JP2001062237A - Chemical filter, its use method, clean room, semiconductor production apparatus and fan filter - Google Patents
Chemical filter, its use method, clean room, semiconductor production apparatus and fan filterInfo
- Publication number
- JP2001062237A JP2001062237A JP24187699A JP24187699A JP2001062237A JP 2001062237 A JP2001062237 A JP 2001062237A JP 24187699 A JP24187699 A JP 24187699A JP 24187699 A JP24187699 A JP 24187699A JP 2001062237 A JP2001062237 A JP 2001062237A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- chemical
- filter medium
- air
- flows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ventilation (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はケミカルフィルタの
改良に関し、フィルタ寿命を判別・予測することに優
れ、例えばクリーンルーム、半導体製造装置等に用いら
れるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a chemical filter, which is excellent in discriminating and predicting a filter life, and is used, for example, in a clean room, a semiconductor manufacturing apparatus and the like.
【0002】[0002]
【従来の技術】従来、ケミカルフィルタの寿命判別方法
としては、特開平9−250973号公報でフィルタの
上流側及び下流側に空気汚染物質捕捉装置を一対配置
し、前記空気汚染物質捕捉装置に吸着された物質量の差
が小さいときに、フィルタのフィルタが寿命に達したと
判断する方法があった。2. Description of the Related Art Conventionally, as a method for judging the service life of a chemical filter, a pair of air pollutant trapping devices is arranged on the upstream and downstream sides of the filter in Japanese Patent Application Laid-Open No. 9-250973, and adsorbed on the air pollutant trapping device. There has been a method for determining that the filter has reached the end of its service life when the difference between the determined substance amounts is small.
【0003】また、寿命判別用ケミカルフィルタとして
は特開平8−266831号公報で枠と該枠内に着脱手
段を介して着脱自在に収められた濾材からなり、またそ
の一部を寿命試験用メディアとして取り外すことを特徴
とするケミカルフィルタが知られている。A chemical filter for determining the life is disclosed in Japanese Patent Laid-Open Publication No. Hei 8-266683, which comprises a frame and a filter medium which is removably mounted in the frame via a mounting / removing means. There is known a chemical filter that is detached as a filter.
【0004】しかしながら、特開平9−250973号
公報の技術にはフィルタ本体とは別に空気汚染物質捕捉
装置を装着する必要があり、半導体製造装置内などの限
られたスペースにおいては設置しづらいという欠点があ
った。さらに、この方法では最終的に寿命がきたことは
測定できるが、使用途中であとどれくらい使用できるか
という寿命予測が難しいという観点からは不十分であっ
た。However, the technique disclosed in Japanese Patent Application Laid-Open No. 9-250973 requires the installation of an air pollutant capturing device separately from the filter main body, and is difficult to install in a limited space such as in a semiconductor manufacturing apparatus. was there. Furthermore, this method can measure that the service life has finally come, but it is insufficient from the viewpoint that it is difficult to predict the service life during and after use.
【0005】一方、特開平8−266831号公報の技
術では、寿命予測のために本体濾材部と別に構成された
寿命予測用の部分を抜き出す必要があり、抜き出しのた
めにフィルタへの送風を一時止めるか、フィルタ全体を
取り出して改めて抜き出すなどの作業を行う必要があ
り、極めて手間がかかるという問題点があった。さらに
当該技術では抜きだし部と本体部を別々に構成する必要
があるため両部分のエアの流れを同一に保つことは難し
く、正確な寿命予測ができないという欠点もあった。On the other hand, in the technique disclosed in Japanese Patent Application Laid-Open No. Hei 8-266683, it is necessary to extract a part for predicting the life, which is formed separately from the main filter medium part, for estimating the life. It is necessary to perform operations such as stopping or taking out the entire filter and taking it out again, which is extremely troublesome. Further, in this technique, it is difficult to keep the air flow in both parts the same because the extraction part and the main body part need to be configured separately, and there is a drawback that the life expectancy cannot be accurately predicted.
【0006】[0006]
【発明が解決しようとする課題】このように従来の技術
では、設置性や寿命予測の正確性、寿命予測のための作
業の簡便性などの改善には限界があった。すなわち、本
発明は、特に寿命予測のための作業性が改良されたケミ
カルフィルタおよびこのケミカルフィルタの使用方法な
らびにこのケミカルフィルタの用途であるクリーンルー
ム、半導体製造装置、ファンフィルタを提供することを
その課題とする。As described above, in the conventional technology, there is a limit in improving the installation property, the accuracy of the life estimation, the simplicity of the operation for estimating the life, and the like. That is, an object of the present invention is to provide a chemical filter and a method of using the chemical filter, and a clean room, a semiconductor manufacturing apparatus, and a fan filter, which are applications of the chemical filter, particularly having improved workability for life estimation. And
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
本発明のケミカルフィルタは、主として次の(1)、(2)の
いずれかの構成を有する。すなわち、(1)フィルタを通
過するエアの流れがフィルタを構成する濾材表面に沿っ
て略平行に流れる平行流型フィルタであって、エアが流
れる方向の長さが異なる複数の濾材で構成されているこ
とを特徴とするケミカルフィルタ、または、(2)フィル
タを通過するエアの流れがフィルタを構成する濾材表面
に沿って略平行に流れる平行流型フィルタであって、エ
アが流れる方向の長さが同一であって、エアが流れる方
向のフィルタ外枠長さより短い濾材で構成されているこ
とを特徴とするケミカルフィルタである。Means for Solving the Problems In order to solve the above problems, a chemical filter of the present invention mainly has one of the following constitutions (1) and (2). That is, (1) a parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, and is configured by a plurality of filter media having different lengths in the direction in which the air flows. A chemical filter, or (2) a parallel flow filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, and the length of the air flowing direction And a filter material shorter than the length of the outer frame of the filter in the direction in which air flows.
【0008】また、本発明のケミカルフィルタの使用方
法は主として次の構成を有する。すなわち、フィルタを
通過するエアの流れがフィルタを構成する濾材表面に沿
って略平行に流れる平行流型フィルタであって、エアが
流れる方向の長さが同一であって、エアが流れる方向の
フィルタ外枠とほぼ同一長さの濾材で構成されている1
個以上のケミカルフィルタに、上記(1)のケミカルフィ
ルタまたは上記(2)のケミカルフィルタを1個以上組み
合わせて用いることを特徴とするケミカルフィルタの使
用方法である。The method of using the chemical filter of the present invention mainly has the following configuration. That is, a parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the filter in the direction in which the air flows. 1 consisting of a filter medium of almost the same length as the outer frame
This is a method of using a chemical filter, wherein at least one chemical filter is used in combination with one or more of the chemical filters of (1) or (2).
【0009】本発明のクリーンルームは主として次の構
成を有する。すなわち、フィルタを通過するエアの流れ
がフィルタを構成する濾材表面に沿って略平行に流れる
平行流型フィルタであって、エアが流れる方向の長さが
同一であって、エアが流れる方向のフィルタ外枠とほぼ
同一長さの濾材で構成されている1個以上のケミカルフ
ィルタに、上記(1)のケミカルフィルタまたは上記(2)の
ケミカルフィルタを1個以上組み合わせてなることを特
徴とするクリーンルームである。The clean room of the present invention mainly has the following configuration. That is, a parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the filter in the direction in which the air flows. A clean room characterized by combining one or more chemical filters of the above (1) or one or more of the chemical filters of the above (2) with one or more chemical filters composed of a filter medium having substantially the same length as the outer frame. It is.
【0010】本発明の半導体製造装置は主として次の構
成を有する。すなわち、フィルタを通過するエアの流れ
がフィルタを構成する濾材表面に沿って略平行に流れる
平行流型フィルタであって、エアが流れる方向の長さが
同一であって、エアが流れる方向のフィルタ外枠とほぼ
同一長さの濾材で構成されている1個以上のケミカルフ
ィルタに、上記(1)のケミカルフィルタまたは上記(2)の
ケミカルフィルタを1個以上組み合わせてなることを特
徴とする半導体製造装置である。The semiconductor manufacturing apparatus of the present invention mainly has the following configuration. That is, a parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the filter in the direction in which the air flows. A semiconductor comprising a combination of at least one chemical filter of the above (1) or at least one chemical filter of the above (2) with at least one chemical filter composed of a filter medium having substantially the same length as the outer frame. Manufacturing equipment.
【0011】本発明のファンフィルタは主として次の構
成を有する。すなわち、フィルタを通過するエアの流れ
がフィルタを構成する濾材表面に沿って略平行に流れる
平行流型フィルタであって、エアが流れる方向の長さが
同一であって、エアが流れる方向のフィルタ外枠とほぼ
同一長さの濾材で構成されている1個以上のケミカルフ
ィルタに、上記(1)のケミカルフィルタまたは上記(2)の
ケミカルフィルタを1個以上組み合わせてなり、さらに
通風装置を有することを特徴とするファンフィルタであ
る。The fan filter of the present invention mainly has the following configuration. That is, a parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the filter in the direction in which the air flows. One or more chemical filters composed of a filter medium having substantially the same length as the outer frame are combined with one or more chemical filters of (1) or (2), and further have a ventilation device. It is a fan filter characterized by the above-mentioned.
【0012】[0012]
【発明の実施の形態】本発明でいうケミカルフィルタと
は、空気中のガス状汚染物質を除去することを目的とす
るフィルタを指す。本発明に関するケミカルフィルタは
寿命を予測することに優れ、クリーンルーム、半導体製
造装置等に用いられる。BEST MODE FOR CARRYING OUT THE INVENTION The term "chemical filter" as used in the present invention refers to a filter intended to remove gaseous pollutants in air. The chemical filter according to the present invention is excellent in estimating the life and is used in a clean room, a semiconductor manufacturing apparatus, and the like.
【0013】本発明のケミカルフィルタはフィルタを通
過するエアの流れがフィルタを構成する濾材と略平行に
流れるように構成されている。フィルタ濾材には、その
内部もしくは表面に空気中のガス成分を吸着する機能性
物質が含まれている。ガス状汚染物質を含有する被処理
空気は、フィルタ上流側からユニット内に流入し、濾材
に略平行に流れながら徐々に濾材の吸着作用によりガス
状汚染物質が除去されて下流側に至る。この場合、長期
使用により濾材の吸着作用は上流側から徐々に活性を失
い、ついには期待される一定以上の除去効率を保てなく
なり寿命となる。[0013] The chemical filter of the present invention is configured such that the flow of air passing through the filter flows substantially in parallel with the filter medium constituting the filter. The filter medium contains a functional substance that adsorbs gas components in the air inside or on its surface. The air to be treated containing the gaseous pollutant flows into the unit from the upstream side of the filter, and flows substantially parallel to the filter medium, and gradually removes the gaseous pollutant by the adsorbing action of the filter medium to reach the downstream side. In this case, the adsorbing action of the filter medium gradually loses its activity from the upstream side due to long-term use, and eventually, the expected removal efficiency of a certain level or more cannot be maintained, and the life is shortened.
【0014】図1は本発明のケミカルフィルタの一例で
あり、エアの流れ方向上流側からみた正面図である。図
1に示すように濾材1は、外枠2で囲われ、フィルタを
構成している。フィルタを通過するエアの流れは、外枠
2の中で、濾材1の間を、紙面に垂直方向に手前側から
流れる。図2は、本発明のケミカルフィルタにおいて、
ユニット内部構造の概略の一例を示すものである。図2
の例では、フィルタは、エア流れ方向Xの濾材の長さに
おいて、長い濾材部分4と短い濾材部分5の異なる2種
類の長さ部分を有している。なお、図2においてフィル
タの内部構造をわかりやすく図示するためにフィルタ外
枠2は描いていない。FIG. 1 is an example of the chemical filter of the present invention, and is a front view as viewed from the upstream side in the air flow direction. As shown in FIG. 1, the filter medium 1 is surrounded by an outer frame 2 to constitute a filter. The flow of air passing through the filter flows between the filter media 1 in the outer frame 2 from the near side in a direction perpendicular to the paper surface. FIG. 2 shows the chemical filter of the present invention.
2 shows an example of the outline of the internal structure of a unit. FIG.
In the example, the filter has two different lengths of a long filter medium portion 4 and a short filter medium portion 5 in the length of the filter medium in the air flow direction X. In FIG. 2, the filter outer frame 2 is not drawn in order to clearly show the internal structure of the filter.
【0015】本発明の平行流型フィルタを用いた場合の
寿命予測方法は、濾材の吸着作用が上流側から徐々に活
性を失っていく平行流型フィルタの特性を生かしてい
る。すなわち図2の例において、濾材長さが短い濾材部
分5は長い濾材部分4に比べてわずかに寿命が短くなる
のを利用し、短い濾材部分5の寿命を測定することによ
り本体部分の長い濾材部分4の寿命予測を行うのであ
る。本発明のケミカルフィルタの具体的な寿命測定・判
別方法としては、フィルタ上流の対象汚染物質濃度と短
い濾材部分5の下流側の対象汚染物質濃度を定期的に測
定して次式に基づき除去効率を計算し、寿命を予測・確
認する方法と、長い濾材部分5の下流と短い濾材部分5
の下流の対象汚染物質濃度を定期的に測定して濃度レベ
ルに差が生じたところを寿命間近と判別する方法などが
ある。 除去効率(%)=(1−「下流濃度」/「上流濃度」)
×100The life prediction method using the parallel flow filter of the present invention makes use of the characteristics of the parallel flow filter in which the adsorption of the filter medium gradually loses its activity from the upstream side. That is, in the example of FIG. 2, the filter medium portion 5 having a short filter medium length has a slightly shorter life than the filter medium portion 4 having a long filter medium. The life of the part 4 is predicted. As a specific method for measuring and determining the life of the chemical filter of the present invention, the concentration of the target contaminant upstream of the filter and the concentration of the target contaminant downstream of the short filter medium portion 5 are periodically measured, and the removal efficiency is determined based on the following equation. And a method for predicting and confirming the service life, and a method of calculating the life of the filter medium downstream of the long filter medium part 5 and the short filter medium part 5
There is a method of periodically measuring the concentration of the target pollutant downstream of the system and judging that a difference in the concentration level is near the end of life. Removal efficiency (%) = (1-"downstream concentration" / "upstream concentration")
× 100
【0016】また、本発明のケミカルフィルタは上述し
た1枚を単独で使用しても良いが、複数のケミカルフィ
ルタを並べて使用する場合に用いる使用方法も極めて有
益である。すなわち、複数のケミカルフィルタのなか
で、1枚を図2に一例を示した本発明のケミカルフィル
タを用い、他のフィルタには図3に示すケミカルフィル
タを用いる方法である。図3に示すケミカルフィルタ
は、図2に示したフィルタと濾材の種類・構造は同一で
あって、かつエアの流れ方向の濾材の長さが図2の長い
濾材部分4と同じ長さを有するフィルタである。本発明
の使用方法によれば、図2に一例を示した本発明のケミ
カルフィルタの本体部分である長い濾材部分5の寿命を
判別・予測できるとともに、他のフィルタ全体の寿命を
判別・予測することができるので極めて有用である。ま
た、複数のケミカルフィルタを並べて使用する場合に
は、1枚のフィルタの濾材すべてを図2の短い濾材部分
5と同じ長さに構成し、他のフィルタを第2図の長い濾
材部分4と同じ長さに構成して用いても、同様の寿命予
測・判別ができて好ましい。Although one of the above-described chemical filters may be used alone, a method of using a plurality of chemical filters arranged side by side is very useful. That is, of the plurality of chemical filters, one uses the chemical filter of the present invention, an example of which is shown in FIG. 2, and the other filter uses the chemical filter shown in FIG. The chemical filter shown in FIG. 3 has the same type and structure of the filter medium as the filter shown in FIG. 2, and the length of the filter medium in the air flow direction is the same as that of the long filter medium portion 4 in FIG. Filter. According to the method of use of the present invention, it is possible to determine and predict the life of the long filter medium portion 5 which is the main body portion of the chemical filter of the present invention, an example of which is shown in FIG. It can be very useful. When a plurality of chemical filters are used side by side, all the filter media of one filter are configured to have the same length as the short filter media portion 5 of FIG. 2, and the other filters are combined with the long filter media portion 4 of FIG. The same life expectancy and determination can be achieved by using the same length, which is preferable.
【0017】図2に一例を示した本発明のフィルタにお
いて、短い濾材部分5のフィルタ内下流側には、スペー
ス3を有している。スペース3には、フィルタ外枠内で
濾材下流部分に接するように濾材保持枠を配すことが、
短い濾材部分5を固定する上で好ましい。濾材保持枠の
エアの流れ方向の圧力損失は、長い濾材部分と短い濾材
部分の圧力損失差に相当する圧力損失を有することが、
フィルタ上流側からのエアの流れを均一に出来るので好
ましい。濾材保持枠に必要な圧力損失を与える方法は任
意であるが、濾材保持枠を少なくとも不織布とフレーム
により構成し、かつ少なくとも風の流れ方向上流側の濾
材に接する部分に不織布を配した濾材保持枠を用いるこ
とがフィルタを制作する上で簡便であり最も好ましく用
いられる。本発明に用いる濾材保持枠の一例を図4に示
す。図4において、濾材保持枠は不織布6とフレーム7
より構成されており、通気方向は矢印に示すとおり図面
上部よりエアが流れる。不織布6及びフレーム7を通気
する際の圧力損失は、ほぼ長い濾材部分と短い濾材部分
の圧力損失差に相当する圧力損失を有することが望まし
い。また、フレーム7の上面は、金網状であることが、
通気性を損なわずかつ不織布6を支えることができ好ま
しい。また、本フレームにおいて上下2面を除くエアが
通気しない残る4面のうち、少なくとも長い濾材に接す
る1面は通気性を有さないことが正確な寿命判別をする
上で望ましい。さらにエアが通気する上下2面を除く4
面すべてを通気性のない部材で構成することが、長い濾
材側に接触する面の影響をほとんど受けずより好まし
い。図4のフレーム上面に不織布6を配した濾材保持枠
は、例えば図2のスペース3部分に挿入し用いることが
出来る。In the filter of the present invention, an example of which is shown in FIG. 2, a space 3 is provided downstream of the short filter medium portion 5 in the filter. In the space 3, a filter medium holding frame may be arranged so as to be in contact with the filter medium downstream portion in the filter outer frame,
This is preferable for fixing the short filter medium portion 5. The pressure loss in the air flow direction of the filter medium holding frame has a pressure loss corresponding to the pressure loss difference between the long filter medium part and the short filter medium part,
This is preferable because the flow of air from the upstream side of the filter can be made uniform. The method of giving the necessary pressure loss to the filter medium holding frame is arbitrary, but the filter medium holding frame is constituted by at least a nonwoven fabric and a frame, and the nonwoven fabric is arranged at least in a portion in contact with the filter medium on the upstream side in the wind flow direction. Is simple and most preferably used in producing a filter. FIG. 4 shows an example of the filter medium holding frame used in the present invention. In FIG. 4, the filter medium holding frame includes a nonwoven fabric 6 and a frame 7.
The air flows from the upper part of the drawing as shown by the arrow in the ventilation direction. It is desirable that the pressure loss when aerating the nonwoven fabric 6 and the frame 7 has a pressure loss corresponding to a pressure loss difference between a substantially long filter medium portion and a short filter medium portion. Also, the upper surface of the frame 7 may have a wire mesh shape.
It is preferable because it can support a small amount of the nonwoven fabric 6 that impairs air permeability. In addition, it is desirable that at least one of the remaining four surfaces of the frame except for the upper and lower surfaces through which air does not ventilate, which is in contact with the long filter medium, does not have air permeability for accurate life determination. 4 excluding the upper and lower surfaces through which air is further vented
It is more preferable that the entire surface is made of a member having no air permeability, since the surface which is in contact with the long filter medium side is hardly affected. The filter medium holding frame in which the nonwoven fabric 6 is disposed on the upper surface of the frame in FIG. 4 can be used by inserting it into the space 3 in FIG.
【0018】フィルタの寿命予測・判別のために濾材下
流側のエアをサンプリングするが、その方法は任意であ
り例えばフィルタの下流外側から長い濾材部分下流と、
短い濾材部分下流とに分けてサンプリングを行うことが
出来る。しかしながら、設置の形態によって、例えばケ
ミカルフィルタの下流側に粒子除去用フィルタ配置した
使用方法をとる場合には、フィルタ下流面から正確なサ
ンプリングが出来ないケースがある。このため、濾材の
下流側にエアの吸引口を設けることがより望ましい。図
5に濾材下流側にエアの吸引口を設けた一例を示す。図
5において、短い濾材下流側にエア吸引口8を設けた
が、もちろん同様の吸引口が長い濾材下流側にあっても
良い。なお、第5図においてフィルタの内部構造をわか
りやすく図示するためにフィルタ外枠は描いていない。The air on the downstream side of the filter medium is sampled for estimating and determining the service life of the filter.
Sampling can be performed separately for the short filter medium portion downstream. However, depending on the type of installation, for example, when a usage method in which a particle removal filter is arranged downstream of the chemical filter is used, accurate sampling may not be performed from the downstream surface of the filter. For this reason, it is more desirable to provide an air suction port on the downstream side of the filter medium. FIG. 5 shows an example in which an air suction port is provided on the downstream side of the filter medium. In FIG. 5, the air suction port 8 is provided on the downstream side of the short filter medium. However, a similar suction port may be provided on the downstream side of the long filter medium. In FIG. 5, the outer frame of the filter is not drawn in order to clearly show the internal structure of the filter.
【0019】また、エア吸引用のチューブをユニット内
部に有し、かつチューブの一端がフィルタ下流側内部に
配し、チューブのもう一端はフィルタ上流側外部に配し
たケミカルフィルタが、複数のフィルタを並べて設置す
るときに下流側濃度を上面から測定できるのでより好ま
しい。本発明のケミカルフィルタを図6に示した。な
お、図6においてフィルタの内部構造をわかりやすく図
示するためにフィルタ外枠は描いていないが、サンプリ
ング用のチューブ9は濾材下流側からフィルタ外枠の内
側に沿うようにしてフィルタ上面に配することがフィル
タ内のエアの流れを損なうことがなく望ましい。さらに
フィルタ外枠上面の耳の部分に穴をあけて、その穴にサ
ンプリング用チューブを通してチューブの一端をフィル
タ上面に配することが、並べて設置するときにチューブ
部分がじゃまにならず特に好ましい。A chemical filter having an air suction tube inside the unit, one end of the tube arranged inside the filter downstream side, and the other end arranged outside the filter upstream side, comprises a plurality of filters. This is more preferable because the downstream concentration can be measured from the upper surface when they are arranged side by side. FIG. 6 shows the chemical filter of the present invention. Although the filter outer frame is not shown in FIG. 6 for easy understanding of the internal structure of the filter, the sampling tube 9 is arranged on the upper surface of the filter from the downstream side of the filter medium along the inside of the filter outer frame. Is desirable without impairing the flow of air in the filter. Further, it is particularly preferable that a hole is formed in the ear portion on the upper surface of the filter outer frame and one end of the tube is disposed on the upper surface of the filter through a sampling tube in the hole so that the tube portion does not obstruct when arranged side by side.
【0020】本発明のフィルタを構成する濾材として
は、ガスを吸着除去する性質を有するものであれば特に
種類は問わないが、例えば繊維状や粒状・粉状の活性
炭、繊維状や粒状・粉状のイオン交換体、ゼオライトな
どガスを吸着する物質を単用もしくは他の骨材となる物
質も含めて組み合わせて用いることができる。しかし、
本発明において、特にイオン交換繊維を含む濾材はガス
吸着速度が早く、正確に寿命を判別・予測する点で優れ
る。さらに好ましくは、濾材は、アニオン交換基および
/またはカチオン交換基を有するイオン交換繊維ならび
に補強用繊維から構成されるものである。イオン交換繊
維の直径は、高比表面積を有する点から15〜100μ
mが好ましい。より好ましくは20〜70μm、特に3
0〜50μm(乾燥状態)が最も好ましい。イオン交換
用ポリマと補強用ポリマの混合態様は特に問わないが、
例えばイオン交換ポリマを鞘成分の主成分に補強用ポリ
マを芯成分にした芯鞘型繊維,多芯型混合及び多芯型複
合繊維が好ましく用いられる。特に多芯海島型複合繊維
が十分な機械強度を有しており、様々な形態付与を行っ
た際の強度安定性その他に優れており、イオン交換体と
しての比表面積が大きく好ましい。さらに、形態付与を
行う際に機械的な力が加えられることにより、当該多芯
海島型複合繊維はフィブリル化しやすく、イオン交換体
としての比表面積がさらに大きくなるので極めて好まし
い。また、補強用ポリマとしてはポリ−α−オレフィ
ン,ポリアミド,ポリエステル,ポリアクリル等を挙げ
ることができるが、これらに限定されるものではない。
中でも、イオン交換繊維の製造上ポリ−α−オレフィン
が耐薬品性に優れていて好ましい。ポリ−α−オレフィ
ンとしてはポリエチレン,ポリプロピレン,ポリ−3−
メチルブテン−1,ポリ−4−メチルペンテン−1等が
挙げられるが強度や製造性の点からポリエチレンが好ま
しい。上記繊維を適度な長さにカットし、その後イオン
交換基を導入する。イオン交換基にはカチオン交換基と
アニオン交換基があり、それぞれの機能を発揮する。カ
ット長は任意であるが、短かすぎると形態化しても繊維
の脱落が起こり好ましくなく、長すぎると反応の均一差
に支障が出るため、0.1〜10mmの範囲が好まし
く、より好ましくは0.3〜5mmさらには0.3〜1
mmの範囲が好ましい。アニオン交換基としては、ハロ
アルキル化物をトリメチルアミン等の第3級アミンで処
理することによって得られる強塩基性アニオン交換基、
及びイソプロピルアミン、ジエチルアミン、ピペラジ
ン、モルホリン等の2級以下のアミンで処理することに
よって得られる弱塩基性アニオン交換基があげられる
が、本発明における処理性能の点で強塩基性アニオン交
換基が好ましい。カチオン交換基としては、スルホン酸
基、ホスホン酸基、カルボン酸基、イミノジ酢酸基等の
アミノカルボン酸基が好ましくもちいられるが、本発明
における処理性能の点でスルホン酸基がより好ましい。
本発明におけるイオン交換繊維の具体的な製造法として
は、ポリスチレン系化合物とポリ−α−オレフィンから
なる多芯型混合もしくは複合繊維を酸触媒下でホルムア
ルデヒド源でポリスチレン部を架橋不溶化し、次に公知
の方法でイオン交換基を導入して製造する方法が挙げら
れるが、これに限るものでは無い。The filter material constituting the filter of the present invention is not particularly limited as long as it has a property of adsorbing and removing gas. Examples of the filter material include activated carbon in the form of fibrous, granular, or powdered powder, and fibrous, granular, or powdered activated carbon. A substance that adsorbs a gas, such as an ion exchanger in the form of a zeolite, or a zeolite, can be used alone or in combination with a substance that becomes another aggregate. But,
In the present invention, a filter medium containing ion-exchange fibers is particularly excellent in that the gas adsorption speed is high and the life is accurately determined and predicted. More preferably, the filter medium is composed of an ion exchange fiber having an anion exchange group and / or a cation exchange group and a reinforcing fiber. The diameter of the ion exchange fiber is 15 to 100 μm from the point of having a high specific surface area.
m is preferred. More preferably 20 to 70 μm, especially 3
0 to 50 μm (dry state) is most preferred. The mode of mixing the ion-exchange polymer and the reinforcing polymer is not particularly limited,
For example, a core-sheath type fiber, a multi-core type mixed fiber and a multi-core type composite fiber having an ion exchange polymer as a main component of a sheath component and a reinforcing polymer as a core component are preferably used. In particular, the multifilament sea-island type conjugate fiber has a sufficient mechanical strength, is excellent in strength stability and the like when various forms are given, and has a large specific surface area as an ion exchanger, which is preferable. Furthermore, when a mechanical force is applied when the morphology is imparted, the multifilament sea-island composite fibers are easily fibrillated, and the specific surface area as an ion exchanger is further increased, which is extremely preferable. Examples of the reinforcing polymer include poly-α-olefin, polyamide, polyester, and polyacryl, but are not limited thereto.
Among them, poly-α-olefin is preferable because of its excellent chemical resistance in the production of ion exchange fiber. Poly-α-olefins include polyethylene, polypropylene, poly-3-
Methylbutene-1, poly-4-methylpentene-1 and the like can be mentioned, but polyethylene is preferred in view of strength and productivity. The fiber is cut into a suitable length, and then ion-exchange groups are introduced. There are a cation exchange group and an anion exchange group in the ion exchange group, and they exert their respective functions. The cut length is optional, but if the length is too short, the fibers may fall off even if it is formed, which is not preferable.If the length is too long, the uniform difference in the reaction is hindered. 0.3-5mm and even 0.3-1
The range of mm is preferred. As the anion exchange group, a strongly basic anion exchange group obtained by treating a haloalkylated product with a tertiary amine such as trimethylamine;
And a weakly basic anion exchange group obtained by treating with a secondary or lower amine such as isopropylamine, diethylamine, piperazine, morpholine, etc., and a strongly basic anion exchange group is preferred from the viewpoint of treatment performance in the present invention. . As the cation exchange group, an aminocarboxylic acid group such as a sulfonic acid group, a phosphonic acid group, a carboxylic acid group, and an iminodiacetic acid group is preferably used, and a sulfonic acid group is more preferable in view of the processing performance in the present invention.
As a specific production method of the ion-exchange fiber in the present invention, a polystyrene-based mixed or composite fiber comprising a polystyrene-based compound and poly-α-olefin is crosslinked and insoluble in a polystyrene portion with a formaldehyde source under an acid catalyst, and then A method in which an ion-exchange group is introduced by a known method is used, but the method is not limited thereto.
【0021】また、本願発明の濾材の構造は、平行流型
であれば特に種類を問わず、例えば濾材の断面が略6角
形のハニカム構造、略3角形のコルゲート構造、略4角
形の角柱構造、全く折り加工を施さないシート構造や、
これらを単独でもしくは複合して積み重ねた積み重ね構
造などが挙げられる。特にコルゲート積み重ね構造は、
単位濾材重量あたりの吸着効率を高めるのに適してお
り、長寿命化をはかれるとともに正確な寿命予測ができ
る点で優れる。The structure of the filter medium of the present invention is not particularly limited as long as it is a parallel flow type. For example, the filter medium has a honeycomb structure having a substantially hexagonal cross section, a corrugated structure having a substantially triangular shape, and a prism structure having a substantially rectangular shape. , A sheet structure that is not folded at all,
A stacking structure in which these are stacked singly or in combination is exemplified. Especially the corrugated stacking structure,
It is suitable for increasing the adsorption efficiency per unit weight of the filter medium, and is excellent in that the service life can be extended and the service life can be accurately predicted.
【0022】本発明のフィルタは、クリーンルームやク
リーンブース、半導体製造装置や他の電子機器・部品製
造装置、ファンとフィルタが一体化したファンフィルタ
等に好ましく用いられる。The filter of the present invention is preferably used in a clean room, a clean booth, a semiconductor manufacturing device or other electronic device / part manufacturing device, a fan filter in which a fan and a filter are integrated, and the like.
【0023】[0023]
【0024】(実施例1)海成分にスルホン基を付与し
たポリスチレン、島成分に補強・分割用のポリプロピレ
ンを配した多芯海島型イオン交換繊維と天然パルプ及び
外側鞘部に低融点成分を配したポリエステル系熱融着繊
維を、60:20:20(重量%)の比率で湿式抄紙を
行い、目付約200g/m2のカチオン交換シートを得
た。本シートの単位重量あたりのイオン交換容量は1.
6meq/gであった。なお、イオン交換容量は、0.
1Nの水酸化ナトリウム50mlに当該シートを約1g
入れ、23℃、2時間振とうし、5ml正確にはかりと
って中和滴定し、本滴定量とサンプル重量から計算して
求めた。上記カチオン交換シートを中芯用基材及びライ
ナー用基材に用い、コルゲート加工マシン(5号段用シ
ングルフェーサ)において波形の表面形状を有するロー
ル(120℃)、中芯、ライナー用基材およびフラット
な表面形状をもつプレッシャロールの順となるようにし
て、ロール間に圧力を与えながらそれぞれのロールを回
転し、中芯用基材とライナー用基材とを加熱、加圧接着
し、コルゲート構造シートを製造した。このコルゲート
構造シートを幅600mm×通気方向の長さ60mmの
サイズにカットし、フィルタ用濾材として準備した。ま
た、同じコルゲート構造シートを幅600mm×通気方
向の長さ40mmのサイズにカットし、寿命予測用の短
いフィルタ用濾材として準備した。また、アルミを材料
として高さ610mm×幅610mm×奥行き70mmのフィ
ルタ外枠を作成し、上記定長カット済みのコルゲート構
造シート2種を図2に示すように積み重ねて充填し、ケ
ミカルフィルタを製作した。なお、濾材長さ40mm部
分の下流側には、風の流れ方向上流側の濾材に接する部
分に不織布を配した濾材保持枠を設置した。なお、使用
した不織布は、濾材60mm部分の風速0.5m/s時
の圧力損失値と、濾材40mm部分の風速0.5m/s
時の圧力損失値との差に相当する値になるよう不織布を
選定した。(Example 1) A multifilament sea-island type ion-exchange fiber in which a sea component is provided with polystyrene having a sulfone group, and an island component is provided with polypropylene for reinforcement / division, a natural pulp and a low melting point component are provided in an outer sheath portion. The obtained polyester-based heat-sealing fiber was subjected to wet papermaking at a ratio of 60:20:20 (% by weight) to obtain a cation exchange sheet having a basis weight of about 200 g / m2. The ion exchange capacity per unit weight of this sheet is 1.
It was 6 meq / g. The ion exchange capacity is 0.1.
Approximately 1 g of the sheet in 50 ml of 1N sodium hydroxide
The mixture was shaken at 23 ° C. for 2 hours, accurately weighed 5 ml, neutralized and titrated, and calculated from the main titer and the sample weight. A roll (120 ° C.) having a corrugated surface shape in a corrugating machine (single facer for 5th stage) using the above cation exchange sheet as a substrate for a core and a substrate for a liner, a substrate for a core and a liner And so as to be in the order of the pressure roll having a flat surface shape, rotate each roll while applying pressure between the rolls, heat and pressurize the core substrate and the liner substrate, A corrugated sheet was manufactured. This corrugated sheet was cut into a size of 600 mm in width × 60 mm in length in the ventilation direction to prepare a filter medium for a filter. Further, the same corrugated structure sheet was cut into a size of 600 mm in width × 40 mm in length in the ventilation direction, and prepared as a filter material for a short filter for estimating the life. Also, a filter outer frame with a height of 610 mm, a width of 610 mm and a depth of 70 mm is made from aluminum, and the two fixed-length cut corrugated sheets are stacked and filled as shown in FIG. 2 to produce a chemical filter. did. In addition, a filter medium holding frame in which a nonwoven fabric was arranged in a portion in contact with the filter medium on the upstream side in the wind flow direction was installed downstream of the filter medium length of 40 mm. The nonwoven fabric used had a pressure loss value of 0.5 m / s at a wind speed of 60 mm for the filter medium and a 0.5 m / s wind speed at a wind speed of 40 mm for the filter medium.
The nonwoven fabric was selected so as to have a value corresponding to the difference from the pressure loss value at the time.
【0025】このケミカルフィルタを用いて、アンモニ
ア寿命予測モデル試験を行った。試験は、アンモニア濃
度100μg/m3に調整したエアを面風速0.5m/
sになるように試験用フィルタに流し、一定時間ごとに
ケミカルフィルタ上流及び濾材長さ60mm部分と40
mm部分の下流側それぞれのエアをサンプリングして各
アンモニア濃度を測定し、次式に基づき除去効率を計算
した。 除去効率(%)=(1−「下流濃度」/「上流濃度」)
×100 なお、サンプリングはインピンジャーと呼ばれる補集器
具に超純水を充填し、そこに対象エアを通気させること
によりアンモニアを溶解させて捕集した。分析はイオン
クロマトグラフィーを用いた微量分析を行った。濾材長
さ60mm部分と40mm部分それぞれの除去効率測定
結果を表1にまとめた。アンモニア除去効率は、スター
ト時はいずれの部分もほぼ100%であるが、時間経過
に従って徐々に除去効率は低下し、かつ40mm部分は
60mm部分に比べ早く除去効率は低下した。本実験で
は、例えば60mm部分の除去効率が90%を下回った
のは、40mm部分が50%を下回った4日後であっ
た。Using this chemical filter, an ammonia life prediction model test was performed. The test was conducted by adjusting the air adjusted to an ammonia concentration of 100 μg / m3 to a surface wind speed of 0.5 m / m3.
s to the filter for test so that the upstream of the chemical filter and the filter media length of 60 mm
The air on each downstream side of the mm portion was sampled to measure each ammonia concentration, and the removal efficiency was calculated based on the following equation. Removal efficiency (%) = (1-"downstream concentration" / "upstream concentration")
× 100 Sampling was performed by filling a collection device called an impinger with ultrapure water and allowing the target air to flow therethrough to dissolve and collect ammonia. The analysis was performed by micro-analysis using ion chromatography. Table 1 summarizes the measurement results of the removal efficiency of each of the 60 mm and 40 mm filter media lengths. At the start, the ammonia removal efficiency was almost 100% in each part, but the removal efficiency gradually decreased with time, and the removal efficiency of the 40 mm portion decreased earlier than that of the 60 mm portion. In this experiment, for example, the removal efficiency of the 60 mm portion fell below 90% four days after the 40 mm portion fell below 50%.
【0026】一方、本実施例のモデル実験に用いた同じ
寿命予測フィルタ1枚と濾材長さ60mmの図3に示す
通常のフィルタ8枚それぞれ新品を用いてクリーンルー
ム供給用外気処理装置を作製した。取り付けたフィルタ
を通過するエアの面風速はすべて0.5m/sになるよ
う調整し、本装置に取り付けた寿命予測フィルタの濾材
長さ60mm部分と40mm部分それぞれの除去効率を
3ヶ月おきに測定した。さらに装置全体を1ユニットと
したときの除去効率もあわせて測定した。その結果、2
1ヶ月後には、装置全体の除去効率は96%とほとんど
低下していないデータが得られたが、濾材長さ40mm
の部分は除去効率が60%に低下しており、寿命が近い
ことを事前に予測することが出来た。この結果をもと
に、交換用フィルタをすぐ手配し、22ヶ月後寿命予測
用フィルタ1枚と通常のフィルタ8枚とをそれぞれ新品
に交換することができた。On the other hand, a fresh air supply apparatus for supplying a clean room was manufactured by using one new life expectancy filter used in the model experiment of this embodiment and eight normal filters shown in FIG. 3 having a filter material length of 60 mm. Adjust the surface wind velocity of the air passing through the attached filter to 0.5 m / s, and measure the removal efficiency of the filter media length of 60 mm and 40 mm of the life prediction filter attached to this device every three months. did. Furthermore, the removal efficiency when the whole apparatus was set as one unit was also measured. As a result, 2
One month later, the removal efficiency of the entire apparatus was found to be 96%, which was almost unchanged, but the filter medium length was 40 mm.
The removal efficiency was reduced to 60% in the portion indicated by, and it was possible to predict in advance that the life would be short. Based on this result, a replacement filter was immediately arranged, and after 22 months, one filter for life expectancy and eight normal filters could be replaced with new ones.
【0027】[0027]
【発明の効果】本発明のケミカルフィルタによれば、エ
アの流れ方向の長さが短い濾材部分の除去性能を測定す
ることにより、他の濾材または他のフィルタの寿命を、
フイルタの取り外し等の煩わしい作業なしに容易に予測
・判別することができる。According to the chemical filter of the present invention, by measuring the removal performance of a filter medium portion having a short length in the air flow direction, the life of another filter medium or another filter can be reduced.
Prediction and determination can be easily made without troublesome work such as removal of the filter.
【図1】本発明のケミカルフィルタ正面の状態を示す模
式図。FIG. 1 is a schematic diagram showing a state of a front of a chemical filter of the present invention.
【図2】本発明のケミカルフィルタ内部の状態を示す示
す模式図。FIG. 2 is a schematic diagram showing a state inside the chemical filter of the present invention.
【図3】本発明のケミカルフィルタと同時に使用できる
ケミカルフィルタ内部の状態を示す模式図。FIG. 3 is a schematic diagram showing a state inside a chemical filter that can be used simultaneously with the chemical filter of the present invention.
【図4】本発明のケミカルフィルタに用いる濾材保持枠
の状態を示す模式図。FIG. 4 is a schematic diagram showing a state of a filter medium holding frame used in the chemical filter of the present invention.
【図5】本発明のエア吸引口を有するケミカルフィルタ
内部の状態を示す模式図。FIG. 5 is a schematic diagram showing a state inside a chemical filter having an air suction port of the present invention.
【図6】本発明のサンプリング用チューブを有するケミ
カルフィルタ内部の状態を示す模式図。FIG. 6 is a schematic diagram showing a state inside a chemical filter having a sampling tube of the present invention.
【図7】本発明のケミカルフィルタの除去効率測定結果
を示すグラフ。FIG. 7 is a graph showing the measurement results of the removal efficiency of the chemical filter of the present invention.
1:濾材 2:外枠 3:スペース部分 4:長い濾材部分 5:短い濾材部分 6:不織布 7:フレーム 8:エア吸引口 9:サンプリング用チューブ 1: Filter medium 2: Outer frame 3: Space section 4: Long filter medium section 5: Short filter medium section 6: Non-woven fabric 7: Frame 8: Air suction port 9: Sampling tube
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成11年8月31日(1999.8.3
1)[Submission date] August 31, 1999 (1999.8.3)
1)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0025[Correction target item name] 0025
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0025】このケミカルフィルタを用いて、アンモニ
ア寿命予測モデル試験を行った。試験は、アンモニア濃
度100μg/m3に調整したエアを面風速0.5m/
sになるように試験用フィルタに流し、一定時間ごとに
ケミカルフィルタ上流及び濾材長さ60mm部分と40
mm部分の下流側それぞれのエアをサンプリングして各
アンモニア濃度を測定し、次式に基づき除去効率を計算
した。 除去効率(%)=(1−「下流濃度」/「上流濃度」)
×100 なお、サンプリングはインピンジャーと呼ばれる補集器
具に超純水を充填し、そこに対象エアを通気させること
によりアンモニアを溶解させて捕集した。分析はイオン
クロマトグラフィーを用いた微量分析を行った。濾材長
さ60mm部分と40mm部分それぞれの除去効率測定
結果を図7にまとめた。アンモニア除去効率は、スター
ト時はいずれの部分もほぼ100%であるが、時間経過
に従って徐々に除去効率は低下し、かつ40mm部分は
60mm部分に比べ早く除去効率は低下した。本実験で
は、例えば60mm部分の除去効率が90%を下回った
のは、40mm部分が50%を下回った4日後であっ
た。Using this chemical filter, an ammonia life prediction model test was performed. The test was conducted by adjusting the air adjusted to an ammonia concentration of 100 μg / m3 to a surface wind speed of 0.5 m / m3.
s to the filter for test so that the upstream of the chemical filter and the filter media length of 60 mm
The air on each downstream side of the mm portion was sampled to measure each ammonia concentration, and the removal efficiency was calculated based on the following equation. Removal efficiency (%) = (1-"downstream concentration" / "upstream concentration")
× 100 Sampling was performed by filling a collection device called an impinger with ultrapure water and allowing the target air to flow therethrough to dissolve and collect ammonia. The analysis was performed by micro-analysis using ion chromatography. FIG. 7 shows the measurement results of the removal efficiencies of the 60 mm and 40 mm filter media portions. At the start, the ammonia removal efficiency was almost 100% in each part, but the removal efficiency gradually decreased with time, and the removal efficiency of the 40 mm portion decreased earlier than that of the 60 mm portion. In this experiment, for example, the removal efficiency of the 60 mm portion fell below 90% four days after the 40 mm portion fell below 50%.
Claims (14)
を構成する濾材表面に沿って略平行に流れる平行流型フ
ィルタであって、エアが流れる方向の長さが異なる複数
の濾材で構成されていることを特徴とするケミカルフィ
ルタ。1. A parallel flow filter in which a flow of air passing through a filter flows substantially parallel along a surface of a filter medium constituting the filter, the filter comprising a plurality of filter media having different lengths in a direction in which air flows. A chemical filter.
流部分に接するように濾材保持枠を配したことを特徴と
する請求項1記載のケミカルフィルタ。2. The chemical filter according to claim 1, wherein a filter medium holding frame is arranged so as to be in contact with a downstream portion of the filter medium in which air of the filter medium flows.
ムとにより構成されており、かつ少なくとも濾材のエア
が流れる下流側に接する部分に不織布を配したことを特
徴とする請求項2記載のケミカルフィルタ。3. The chemical filter according to claim 2, wherein the filter medium holding frame is composed of at least a nonwoven fabric and a frame, and the nonwoven fabric is arranged at least in a portion of the filter medium that is in contact with the downstream side where air flows. .
吸引口を設けたことを特徴とする請求項1〜3のいずれ
かに記載のケミカルフィルタ。4. The chemical filter according to claim 1, wherein an air suction port is provided downstream of the short filter medium through which the air flows.
部に有するフィルタであって、チューブの一端を濾材保
持枠内部に配し、チューブの他端を濾材のエアが流れる
上流側の外部に突出させて配した請求項2または3に記
載のケミカルフィルタ。5. A filter having an air suction tube inside an outer frame of the filter, wherein one end of the tube is arranged inside a filter medium holding frame, and the other end of the tube is located outside an upstream side of the filter medium where air flows. The chemical filter according to claim 2, wherein the chemical filter is arranged so as to protrude.
を構成する濾材表面に沿って略平行に流れる平行流型フ
ィルタであって、エアが流れる方向の長さが同一であっ
て、エアが流れる方向のフィルタ外枠長さより短い濾材
で構成されていることを特徴とするケミカルフィルタ。6. A parallel flow type filter in which a flow of air passing through a filter flows substantially parallel along a surface of a filter medium constituting the filter, wherein air flows in the same length in a direction in which the air flows. A chemical filter comprising a filter medium shorter than a filter outer frame length in a direction.
流部分に接するように濾材保持枠を配したことを特徴と
する請求項6記載のケミカルフィルタ。7. The chemical filter according to claim 6, wherein a filter medium holding frame is disposed so as to be in contact with a downstream portion of the filter medium in which air of the filter medium flows.
ムとにより構成されており、かつ少なくとも濾材のエア
が流れる下流側に接する部分に不織布を配したことを特
徴とする請求項7記載のケミカルフィルタ。8. The chemical filter according to claim 7, wherein the filter medium holding frame is composed of at least a nonwoven fabric and a frame, and the nonwoven fabric is arranged at least in a portion of the filter medium that is in contact with the downstream side where air flows. .
口を設けたことを特徴とする請求項6〜7のいずれかに
記載のケミカルフィルタ。9. The chemical filter according to claim 6, wherein an air suction port is provided on a downstream side of the filter medium through which the air flows.
内部に有するフィルタであって、チューブの一端を濾材
保持枠内部に配し、チューブの他端を濾材のエアが流れ
る上流側の外部に突出させて配した請求項7または8に
記載のケミカルフィルタ。10. A filter having an air suction tube inside an outer frame of the filter, wherein one end of the tube is arranged inside a filter medium holding frame, and the other end of the tube is located outside an upstream side of the filter medium where air flows. The chemical filter according to claim 7, wherein the chemical filter is arranged so as to protrude.
タを構成する濾材表面に沿って略平行に流れる平行流型
フィルタであって、エアが流れる方向の長さが同一であ
って、エアが流れる方向のフィルタ外枠とほぼ同一長さ
の濾材で構成されている1個以上のケミカルフィルタ
に、請求項1〜5のいずれかに記載のケミカルフィルタ
または請求項6〜10のいずれかに記載のケミカルフィ
ルタを1個以上組み合わせて用いることを特徴とするケ
ミカルフィルタの使用方法。11. A parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of a filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the air flows. The chemical filter according to any one of claims 1 to 5, or the chemical filter according to any one of claims 6 to 10, wherein the one or more chemical filters are formed of a filter medium having substantially the same length as the filter outer frame in the direction. A method of using a chemical filter, wherein one or more chemical filters are used in combination.
タを構成する濾材表面に沿って略平行に流れる平行流型
フィルタであって、エアが流れる方向の長さが同一であ
って、エアが流れる方向のフィルタ外枠とほぼ同一長さ
の濾材で構成されている1個以上のケミカルフィルタ
に、請求項1〜5のいずれかに記載のケミカルフィルタ
または請求項6〜10のいずれかに記載のケミカルフィ
ルタを1個以上組み合わせてなることを特徴とするクリ
ーンルーム。12. A parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the air flows in the same length in the air flowing direction. The chemical filter according to any one of claims 1 to 5, or the chemical filter according to any one of claims 6 to 10, wherein the one or more chemical filters are formed of a filter medium having substantially the same length as the filter outer frame in the direction. A clean room characterized by combining one or more chemical filters.
タを構成する濾材表面に沿って略平行に流れる平行流型
フィルタであって、エアが流れる方向の長さが同一であ
って、エアが流れる方向のフィルタ外枠とほぼ同一長さ
の濾材で構成されている1個以上のケミカルフィルタ
に、請求項1〜5のいずれかに記載のケミカルフィルタ
または請求項6〜10のいずれかに記載のケミカルフィ
ルタを1個以上組み合わせてなることを特徴とする半導
体製造装置。13. A parallel flow filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the air flows. The chemical filter according to any one of claims 1 to 5, or the chemical filter according to any one of claims 6 to 10, wherein the one or more chemical filters are formed of a filter medium having substantially the same length as the filter outer frame in the direction. A semiconductor manufacturing apparatus characterized by combining one or more chemical filters.
タを構成する濾材表面に沿って略平行に流れる平行流型
フィルタであって、エアが流れる方向の長さが同一であ
って、エアが流れる方向のフィルタ外枠とほぼ同一長さ
の濾材で構成されている1個以上のケミカルフィルタ
に、請求項1〜5のいずれかに記載のケミカルフィルタ
または請求項6〜10のいずれかに記載のケミカルフィ
ルタを1個以上組み合わせてなり、さらに通風装置を有
することを特徴とするファンフィルタ。14. A parallel flow type filter in which the flow of air passing through the filter flows substantially parallel along the surface of the filter medium constituting the filter, wherein the length of the air flowing direction is the same, and the air flows. The chemical filter according to any one of claims 1 to 5, or the chemical filter according to any one of claims 6 to 10, wherein the one or more chemical filters are formed of a filter medium having substantially the same length as the filter outer frame in the direction. A fan filter comprising a combination of one or more chemical filters and further comprising a ventilation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24187699A JP2001062237A (en) | 1999-08-27 | 1999-08-27 | Chemical filter, its use method, clean room, semiconductor production apparatus and fan filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24187699A JP2001062237A (en) | 1999-08-27 | 1999-08-27 | Chemical filter, its use method, clean room, semiconductor production apparatus and fan filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001062237A true JP2001062237A (en) | 2001-03-13 |
Family
ID=17080860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24187699A Pending JP2001062237A (en) | 1999-08-27 | 1999-08-27 | Chemical filter, its use method, clean room, semiconductor production apparatus and fan filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001062237A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011019729A3 (en) * | 2009-08-14 | 2011-04-28 | Airclean Systems | Ductless fume hood gas monitoring and detection system |
JP2011206753A (en) * | 2010-03-30 | 2011-10-20 | Nippon Muki Co Ltd | Fan filter unit for determining life |
CN108008084A (en) * | 2017-12-26 | 2018-05-08 | 江西诺发科技有限公司 | A kind of adsorbent media service life instruction device of dry type spy tail-gas processing equipment |
JP2019511692A (en) * | 2016-03-16 | 2019-04-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | AIR CLEANER AND AIR CLEANING METHOD |
-
1999
- 1999-08-27 JP JP24187699A patent/JP2001062237A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011019729A3 (en) * | 2009-08-14 | 2011-04-28 | Airclean Systems | Ductless fume hood gas monitoring and detection system |
US8372186B2 (en) | 2009-08-14 | 2013-02-12 | Gregory J. Dobbyn | Ductless fume hood gas monitoring and detection system |
AU2010282657B2 (en) * | 2009-08-14 | 2015-07-30 | Airclean Systems | Ductless fume hood gas monitoring and detection system |
US9121622B2 (en) | 2009-08-14 | 2015-09-01 | Gregory J. Dobbyn | Ductless fume hood gas monitoring and detection system |
US9587846B2 (en) | 2009-08-14 | 2017-03-07 | Gregory J. Dobbyn | Ductless fume hood gas monitoring and detection system |
US9999908B2 (en) | 2009-08-14 | 2018-06-19 | Gregory J. Dobbyn | Ductless fume hood gas monitoring and detection system |
JP2011206753A (en) * | 2010-03-30 | 2011-10-20 | Nippon Muki Co Ltd | Fan filter unit for determining life |
JP2019511692A (en) * | 2016-03-16 | 2019-04-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | AIR CLEANER AND AIR CLEANING METHOD |
JP7143218B2 (en) | 2016-03-16 | 2022-09-28 | コーニンクレッカ フィリップス エヌ ヴェ | Air cleaner and air cleaning method |
CN108008084A (en) * | 2017-12-26 | 2018-05-08 | 江西诺发科技有限公司 | A kind of adsorbent media service life instruction device of dry type spy tail-gas processing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1022043A1 (en) | Chemical filter unit and gas purification system | |
US6379437B1 (en) | Filter for gases | |
US20050148465A1 (en) | Filter system | |
US20050217488A1 (en) | Adsorption filter and manufacturing method thereof | |
JPH11509780A (en) | Air purification filter device | |
JP2007532310A (en) | Chemical filter unit incorporating pneumatic transport means | |
JP2001062237A (en) | Chemical filter, its use method, clean room, semiconductor production apparatus and fan filter | |
US11565213B2 (en) | Membrane device for water and energy exchange | |
JPWO2005032608A1 (en) | Gas adsorption filter | |
JP2001000821A (en) | Chemical filter unit | |
JP2000317243A (en) | Chemical filter | |
JPH10230117A (en) | Chemical filter device and its control method | |
JPH11216327A (en) | Air filter unit | |
JP4100744B2 (en) | Boron removal filter and contaminated gas purification method | |
JP2005034693A (en) | Filtering medium for air filter and its production method | |
JP2003126640A (en) | Parallel flow air filter | |
JP2000033217A (en) | Chemical filter | |
JP2001000820A (en) | Chemical filter | |
JPH09239223A (en) | Pleat type filter | |
US20230130119A1 (en) | Chemical filter assemblies | |
JPH0663333A (en) | Air purifying system | |
JPH10128040A (en) | Corrugate lamination type air filter | |
JP2005342712A (en) | Chemical filter unit and gas cleaning system | |
JP3574341B2 (en) | Apparatus and method for measuring concentration of gaseous pollutants | |
JP2003024725A (en) | Opened cell structure for air filter |