×107 以上となる
ように識別した転がり軸受用材料を用いた転がり軸受。 Y0 = exp{−9.52×10-6・(A系非金属介在物の影響
指数)−6.94×10-5・(B+C系非金属介在物の影響指
数)+18.63 } ここに、 f(n) =d1 ・ exp(−d2 ・n) d1 、d2 :回帰定数
7. A square root n of an area of each inclusion in a predetermined test area of a rolling bearing material for an A-based nonmetallic inclusion and a B + C-based nonmetallic inclusion according to JIS classification.
(Μm) is represented by an exponential function f
(n), and the expected life L expressed by the following formula Y 0
A rolling bearing using a rolling bearing material identified so that 10 (lifetime at which 10% is damaged) is 9 × 10 7 or more. Y 0 = exp {−9.52 × 10 −6 (influence index of A-based nonmetallic inclusions) −6.94 × 10 −5 ((B + C-based nonmetallic inclusions) +18.63} f (n) = d 1 · exp (−d 2 · n) d 1 , d 2 : regression constant
【請求項8】 JIS法分類によるB+C系非金属介在
物について、転がり軸受用材料の所定の被検面積におけ
る、介在物の面積の平方根n(μm)の離散化した度数
分布をそれぞれ指数関数f(n) で近似し、以下の数式Y
0 で表現される予測寿命L10(10%が破損する寿
命)が9×107 以上となるように識別した転がり軸受
用材料を用いた転がり軸受。 Y0 = exp{−8.94×10-5・(B+C系非金属介在物の
影響指数)+18.13 } ここに、 f(n) =d1 ・ exp(−d2 ・n) d1 、d2 :回帰定数
8. For the B + C non-metallic inclusions classified by the JIS method, the discretized frequency distribution of the square root n (μm) of the area of the inclusions in a predetermined test area of the rolling bearing material is represented by an exponential function f. (n) and the following formula Y
A rolling bearing using a rolling bearing material identified such that a predicted life L10 (life at which 10% is broken) represented by 0 is 9 × 10 7 or more. Y 0 = exp {−8.94 × 10 −5 (influence index of B + C-based nonmetallic inclusion) +18.13 に where f (n) = d 1 · exp (−d 2 · n) d 1 , d 2 : regression constant
【請求項9】 JIS法分類によるA系非金属介在物お
よびB+C系非金属介在物について、転がり軸受用材料
の所定の被検面積における、各介在物の面積の平方根n
(μm)の離散化した度数分布をそれぞれ指数関数f
(n) で近似するとともに、この材料の2000分間の転
動試験後における材料表面のX線回折での半価幅の低下
量をX(°)とし、以下の数式Y1 で表現される予測寿
命L10(10%が破損する寿命)が9×107 以上と
なるように識別した転がり軸受用材料を用いた転がり軸
受。 Y1 = exp{−9.52×10-6・(A系非金属介在物の影響
指数)−6.94×10-5・(B+C系非金属介在物の影響指
数)+18.63 }・(−2.79X+4.01) ここに、 f(n) =d1 ・ exp(−d2 ・n) d1 、d2 :回帰定数
9. A square root n of an area of each inclusion in a predetermined test area of a rolling bearing material for an A-based nonmetallic inclusion and a B + C-based nonmetallic inclusion according to JIS classification.
(Μm) is represented by an exponential function f
with approximated by (n) predicted, the amount of decrease in half-width of X-ray diffraction of the material surface after the rolling test 2000 minutes of this material as X (°), which is represented by formula Y 1 below A rolling bearing using a rolling bearing material identified so that its life L10 (life at which 10% is damaged) is 9 × 10 7 or more. Y 1 = exp {−9.52 × 10 −6. (Influence index of A type non-metallic inclusions) −6.94 × 10 −5. (Influence index of B + C type non-metallic inclusions) +18.63 Δ ・ (−2.79 × + 4 .01) where f (n) = d 1 · exp (−d 2 · n) d 1 , d 2 : regression constant
【請求項10】 JIS法分類による各B+C系非金属
介在物について、転がり軸受用材料の所定の部分被検面
積における、介在物の面積Sの分布に基づいて、材料の
所定寸法に相当する断面積または体積中での前記面積S
の最大値Smax を極値統計法により推定し、この推定し
た最大値Smax の平方根が12.2μm以下と識別され
た転がり軸受用材料を用いた転がり軸受。
10. For each B + C-based non-metallic inclusion according to the JIS method classification, based on the distribution of the area S of the inclusion in a predetermined partial test area of the rolling bearing material, a cut corresponding to a predetermined size of the material. The area S in area or volume
The maximum value Smax of the rolling bearing is estimated by an extreme value statistical method, and the square root of the estimated maximum value Smax is identified as 12.2 μm or less.
JP24512799A 1999-08-31 1999-08-31 Life prediction method for rolling bearing material and life identification method for rolling bearing material Expired - Fee Related JP4204146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24512799A JP4204146B2 (en) 1999-08-31 1999-08-31 Life prediction method for rolling bearing material and life identification method for rolling bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24512799A JP4204146B2 (en) 1999-08-31 1999-08-31 Life prediction method for rolling bearing material and life identification method for rolling bearing material

Publications (2)

Publication Number Publication Date
JP2001065560A true JP2001065560A (en) 2001-03-16
JP4204146B2 JP4204146B2 (en) 2009-01-07

Family

ID=17129038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24512799A Expired - Fee Related JP4204146B2 (en) 1999-08-31 1999-08-31 Life prediction method for rolling bearing material and life identification method for rolling bearing material

Country Status (1)

Country Link
JP (1) JP4204146B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035656A (en) * 2001-07-25 2003-02-07 Koyo Seiko Co Ltd Method for estimating lifetime of bearing steel
JP2003075328A (en) * 2001-09-06 2003-03-12 Koyo Seiko Co Ltd Service life estimation method for bearing steel
WO2003060507A1 (en) * 2002-01-17 2003-07-24 Nsk Ltd. Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
JP2009186463A (en) * 2008-01-18 2009-08-20 Rolls Royce Plc Novelty detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035656A (en) * 2001-07-25 2003-02-07 Koyo Seiko Co Ltd Method for estimating lifetime of bearing steel
JP4706140B2 (en) * 2001-07-25 2011-06-22 株式会社ジェイテクト Life estimation method for bearing steel
JP2003075328A (en) * 2001-09-06 2003-03-12 Koyo Seiko Co Ltd Service life estimation method for bearing steel
WO2003060507A1 (en) * 2002-01-17 2003-07-24 Nsk Ltd. Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
CN100390534C (en) * 2002-01-17 2008-05-28 日本精工株式会社 Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
JP2009186463A (en) * 2008-01-18 2009-08-20 Rolls Royce Plc Novelty detection

Also Published As

Publication number Publication date
JP4204146B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
Wei et al. Mechanical wear debris feature, detection, and diagnosis: A review
Shimizu et al. New data analysis of probabilistic stress-life (P–S–N) curve and its application for structural materials
Abu-Nabah et al. High-frequency eddy current conductivity spectroscopy for residual stress profiling in surface-treated nickel-base superalloys
Dudragne FROM CLEANLINESS TO R~ OLLING FATIGUE LIFE OF BEARINGS A NEW APPROACH
CN109766518B (en) Uncertain accelerated degradation modeling and analyzing method considering sample individual difference
JP2001065560A (en) Method for forecasting life of material for rolling bearing and rolling bearing having long life discriminated by forecasting life
Hashmi et al. Exploiting fractal features to determine fatigue crack growth rates of metallic materials
JP3675665B2 (en) Method of measuring fatigue level due to rolling fatigue
Sorsa et al. A data-based modelling scheme for estimating residual stress from Barkhausen noise measurements
JP4706140B2 (en) Life estimation method for bearing steel
Jeong On Numerical Analyses of Rail Steel Fatigue Crack Growth Data
JP2008196622A (en) Method for predicting service life of material for rolling bearing, and rolling bearing having long service life discriminated by predicting service life
Oguma Prediction of residual fatigue life of bearings, Part 1: Application of X-ray diffraction method
Kumar et al. Microinclusion evaluation using various standards
CN111638148A (en) Method for testing S-N curve of similar metal material
JP2008196623A (en) Method for predicting service life of material for rolling bearing, and rolling bearing having long service life discriminated by predicting service life
Kujawski et al. A Method to Estimate Fatigue Limit using (1/Nf)-S Curve
Meged Modeling of vibratory cavitation erosion test results by a Weibull distribution
EP3889569B1 (en) Ambient-hydrogen-level assessment method and white-structure-damage-likelihood prediction method
JP6683301B1 (en) Hydrogen environment degree judgment method and white tissue damage possibility prediction method
Machowski et al. Testing of steel local mechanical properties as random functions
Simo et al. Bayesian analysis for determination and uncertainty assessment of strength and crack growth parameters of brittle materials
CN113627049B (en) Method for evaluating fatigue strength of ultra-high-strength steel large sample in ultra-long service life
Mikosianchyk et al. Estimation of tribotechnical characteristics and signals of acoustic emission for a friction pair of steel 30HGSA and duraluminium D16 modified by an alloy VK8
Stanley Development of non-linear stochastic fatigue crack growth models for structural grade steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees