JP2001064040A - Coated optical fiber - Google Patents

Coated optical fiber

Info

Publication number
JP2001064040A
JP2001064040A JP24287099A JP24287099A JP2001064040A JP 2001064040 A JP2001064040 A JP 2001064040A JP 24287099 A JP24287099 A JP 24287099A JP 24287099 A JP24287099 A JP 24287099A JP 2001064040 A JP2001064040 A JP 2001064040A
Authority
JP
Japan
Prior art keywords
resin
turbidity
coating layer
optical fiber
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24287099A
Other languages
Japanese (ja)
Inventor
Kazunori Tanaka
和典 田中
Atsushi Suzuki
厚 鈴木
Tomoyuki Hattori
知之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24287099A priority Critical patent/JP2001064040A/en
Publication of JP2001064040A publication Critical patent/JP2001064040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent strength of an optical fiber from being deteriorated in a deteriorative environment under no stress by forming plural coated layers consisting of an ultraviolet ray-curing resin around a glass fiber based on quartz glass and specifying the pH and the turbidity of the resin of at least the lowermost layer of the coated layers. SOLUTION: The coated optical fiber 4 is obtained by forming two or more coated layers, first and second layers 2, 3, consisting of the ultraviolet ray-curing resin around the glass fiber 1 based on quartz glass. The ultraviolet ray-curing resin of at least the first coated layer 2 is made to have 8.0 or lower pH and 0.2 or higher turbidity. The pH and turbidity are adjusted, for example in the case of urethane-acrylate resin, by the selection of material kinds of the component materials and by adjusting the mixing amount of alkaline materials such as amine additives and other materials having polar groups. When the resin of the layer 2 has such pH and turbidity, the fiber 1 in high temperature water under no stress is prevented from being deteriorated and has around 90% or higher breaking strength holding rate. When the resin of the second coated layer 3 has also the similar pH and turbidity, the breaking strength holding rate can be made into almost 100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石英ガラスを主成
分とするガラスファイバ上に2層以上の紫外線硬化型樹
脂からなる被覆層を設けた被覆光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated optical fiber in which a coating layer made of at least two ultraviolet-curable resins is provided on a glass fiber mainly composed of quartz glass.

【0002】[0002]

【従来の技術】石英ガラスを主成分とするガラスファイ
バ上に紫外線硬化型樹脂からなる被覆層を設けた被覆光
ファイバにおいては、被覆層を中性又は酸性の状態にす
ることによって、被覆光ファイバの長期使用時のガラス
ファイバ強度の低下を抑制出来るということが、特開平
6−250053号公報、J.Am.Ceram.So
c.,71[3]177−83(1988)(M.JO
HN MATTHEWSON他)「Environme
ntal Effects on the Stati
c Fatigue of Silica Optic
al Fiber」等において知られている。
2. Description of the Related Art In a coated optical fiber in which a coating layer made of a UV-curable resin is provided on a glass fiber mainly composed of quartz glass, the coating optical fiber is made neutral or acidic. Can suppress the decrease in glass fiber strength during long-term use, see JP-A-6-250053; Am. Ceram. So
c. , 71 [3] 177-83 (1988) (M. JO
HN MATTHEWSON, etc.) "Environme
ntal Effects on the Stati
c Fatique of Silica Optic
al Fiber "and the like.

【0003】[0003]

【発明が解決しようとする課題】本発明者が実験で確認
したところ、被覆層用の紫外線硬化型樹脂のpHが中性
の状態にあっても、その紫外線硬化型樹脂によって製造
された被覆光ファイバは必ずしも無応力下における劣化
環境でのガラス強度に関する特性(Zero Stre
ss Aging 特性:以下「ZSA特性」という)
が良好とは限らないと結果が得られた。そこで、本発明
者は被覆層用の紫外線硬化型樹脂について種々検討の結
果、紫外線硬化型樹脂のpHと共にその樹脂の濁度をあ
る範囲にすることによって、被覆光ファイバのZSA特
性を改善出来ることを見出した。
The inventors of the present invention have confirmed by experiments that even if the UV-curable resin for the coating layer has a neutral pH, the coated light produced by the UV-curable resin can be used. Fibers do not necessarily have properties related to glass strength in a degraded environment under stress (Zero Street).
ss Aging characteristics: hereinafter referred to as "ZSA characteristics")
Was not always good. Thus, the present inventors have conducted various studies on the UV-curable resin for the coating layer, and found that the ZSA characteristics of the coated optical fiber can be improved by setting the turbidity of the resin together with the pH of the UV-curable resin. Was found.

【0004】[0004]

【課題を解決するための手段】本発明の被覆光ファイバ
は、ガラスファイバの上に2層以上の紫外線硬化型樹脂
からなる被覆層を設けた被覆光ファイバであって、少な
くとも第1被覆層の紫外線硬化型樹脂又は第1被覆層及
び第2被覆層の紫外線硬化型樹脂を、pHが8.0以
下、濁度が0.2以上のものとする。なお、ガラスファ
イバ直上にある被覆層を第1被覆層、その上の被覆層を
第2被覆層とする。
The coated optical fiber according to the present invention is a coated optical fiber comprising a glass fiber and two or more coating layers made of an ultraviolet curable resin provided on a glass fiber. The UV-curable resin or the UV-curable resin of the first coating layer and the second coating layer has a pH of 8.0 or less and a turbidity of 0.2 or more. The coating layer immediately above the glass fiber is referred to as a first coating layer, and the coating layer thereon is referred to as a second coating layer.

【0005】このように被覆層の紫外線硬化型樹脂のp
H及び濁度をある範囲に規定することによって、下記の
実施例の欄に示す実験結果からも明らかなように、無応
力下における劣化環境においてもガラスファイバの破断
強度が低下しない被覆光ファイバ、即ちZSA特性の良
好な被覆光ファイバを得ることが出来る。
[0005] As described above, p of the ultraviolet curable resin of the coating layer is
By defining H and turbidity in a certain range, a coated optical fiber in which the breaking strength of the glass fiber does not decrease even in a degraded environment under no stress, as is clear from the experimental results shown in the following Examples, That is, a coated optical fiber having good ZSA characteristics can be obtained.

【0006】なお、被覆層の紫外線硬化型樹脂のpH
は、次の方法で求める。まず、被覆層製造の塗布直前の
樹脂液から1gの樹脂液を採取し、200ミリリットル
のエーテルを加えて攪拌し完全に溶解させる。そして、
この溶解液をpHメーター(電気化学計器株式会社製P
H20型)で測定する。
The pH of the UV-curable resin of the coating layer is
Is determined by the following method. First, 1 g of the resin liquid is collected from the resin liquid immediately before application in the production of the coating layer, and 200 ml of ether is added thereto, and the mixture is stirred and completely dissolved. And
This solution is used as a pH meter (P manufactured by Electrochemical Instruments Co., Ltd.).
H20).

【0007】また、被覆層の紫外線硬化型樹脂の濁度
は、次の方法で求める。図2は、樹脂の濁度の測定方法
を説明する断面図であって、5は石英ガラス製のセル、
6は樹脂を溶かした溶液、7は目、8は新聞紙である。
まず、被覆層製造の塗布直前の樹脂液から10gの樹脂
液を採取し、200ミリリットルのメタノール又はエタ
ノールを加えて攪拌し完全に溶解させる。その溶解液
に、濃度0.01モル/リットルの希塩酸を5g加えて
均一になるように攪拌する。次に、その溶液6を石英ガ
ラス製のセル5(厚さt=1mmの石英ガラス板を2枚
平行にして、その間に厚さa=8mmの内空部を設けた
石英ガラス製の容器で、容器全体の厚さb=10mmの
もの)に満たして、そのセル5を複数枚積重ねて、目7
と反対側に置いた新聞紙8の文字を目視にて判読出来る
限界のセル5の枚数を調べる。
[0007] The turbidity of the ultraviolet curable resin of the coating layer is determined by the following method. FIG. 2 is a cross-sectional view illustrating a method of measuring the turbidity of a resin, where 5 is a quartz glass cell,
Reference numeral 6 denotes a resin-dissolved solution, 7 denotes eyes, and 8 denotes newsprint.
First, 10 g of the resin liquid is collected from the resin liquid immediately before application in the production of the coating layer, and 200 ml of methanol or ethanol is added thereto and stirred to completely dissolve the resin liquid. 5 g of dilute hydrochloric acid having a concentration of 0.01 mol / liter is added to the solution, and the mixture is stirred to be uniform. Next, the solution 6 was placed in a quartz glass cell 5 (a quartz glass container provided with two quartz glass plates having a thickness of t = 1 mm in parallel and an inner space having a thickness of a = 8 mm provided therebetween). , The thickness of the entire container b = 10 mm), and a plurality of the cells 5 are stacked.
Then, the number of cells 5 of the limit at which the characters of the newspaper 8 placed on the opposite side can be visually read is checked.

【0008】セル5の枚数がNの時には判読可能で、セ
ル5の枚数がN+1の時は判読不可能とした時、その液
の濁度は(1−N/10)とする。また、N=10以上
は濁度0とする。セル1枚でも見えない時は濁度が1
で、セル10枚でも見える時は濁度が0である。セルに
純水を満たしたものは10枚重ねても見えるので、純水
の濁度は0である。また、濁度が0.2ということは、
セルが8枚ならそれを通して新聞紙の文字が読めるが、
セルが9枚ならそれを通して新聞紙の文字は読めないと
いった程度に石英セルに入れた液が濁っていることを示
している。
When the number of cells 5 is N, the reading is readable, and when the number of cells 5 is N + 1, the reading is unreadable. The turbidity of the liquid is (1-N / 10). Turbidity is set to 0 for N = 10 or more. When one cell is not visible, turbidity is 1
When 10 cells can be seen, the turbidity is 0. The turbidity of pure water is 0 because the cells filled with pure water can be seen even when 10 cells are stacked. Also, a turbidity of 0.2 means
If there are eight cells, you can read the text of the newspaper through it,
If the number of cells is nine, it means that the liquid in the quartz cell is turbid to the extent that the characters on the newspaper cannot be read.

【0009】[0009]

【発明の実施の形態】図1は、被覆光ファイバの一例を
示す横断面図であって、1は石英ガラスを主成分とする
コア・クラッドからなるガラスファイバ、2は比較的柔
らかい紫外線硬化型樹脂等からなる第1被覆層、3は比
較的硬い紫外線硬化型樹脂等からなる第2被覆層、4は
被覆光ファイバである。なお、第1被覆層2を比較的柔
らかい紫外線硬化型樹脂で構成し、第2被覆層3を比較
的硬い紫外線硬化型樹脂で構成するのは、ガラスファイ
バ1を環境温度変化等に基づくマイクロベンド等から保
護するためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view showing an example of a coated optical fiber, wherein 1 is a glass fiber comprising a core / cladding mainly composed of quartz glass, and 2 is a relatively soft ultraviolet curing type. The first coating layer 3 made of a resin or the like is a second coating layer made of a relatively hard UV-curable resin or the like, and 4 is a coated optical fiber. The reason why the first coating layer 2 is made of a relatively soft UV-curable resin and the second coating layer 3 is made of a relatively hard UV-curable resin is that the glass fiber 1 is formed by microbending based on environmental temperature change or the like. This is to protect them from the like.

【0010】このような被覆光ファイバ4は、光ファイ
バガラス母材を加熱溶融し線引きしてガラスファイバ1
を得て、その上に紫外線硬化型樹脂を2層に塗布して、
それに紫外線を照射して前記樹脂を硬化させることによ
って、得られる。また、3層以上の被覆層を設けた被覆
光ファイバの例としては、上記第2被覆層の上に更に紫
外線硬化型樹脂による被覆層を設けたもの、上記の第2
被覆層を設けたものを複数本平行に並べてそれらを一括
して覆う紫外線硬化型樹脂からなる一括被覆層を設けた
もの、等種々の形態の被覆光ファイバがある。
The coated optical fiber 4 is formed by heating and melting an optical fiber glass preform and drawing the glass fiber.
And apply UV curable resin in two layers on it,
It is obtained by irradiating it with ultraviolet light to cure the resin. Examples of the coated optical fiber provided with three or more coating layers include those in which a coating layer made of an ultraviolet curable resin is further provided on the second coating layer.
There are various types of coated optical fibers, such as those in which a plurality of coating layers are arranged in parallel and a collective coating layer made of an ultraviolet curable resin is provided to cover them collectively.

【0011】本発明の被覆光ファイバにおいては、少な
くとも第1被覆層2又は第1被覆層2及び第2被覆層3
の紫外線硬化型樹脂を、pHが8.0以下、濁度が0.
2以上になるものから選択する。なおこのような樹脂
は、紫外線硬化型樹脂がウレタンアクリレート系樹脂の
場合、ウレタンアクリレートの構成材料種類の選択と、
アミン系添加剤等のアルカリ性原料を少なくし、アルカ
リを除く他の極性基例えばエステル・ウレタン基等の含
有率を少ないものとすることによって得ることが出来
る。
In the coated optical fiber of the present invention, at least the first coating layer 2 or the first and second coating layers 2 and 3
UV curable resin having a pH of 8.0 or less and a turbidity of 0.1.
Select from two or more. In addition, such a resin, when the ultraviolet-curable resin is a urethane acrylate-based resin, selection of the constituent material type of the urethane acrylate,
It can be obtained by reducing the amount of alkaline raw materials such as amine-based additives and the content of other polar groups excluding alkali, such as ester and urethane groups.

【0012】少なくとも第1被覆層2の樹脂を、pHが
8.0以下、濁度が0.2以上にすることによって、出
来上がった被覆光ファイバ4のZSA特性が改善され、
高温水中又は高温高湿中での無応力下の劣化促進テスト
でのガラスファイバの破断強度保持率を、90%以上に
維持することが出来る。また、少なくとも第1被覆層2
及び第2被覆層3の樹脂を、pHが8.0以下、濁度が
0.2以上にすることによって、出来上がった被覆光フ
ァイバ4は更にZSA特性が良好になり、高温水中又は
高温高湿中での無応力下の劣化促進テストでのガラスフ
ァイバの破断強度保持率を、ほぼ100%に維持するこ
とが出来る。
By making the pH of the resin of the first coating layer 2 at least 8.0 and the turbidity at least 0.2, the ZSA characteristic of the coated optical fiber 4 is improved,
It is possible to maintain the breaking strength retention of the glass fiber in a high-temperature water or high-temperature and high-humidity degradation-free accelerated deterioration test at 90% or more. Further, at least the first coating layer 2
By setting the pH of the resin of the second coating layer 3 to 8.0 or less and the turbidity to 0.2 or more, the finished coated optical fiber 4 has further improved ZSA characteristics, It is possible to maintain the breaking strength retention of the glass fiber in the deterioration promotion test under no stress in the glass at almost 100%.

【0013】[0013]

【実施例】ウレタンアクリレート系紫外線硬化型樹脂の
ウレタンアクリレートの構成材料種類を種々変えて、ア
ミン系添加剤等のアルカリ性原料の添加量、及びアルカ
リを除く他の極性基例えばエステル・ウレタン基等の含
有率を種々変えて、14種類の紫外線硬化型樹脂を調整
して製造し、被覆層の材料として準備した。そして、上
記の紫外線硬化型樹脂から、比較的柔らかい樹脂即ち弾
性率が0.05〜0.2kg/mm2の範囲の樹脂を第
1被覆層用の樹脂とし、比較的硬い樹脂即ち弾性率が2
5〜150kg/mm2の範囲の樹脂を第2被覆層用の
樹脂として選択し、それを外径125μmの石英ガラス
からなるガラスファイバの上に塗布し、紫外線を照射し
て硬化させ、外径200μmの第1被覆層及び外径24
5μmの第2被覆層を有する7種の被覆光ファイバを得
た。
EXAMPLE The urethane acrylate of the urethane acrylate-based UV-curable resin was changed in various kinds of constituent materials to add an alkaline material such as an amine-based additive, and other polar groups excluding alkali such as an ester / urethane group. Fourteen kinds of UV-curable resins were prepared by changing the content in various ways, and prepared as materials for the coating layer. Then, from the above-mentioned ultraviolet curable resin, a relatively soft resin, that is, a resin having an elastic modulus in a range of 0.05 to 0.2 kg / mm 2 is used as a resin for the first coating layer, and a relatively hard resin, that is, an elastic modulus is used. 2
A resin in the range of 5 to 150 kg / mm 2 is selected as a resin for the second coating layer, applied to a glass fiber made of quartz glass having an outer diameter of 125 μm, and cured by irradiating ultraviolet rays. 200 μm first coating layer and outer diameter 24
Seven types of coated optical fibers having a second coating layer of 5 μm were obtained.

【0014】表1、表2は、それら7種の被覆光ファイ
バに使用した紫外線硬化型樹脂それぞれのpH及び濁度
を測定した値と、7種の被覆光ファイバそれぞれの高温
水中、高温高湿雰囲気中での劣化試験におけるガラスフ
ァイバの破断強度保持率を示す表であって、表1は少な
くとも第1被覆層に使用した樹脂のpHが8.0以下、
濁度が0.2以上のものを本発明の実施例1〜4として
示し、表2はpH又は濁度がその範囲でないものを比較
例1〜3として示したものである。
Tables 1 and 2 show the measured values of the pH and turbidity of the ultraviolet-curable resin used for the seven types of coated optical fibers, and the values of the seven types of coated optical fibers in high-temperature water, high-temperature and high-humidity, respectively. It is a table | surface which shows the breaking strength retention of the glass fiber in the deterioration test in an atmosphere, Table 1 shows that pH of the resin used for at least 1st coating layer is 8.0 or less,
Those having a turbidity of 0.2 or more are shown as Examples 1 to 4 of the present invention, and Table 2 shows those whose pH or turbidity is not within the range as Comparative Examples 1 to 3.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】なお、高温水中、高温高湿雰囲気中での劣
化試験におけるガラスファイバの破断強度保持率は、次
のようにして求めた。ガラスファイバ上に2層の被覆層
を設けた被覆光ファイバを、2m長に切断したもの15
本を組にして実施例1〜4、比較例1〜3に対して各3
組準備し、被覆光ファイバには曲げ等の応力が加わらな
いようにして、各1組は85℃の高温水中に30日間放
置し、他の各1組は85℃、相対湿度85%の高温高湿
度雰囲気下にそれぞれ30日間放置し、そのような劣化
環境に置かなかった他の各1組と、被覆光ファイバの破
断強度の比較を行なった。
The breaking strength retention of the glass fiber in a deterioration test in high-temperature water or high-temperature, high-humidity atmosphere was determined as follows. A coated optical fiber in which two coating layers are provided on a glass fiber and cut into 2 m lengths.
A set of books is 3 for Examples 1-4 and Comparative Examples 1-3.
One set is prepared and left in a high-temperature water at 85 ° C. for 30 days so that no stress such as bending is applied to the coated optical fiber, and the other set is a high temperature at 85 ° C. and a relative humidity of 85%. Each set was left for 30 days in a high-humidity atmosphere and was not placed in such a degraded environment.

【0018】個々の被覆光ファイバの破断強度の測定
は、オートグラフ試験機(島津製作所製)を用いて、引
張り速度25mm/分、標線間隔500mmで引張り試
験を行なって求めた。引張り試験では、被覆光ファイバ
を被覆層を設けたままで引張っているが、被覆層はガラ
スファイバに比べて破断伸びが極めて大きいので、引張
り試験による破断強度はガラスファイバ自体の破断強度
が現れる。また、劣化環境に置いたものと劣化環境に置
かなかったものを区別して個々の破断強度をそれぞれワ
イブル分布図に表示してそれぞれの50%値を劣化環境
に置いたもの又は劣化環境に置かなかったものの破断強
度とし、破断強度保持率はそれらの比で求めた。
The breaking strength of each coated optical fiber was measured by using an autograph tester (manufactured by Shimadzu Corporation) to perform a tensile test at a tensile speed of 25 mm / min and a mark interval of 500 mm. In the tensile test, the coated optical fiber is pulled with the coating layer provided. However, since the coating layer has an extremely large breaking elongation as compared with the glass fiber, the breaking strength in the tensile test shows the breaking strength of the glass fiber itself. In addition, those placed in the degraded environment and those not placed in the degraded environment are distinguished from each other, and the respective breaking strengths are respectively displayed on a Weibull distribution map, and 50% of each value is placed in the degraded environment or not placed in the degraded environment. And the breaking strength retention was determined from those ratios.

【0019】表1の実施例1〜3から分かるように、第
1被覆層及び第2被覆層の紫外線硬化型樹脂のpHが
8.0以下で濁度が0.2以上のものは、高温水中及び
高温高湿中での劣化環境に置いても、ガラスファイバの
破断強度保持率は98%〜105%であり、殆ど変化は
見られない。また、表1の実施例4では、第1被覆層の
樹脂がpHが8.0以下、濁度が0.2以上の樹脂とな
っているが、第2被覆層の樹脂の濁度は0.2以上でな
い。そのため、高温水中及び高温高湿中での劣化環境に
置いた時のガラスファイバの破断強度保持率は少し低下
し、90%〜95%になっているが、後述する比較例の
ものに比べて破断強度保持率は改善されている。
As can be seen from Examples 1 to 3 in Table 1, the UV-curable resin of the first coating layer and the second coating layer having a pH of 8.0 or less and a turbidity of 0.2 or more were treated at high temperatures. The glass fiber has a breaking strength retention of 98% to 105% even in a degraded environment in water or high temperature and high humidity, and hardly changes. In Example 4 of Table 1, the resin of the first coating layer was a resin having a pH of 8.0 or less and a turbidity of 0.2 or more, but the resin of the second coating layer had a turbidity of 0. Not more than 2. Therefore, the breaking strength retention rate of the glass fiber when placed in a degraded environment in high-temperature water or high-temperature and high-humidity slightly decreases to 90% to 95%, but is lower than that of a comparative example described later. The breaking strength retention is improved.

【0020】表2の比較例1〜3には、第1被覆層用の
紫外線硬化型樹脂のpHが8.0以下でないか、濁度が
0.2以上でないものの実験結果を示しており、高温水
中及び高温高湿中での劣化環境に置いた時、ガラスファ
イバの破断強度保持率は、全て90%以下になってい
る。
Comparative Examples 1 to 3 in Table 2 show the results of experiments in which the pH of the UV-curable resin for the first coating layer is not less than 8.0 or the turbidity is not more than 0.2, When placed in a degraded environment in high-temperature water and high-temperature and high-humidity environments, the breaking strength retention of all glass fibers is 90% or less.

【0021】上記の実験結果から、第1被覆層の紫外線
硬化型樹脂はガラスファイバに接しているのでガラスフ
ァイバに対する影響度が高く、その樹脂のpHを8.0
以下、濁度を0.2以上にすれば、無応力下で高温水中
又は高温高湿中での劣化環境に置いた時のガラスファイ
バの破断強度の低下を抑制出来ることが分かる。また、
被覆層の樹脂としてpHが中性又は酸性領域のもので、
かつ樹脂溶解液の透明度が低いものを選択することによ
って、被覆層の親水性が低くなり、樹脂の極性基の含有
が少なくなって温水劣化に伴う加水分解及び架橋密度の
低下が起こり難くなり、被覆層とガラスファイバとの界
面への水の侵入が少なくなり、それらの結果として劣化
環境でのガラスファイバの破断強度が維持されるのでは
ないかと推定している。
From the above experimental results, since the UV-curable resin of the first coating layer is in contact with the glass fiber, the influence on the glass fiber is high, and the pH of the resin is 8.0.
Hereinafter, it is understood that when the turbidity is 0.2 or more, a decrease in the breaking strength of the glass fiber when placed in a degraded environment in high temperature water or high temperature and high humidity under no stress can be suppressed. Also,
The pH of the resin in the coating layer is in the neutral or acidic range,
And by selecting a low transparency of the resin solution, the hydrophilicity of the coating layer is reduced, the content of the polar group of the resin is reduced, the hydrolysis with hot water deterioration and the decrease in crosslink density are less likely to occur, It is presumed that the penetration of water into the interface between the coating layer and the glass fiber is reduced, and as a result, the breaking strength of the glass fiber in the degraded environment is maintained.

【0022】[0022]

【発明の効果】本発明の被覆光ファイバは、ガラスファ
イバ上の少なくとも第1被覆層の紫外線硬化型樹脂がp
H8.0以下、濁度が0.2以上の樹脂で構成されてい
るので、無応力下の高温水中又は高温高湿雰囲気中に長
時間放置してもガラスファイバの破断強度の低下は殆ど
見られない。従って、長期にわたってガラスファイバの
強度を保証することが出来る。また、第1被覆層の併せ
て第2被覆層もpH8.0以下、濁度が0.2以上の紫
外線硬化型樹脂で構成すれば、より長期にわたって信頼
性を有するZSA特性の良好な被覆光ファイバを得るこ
とが出来る。
According to the coated optical fiber of the present invention, the ultraviolet curable resin of at least the first coating layer on the glass fiber is p-type.
Since it is composed of a resin having a H of 8.0 or less and a turbidity of 0.2 or more, even if it is left in a high-temperature water or a high-temperature and high-humidity atmosphere under no stress for a long time, a decrease in the breaking strength of the glass fiber is hardly observed. I can't. Therefore, the strength of the glass fiber can be guaranteed for a long time. In addition, if the second coating layer in addition to the first coating layer is made of an ultraviolet curable resin having a pH of 8.0 or less and a turbidity of 0.2 or more, the coated light having good ZSA characteristics and reliability over a long period of time. Fiber can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被覆光ファイバの一例を示す横断面図である。FIG. 1 is a cross-sectional view showing an example of a coated optical fiber.

【図2】紫外線硬化型樹脂の濁度の測定方法を説明する
断面図である。
FIG. 2 is a cross-sectional view illustrating a method for measuring the turbidity of an ultraviolet curable resin.

【符号の説明】[Explanation of symbols]

1:ガラスファイバ 2:第1被覆層 3:第2被覆層 4:被覆光ファイバ 5:石英ガラス製のセル 6:樹脂を溶かした溶液 7:目 8:新聞紙 1: glass fiber 2: first coating layer 3: second coating layer 4: coated optical fiber 5: cell made of quartz glass 6: solution in which resin is dissolved 7: eyes 8: newspaper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 知之 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 2H050 BA32 BB07Q BB07S BB14Q BB14S BB33Q BB33S BC03 BD03 BD05 4G060 AA01 AA03 AC02 AC04 AC14 AD43 CB09 CB22 CB35 4J011 QB24 SA82 SA90 UA01 WA03 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomoyuki Hattori 1-chome, Taya-cho, Sakae-ku, Yokohama, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works F-term (reference) 2H050 BA32 BB07Q BB07S BB14S BB14S BB14S BB33Q BB33S BC03 BD03 BD05 4G060 AA01 AA03 AC02 AC04 AC14 AD43 CB09 CB22 CB35 4J011 QB24 SA82 SA90 UA01 WA03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラスファイバ上に2層以上の紫外線硬
化型樹脂からなる被覆層を設けた被覆光ファイバにおい
て、少なくとも第1被覆層の紫外線硬化型樹脂のpHが
8.0以下、濁度が0.2以上であることを特徴とする
被覆光ファイバ。
1. A coated optical fiber comprising a glass fiber and two or more ultraviolet-curable resin coating layers provided thereon, wherein at least the ultraviolet-curable resin of the first coating layer has a pH of 8.0 or less and a turbidity of at least one. Coated optical fiber characterized by being 0.2 or more.
【請求項2】 ガラスファイバ上に2層以上の紫外線硬
化型樹脂からなる被覆層を設けた被覆光ファイバにおい
て、第1被覆層の紫外線硬化型樹脂及び第2被覆層の紫
外線硬化型樹は共に、pHが8.0以下、濁度が0.2
以上であることを特徴とする被覆光ファイバ。
2. A coated optical fiber comprising a glass fiber and two or more ultraviolet-curable resin coating layers provided thereon, wherein the ultraviolet-curable resin of the first coating layer and the ultraviolet-curable resin of the second coating layer are both PH 8.0 or less, turbidity 0.2
A coated optical fiber as described above.
JP24287099A 1999-08-30 1999-08-30 Coated optical fiber Pending JP2001064040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24287099A JP2001064040A (en) 1999-08-30 1999-08-30 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24287099A JP2001064040A (en) 1999-08-30 1999-08-30 Coated optical fiber

Publications (1)

Publication Number Publication Date
JP2001064040A true JP2001064040A (en) 2001-03-13

Family

ID=17095477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24287099A Pending JP2001064040A (en) 1999-08-30 1999-08-30 Coated optical fiber

Country Status (1)

Country Link
JP (1) JP2001064040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060324A (en) * 2011-09-13 2013-04-04 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060324A (en) * 2011-09-13 2013-04-04 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber

Similar Documents

Publication Publication Date Title
CN109642998B (en) Flexible optical fiber ribbon
US6563996B1 (en) Optical fibers prepared with a primary coating composition including a monomer with a pendant hydroxyl functional group
DK179868B1 (en) Optical fiber
CN112400127A (en) Small diameter low attenuation optical fiber
WO2011074315A1 (en) Optical fiber core
JP2007333795A (en) Coated optical fiber and its manufacturing method
CN102782542A (en) High numerical aperture multimode optical fiber
EP3857275A1 (en) Small diameter fiber optic cables having low-friction cable jackets and optical fibers with reduced cladding and coating diameters
JP2008224744A (en) Optical fiber
FI65614C (en) FOER ARMERING AV CEMENT AVSEDD GLASFIBER
US6895156B2 (en) Small diameter, high strength optical fiber
JP2005008448A (en) Flame-retardant optical fiber core wire and flame-retardant optical fiber tape core wire
DE60334259D1 (en) Method of identifying glass fiber in a cable
CN109562989A (en) The manufacturing method of optical fiber and optical fiber
JP2001064040A (en) Coated optical fiber
JP2010217800A (en) Optical fiber
US11194107B2 (en) High-density FAUs and optical interconnection devices employing small diameter low attenuation optical fiber
CN113025252B (en) Ultraviolet curing adhesive for winding optical fiber ring of open-loop optical fiber gyroscope and use method thereof
US8483532B2 (en) Low adhesion plastic-cladding optical fiber
JP4190975B2 (en) Optical fiber, optical fiber ribbon using the optical fiber, and optical fiber cable using the optical fiber or optical fiber ribbon
JP4279103B2 (en) Optical fiber
JP5137860B2 (en) Flat type optical fiber cord
JP4630210B2 (en) Optical fiber ribbon and its adhesion measurement method
CN103282804A (en) Condensing type optical sheet
JPH0629888B2 (en) Coated optical fiber