JP2001060739A - Surface emission laser - Google Patents

Surface emission laser

Info

Publication number
JP2001060739A
JP2001060739A JP11232601A JP23260199A JP2001060739A JP 2001060739 A JP2001060739 A JP 2001060739A JP 11232601 A JP11232601 A JP 11232601A JP 23260199 A JP23260199 A JP 23260199A JP 2001060739 A JP2001060739 A JP 2001060739A
Authority
JP
Japan
Prior art keywords
layer
plane
quantum well
algaas
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232601A
Other languages
Japanese (ja)
Inventor
Osamu Tadanaga
修 忠永
Kouta Tateno
功太 舘野
Hiroyuki Uenohara
裕行 植之原
Toshiaki Kagawa
俊明 香川
Chikara Amano
主税 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11232601A priority Critical patent/JP2001060739A/en
Publication of JP2001060739A publication Critical patent/JP2001060739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance stability of polarizing direction while keeping a high coupling efficiency with an optical fiber by employing a multiple quantum well having a well layer of a specified substance introduced with compressive distortion in an active layer. SOLUTION: The surface emission laser is fabricated by epitaxially growing an n-type distributed feedback reflector 2, an AlGaAs spacer layer 3, an InAlGaAs/AlGaAs multiple quantum well active layer 4, an AlGaAs spacer layer 5, and a p-type distributed feedback reflector 6 sequentially on an n-type GaAs substrate 1. The AlGaAs spacer layer 3 comprises a nondoped Al0.6Ga0.4As spacer layer and the InAlGaAs/AlGaAs multiple quantum well active layer 4 comprises a multiple quantum well layer of three well layers including a well layer of nondoped In0.6Al0.156Ga0.65As and a barrier layer of nondoped Al0.3Ga0.7As. When a current is injected to a surface emission laser having such a structure under room temperature, laser oscillation is confirmed at an oscillation wavelength of 0.85 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、光インターコネク
ションや2次元並列信号処理に用いられる偏光が制御さ
れた面発光レーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting laser device having a controlled polarization used for optical interconnection and two-dimensional parallel signal processing.

【0002】[0002]

【従来の技術】面発光レーザ装置は、2次元高密度集積
が可能であり、発光パターンが円形であるため光ファイ
バとの結合が容易であることから、光インターコネクシ
ョンや2次元並列信号処理用の光源として重要である。
2. Description of the Related Art A surface emitting laser device is capable of two-dimensional high-density integration and has a circular light-emitting pattern, which facilitates coupling with an optical fiber. Important as a light source.

【0003】しかし、発光面内の対称性が良いために発
振する偏光方向がランダムで、そのために高速伝送を行
った場合に過剰ノイズの原因となる。また、偏光方向が
ランダムであることは、フリースペースを用いたシステ
ムや光メモリ等の偏光方向依存の系に適用する場合にも
伝送エラーが発生する原因になる。
However, the polarization direction of oscillation is random due to good symmetry in the light emitting surface, which causes excessive noise when high-speed transmission is performed. The random polarization direction also causes transmission errors when applied to a system using free space or a polarization direction-dependent system such as an optical memory.

【0004】そこで、レーザ光の偏光方向を面内のある
一定方向に制御する試みがこれまで数々報告されてい
る。例えば、T.Mukaihara et.al.,IEEE Photonics Tec
hnology Letters,vol 5,PP.133〜135(1993)に開示さ
れているように、(100)面内に異方性応力を加える
方法、また、K.D.Choquetto et.al.,IEEE Photonics Te
chnology Letters,vol 6,PP.40〜42(1994)に開示さ
れているように、導波方向の断面構造に異方性をもうけ
ることによって導波モードを制御するものがある。その
他では基板の面方位が(100)面から(011)もし
くは(011~)(1~は1の上にバーを付したものを表
す)面方向に数度基板面が傾いているオフ基板を用いて
異方性光学利得を利用したもの、そしてさらに、傾斜し
た(n11)面、(1nn)面といった傾斜基板上に作
製することで結晶の異方性より得られる面内の光学利得
の異方性増大を利用した物がある。これらの中で作製方
法が(100)面上のものと同じであり、光ファイバと
の結合を考慮した場合に出射形状を円形にすることがで
きる傾斜基板上に作製した面発光レーザ装置が有望であ
ると考えられる。
[0004] Thus, there have been reported many attempts to control the polarization direction of laser light in a certain direction within a plane. For example, T. Mukaihara et.al., IEEE Photonics Tec
hnology Letters, vol 5, PP. 133-135 (1993), a method of applying anisotropic stress in the (100) plane, and KDChoquetto et.al., IEEE Photonics Te.
As disclosed in Chnology Letters, vol. 6, PP. 40-42 (1994), there is a type in which a waveguide mode is controlled by giving anisotropy to a cross-sectional structure in a waveguide direction. In other cases, the off-substrate whose substrate orientation is inclined several degrees from the (100) plane to the (011) or (011 ~) (1 to 1 represents a bar on 1) plane direction And anisotropic optical gain, and furthermore, by fabricating on an inclined substrate such as an inclined (n11) plane or (1nn) plane, the difference in in-plane optical gain obtained from crystal anisotropy. There are things that use anisotropic increase. Among them, the manufacturing method is the same as that on the (100) plane, and a surface emitting laser device manufactured on an inclined substrate that can make the emission shape circular when the coupling with the optical fiber is considered is promising. It is considered to be.

【0005】加えて、(100)面から(011)もし
くは(011~)面方向に約55度傾いた(111)面
に等価な面上では結晶的に異方性がなく、またさらに、
傾いた(1nn)面(n>1)に等価な面上ではその閃
亜鉛鉱構造の結晶の劈開特性より長方形に劈開すること
が困難なため、傾斜角度は15°〜40°が適当である
と考えられる。
In addition, there is no crystal anisotropy on a plane equivalent to the (111) plane inclined at about 55 degrees from the (100) plane toward the (011) or (011 ~) plane.
On a plane equivalent to the inclined (1nn) plane (n> 1), it is difficult to cleave in a rectangular shape due to the cleavage characteristics of the crystal of the zinc blende structure. Therefore, the inclination angle is preferably 15 ° to 40 °. it is conceivable that.

【0006】このような傾斜基板を用いた偏光制御型面
発光レーザは、M.Takahashi et.al.,IEEE Photonics Te
chnology Letters,vol 8,PP737〜739(1996)や A.Mizu
taniet.al.,Japan Journal of Applied Phisics,vol 3
7,PP1408(1998)に開示されているように、0.98μ
m帯のものと、K.Tateno et.al.,Applied Phisics Lett
ers,vol 70,PP3395(1997)に開示されているような
0.85μm帯のものがあり、双方とも(100)面か
ら(011)面方向もしくは(011~)面方向に約2
5°傾斜したGaAs(311)基板上に作製されてい
る。
A polarization controlled surface emitting laser using such an inclined substrate is disclosed in M. Takahashi et.al., IEEE Photonics Tes.
chnology Letters, vol 8, PP737-739 (1996) and A. Mizu
taniet.al., Japan Journal of Applied Phisics, vol 3
7, PP1408 (1998).
m band and K. Tateno et.al., Applied Phisics Lett
ers, vol 70, PP3395 (1997), there is a 0.85 μm band, both of which are about 2 from the (100) plane to the (011) plane or the (011 ~) plane.
It is fabricated on a GaAs (311) substrate inclined at 5 °.

【0007】そして、指数面の表記を前述したTateno e
t.al.の報告に合わせて説明すると、その導波構造が2
軸に対称な円形であっても(311~)面内において<
2~33~>方向に偏光した発振特性を示す。ここで、偏
光方向とその直交する方向、前記の例で言えば、(31
1~)面内における<2~33~>方向とその直交する<
01~1~>方向の光強度比を直交偏波抑圧比と言う。
[0007] Then, the notation of the exponential plane is described in Tateno e
According to the report of t.al., the waveguide structure is 2
Even in the case of a circular shape symmetric with respect to the axis,
2 to 33 to show oscillation characteristics polarized in the> direction. Here, the polarization direction and the direction orthogonal thereto, in the above example, (31
1 ~) The <2-33 ~> direction in the plane and the direction orthogonal thereto <
The light intensity ratio in the 01 ~ 1 ~> direction is called the orthogonal polarization suppression ratio.

【0008】一般的に通常の(100)面上であって
も、0.98μm帯レーザは安価に容易に入手できる基
板上に作製する場合、格子整合系で活性層を作ることは
困難なため、GaAs基板に格子定数の大きいInGa
Asを井戸層として用い、歪み量子井戸構造としてい
る。すなわち、簡便に作製する場合、どうしても歪み量
子井戸を活性層に用いなくてはならない。一方、発振波
長が0.75μm〜0.9μmのレーザでは、歪み量子井
戸を用いなくとも当該波長の発光が可能であり、かつ光
学利得も十分な大きさを持っているため格子整合系のG
aAs/AlGaAs量子井戸を活性層として用いるの
が一般的であり、報告されている偏光制御型面発光レー
ザ装置においてもGaAs/AlGaAs量子井戸を用
いているものだけである。
In general, even when the laser beam is on a normal (100) plane, it is difficult to form an active layer using a lattice matching system when a 0.98 μm band laser is fabricated on a substrate which can be easily obtained at low cost. , A GaAs substrate having a large lattice constant InGa
As is used as a well layer to form a strained quantum well structure. That is, in the case of simple fabrication, strained quantum wells must be used for the active layer. On the other hand, a laser having an oscillation wavelength of 0.75 μm to 0.9 μm can emit light of the wavelength without using a strained quantum well and has a sufficient optical gain, so that the lattice matching G
Generally, an aAs / AlGaAs quantum well is used as an active layer, and even the reported polarization control type surface emitting laser device uses only a GaAs / AlGaAs quantum well.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記G
aAs/AlGaAs量子井戸を用いた偏光制御型面発
光レーザ装置は、<2~33~>(2~,3~はそれぞれ
2,3の上にバーを付したものを表す)方向に偏光して
いるが、<01~1~>方向との利得差が小さいため<0
1~1~>方向にも発光が観測され、その直交偏波抑圧比
は最大で15dBにとどまっている。この<01~1~>
方向への発光が動特性において、影響を及ぼし過剰ノイ
ズの十分な低減を行えていなかった。また、偏波依存性
のある系での伝送特性のエラーの原因にもなる。
However, the aforementioned G
The polarization control type surface emitting laser device using the aAs / AlGaAs quantum well is polarized in a <2 to 33> direction (2 to 3 indicate a bar with a bar on 2, 3 respectively). However, since the gain difference from the <01 ~ 1 ~> directions is small,
Light emission was also observed in the 1-1 to 1-> directions, and the orthogonal polarization suppression ratio remained at 15 dB at the maximum. This <01 ~ 1 ~>
Light emission in the direction has an effect on dynamic characteristics, and it has not been possible to sufficiently reduce excessive noise. In addition, it may cause an error in transmission characteristics in a polarization-dependent system.

【0010】これは、半導体レーザの動特性において、
キャリア注入時にキャリア密度は<2~33~>方向の発
振閾値を越え緩和振動し、<2~33~>方向と比較して
高いがその差が小さいため<01~1~>方向の閾値まで
到達し、<01~1~>方向の発振も許容してしまう。こ
れを解決するためには<2~33~>方向と<01~1~>
方向の閾値キャリア密度差をさらに大きくする必要があ
る。
This is due to the dynamic characteristics of the semiconductor laser.
At the time of carrier injection, the carrier density exceeds the oscillation threshold in the <2-33 ~> direction and relaxes and oscillates, and is higher than the <2-33 ~> direction, but the difference is small, so the threshold in the <01-1 ~> direction is reached. And oscillation in the <01 to 1 to> directions is allowed. In order to solve this, the <2 ~ 33 ~> direction and <01 ~ 1 ~>
It is necessary to further increase the threshold carrier density difference in the direction.

【0011】本発明の目的は、導波構造を円形のままで
<2~33~>方向と<01~1~>方向の閾値キャリア密
度差をさらに大きくすることにより、動特性においても
安定した偏光特性を示す面発光レーザ装置を提供するこ
とにある。
An object of the present invention is to further improve the dynamic characteristics by increasing the difference in threshold carrier density between the <2 to 33> direction and the <01 to 1> direction while keeping the waveguide structure circular. An object of the present invention is to provide a surface emitting laser device exhibiting polarization characteristics.

【0012】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0013】[0013]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows.

【0014】本発明は、面方位が(100)面から(0
11)面もしくは(011~)面方向へ15°〜40°
傾斜したGaAs基板上にエピタキシャル成長により形
成された上下の多層膜からなる分布帰還型反射鏡とその
間に挟まれた量子井戸からなる活性層を有する面発光レ
ーザ装置において、前記活性層が圧縮歪みが導入された
InAlGaAs又はInGaAsPからなる井戸層を
有する多重量子井戸である。
According to the present invention, the plane orientation is changed from (100) plane to (0) plane.
11) 15 ° to 40 ° in plane or (011 ~) plane direction
In a surface emitting laser device having a distributed feedback mirror formed of upper and lower multilayer films formed on a tilted GaAs substrate by epitaxial growth and an active layer formed of a quantum well sandwiched therebetween, the active layer has a compressive strain. It is a multiple quantum well having a well layer made of InAlGaAs or InGaAsP.

【0015】このように構成することにより、導波構造
を円形のままで<2~33~>方向と<01~1~>方向の
閾値キャリア密度差をさらに大きくするので、動特性に
おいても安定した偏光特性を示す面発光レーザ装置を得
ることができる。
With this configuration, the difference in threshold carrier density between the <2 to 33> direction and the <01 to 1> direction is further increased while keeping the waveguide structure circular, so that dynamic characteristics are also stable. A surface-emitting laser device exhibiting improved polarization characteristics can be obtained.

【0016】すなわち、従来の無歪みGaAs量子井戸
活性層を用いた場合に(n11)面上の結晶的に異方性
をもつ面上であるが故の価電子帯の重い正孔の面内の2
軸に対する光学利得の異方性に加え、井戸層に圧縮歪み
が加わるとさらにその光学利得異方性は大きくなる。こ
れは圧縮歪みにより価電子帯の重い正孔の状態関数が変
化し、その変化の方向が光学利得の異方性を冗長する方
向に働くからである。図3にその効果を実証する実験結
果を示すフォトルミネッセンス(PL)スペクトルを示
す。サンプルは(311)B基板(Bは表面原子層がA
sで構成されていることを表す)基板上に作製した量子
井戸である。励起光源には波長が514.5nmのAr
レーザを用いている。図3では、量子井戸からの発光を
偏光子によって偏波分離して見ており、特定の偏波方向
への光学利得の大きさを示すものである。図3(a)は
ノンドープIn0.2Al0.15Ga0.65Asを井戸層とし
ノンドープAl0.3Ga0.7As層を障壁層とする3井戸
層の歪み量子井戸のPLスペクトルであり、図3(b)
はノンドープGaAsを井戸層としノンドープAl0.3
Ga0.7As層を障壁層とする3井戸層の歪み量子井戸
のPLスペクトルである。PLスペクトルのピーク波長
での強度は偏光子の角度によって変化し、双方とも<2
~33~>方向のときに最大値を、<01~1~>方向のと
きに最小値をとった。図3(b)に示す無歪み量子井戸
のものでは<2~33~>方向に比して<01~1~>方向
に偏光した発光強度は5.9%の減少にとどまっている
が、図3(a)に示す歪み量子井戸では7.4%の減少
となり、その発光強度差は大きくなっている。このよう
に歪みを入れることにより光学利得の異方性が増強され
る。そして、(311)面と他の(211)面、(41
1)面、(511)面のGaAs基板上及びその面から
数度ずれたオフ基板上の量子井戸でもこの光学利得異方
性の増強を得ることができる。これによって面内の偏光
方向による閾値キャリア密度差が無歪みの場合より大き
くなり、面発光レーザ装置の静特性においては直交偏波
抑圧比が増加し、動特性において主軸の閾値キャリア密
度を超えても、その直交する方向の閾値キャリア密度に
到達せず、安定した偏光での伝送ができ、過剰ノイズ低
減が実現できる。
That is, when the conventional strain-free GaAs quantum well active layer is used, the in-plane of heavy holes in the valence band is due to the crystal anisotropy on the (n11) plane. 2
When compressive strain is applied to the well layer in addition to the anisotropy of the optical gain with respect to the axis, the optical gain anisotropy further increases. This is because the state function of heavy holes in the valence band changes due to compressive strain, and the direction of the change acts in a direction that makes the anisotropy of optical gain redundant. FIG. 3 shows a photoluminescence (PL) spectrum showing experimental results for verifying the effect. The sample is a (311) B substrate (B has a surface atomic layer of A
s) (on the substrate). Ar having a wavelength of 514.5 nm is used as an excitation light source.
A laser is used. In FIG. 3, light emitted from the quantum well is polarized and separated by a polarizer, and shows the magnitude of the optical gain in a specific polarization direction. FIG. 3A shows a PL spectrum of a strained quantum well of a three-well layer having non-doped In 0.2 Al 0.15 Ga 0.65 As as a well layer and a non-doped Al 0.3 Ga 0.7 As layer as a barrier layer, and FIG.
Uses undoped GaAs as a well layer and undoped Al 0.3
5 is a PL spectrum of a strained quantum well of a three-well layer having a Ga 0.7 As layer as a barrier layer. The intensity at the peak wavelength of the PL spectrum changes depending on the angle of the polarizer, and both are <2.
The maximum value was obtained in the <33 ~> direction, and the minimum value was obtained in the <01 ~ 1 ~> direction. In the case of the non-strained quantum well shown in FIG. 3B, the emission intensity polarized in the <01 to 1> directions is reduced by only 5.9% compared to the <2 to 33> directions. In the strained quantum well shown in FIG. 3A, the decrease is 7.4%, and the difference in emission intensity is large. By providing such a distortion, the anisotropy of the optical gain is enhanced. Then, the (311) plane, another (211) plane, and (41)
The enhancement of the optical gain anisotropy can be obtained even in the quantum wells on the GaAs substrate of the (1) and (511) planes and on the off-substrate shifted several degrees from the planes. As a result, the threshold carrier density difference due to the in-plane polarization direction becomes larger than in the case of no distortion, the orthogonal polarization suppression ratio increases in the static characteristics of the surface emitting laser device, and the dynamic characteristics exceed the threshold carrier density of the main axis. However, the transmission does not reach the threshold carrier density in the direction orthogonal thereto, transmission can be performed with stable polarization, and excessive noise reduction can be realized.

【0017】以下、本発明について、図面を参照して実
施の形態(実施例)とともに詳細に説明する。
Hereinafter, the present invention will be described in detail together with embodiments (examples) with reference to the drawings.

【0018】[0018]

【発明の実施の形態】(実施形態1)図1は、本発明に
よる一実施形態の面発光レーザ装置の概略構成を示す断
面図である。本実施形態の面発光レーザ装置は、図1に
示すように、n型GaAs基板1上に、n型分布帰還型
反射鏡2、AlGaAsスペーサ層3、InAlGaA
s/AlGaAs多重量子井戸(MQW)活性層4、A
lGaAsスペーサ層5、及びp型分布帰還型反射鏡6
を順次エピタキシャル成長して構成されたものである。
(Embodiment 1) FIG. 1 is a sectional view showing a schematic configuration of a surface emitting laser device according to an embodiment of the present invention. As shown in FIG. 1, a surface emitting laser device according to the present embodiment has an n-type distributed feedback mirror 2, an AlGaAs spacer layer 3, an InAlGaAs
s / AlGaAs multiple quantum well (MQW) active layer 4, A
lGaAs spacer layer 5 and p-type distributed feedback mirror 6
Are sequentially epitaxially grown.

【0019】前記n型GaAs基板1は、例えば、n型
GaAs(311)B基板からなり、n型分布帰還型反
射鏡2は、例えば、n型にドーピングされたAl0.15
0.85As層とAlAs層とを光学波長の1/4の膜厚
で38対の多層膜とした分布帰還型反射鏡からなる。
The n-type GaAs substrate 1 is composed of, for example, an n-type GaAs (311) B substrate, and the n-type distributed feedback mirror 2 is composed of, for example, Al 0.15 G doped with n-type.
a 0.85 As layer and an AlAs layer are formed of a distributed feedback mirror having 38 pairs of multilayer films with a film thickness of 1/4 of the optical wavelength.

【0020】前記AlGaAsスペーサ層3は、例え
ば、ノンドープAl0.6Ga0.4Asスペーサ層からな
り、InAlGaAs/AlGaAs多重量子井戸(M
QW)活性層4は、例えば、ノンドープIn0.2Al
0.15Ga0.65Asを井戸層とし、ノンドープAl0.3
0.7As層を障壁層とする3井戸層の多重量子井戸層
からなる。
The AlGaAs spacer layer 3 is made of, for example, a non-doped Al 0.6 Ga 0.4 As spacer layer, and has an InAlGaAs / AlGaAs multiple quantum well (M
QW) The active layer 4 is made of, for example, non-doped In 0.2 Al
0.15 Ga 0.65 As is used as a well layer and non-doped Al 0.3 G
It is composed of a three-well multiple quantum well layer having an a 0.7 As layer as a barrier layer.

【0021】前記AlGaAsスペーサ層5は、例え
ば、ノンドープAl0.6Ga0.4Asスペーサ層からな
り、p型分布帰還型反射鏡6は、例えば、p型にドーピ
ングされたAl0.15Ga0.85As層とAlAs層とを光
学波長の1/4の膜厚で21対の多層膜とした分布帰還
型反射鏡からなる。
The AlGaAs spacer layer 5 comprises, for example, a non-doped Al 0.6 Ga 0.4 As spacer layer, and the p-type distributed feedback mirror 6 comprises, for example, a p-type doped Al 0.15 Ga 0.85 As layer and an AlAs layer. Are distributed feedback reflectors having a thickness of 1 / of the optical wavelength and 21 pairs of multilayer films.

【0022】前記エピタキシャル成長基板に直径20μ
mの円形メサを形成し、ポリイミド7によって平坦化さ
れている。露出した最表面のGaAs層にはAuZnN
iからなるリング状のp型オーミック電極8が設けら
れ、裏面にはAuGeNiからなるn型オーミック電極
9が設けられている。
The epitaxial growth substrate has a diameter of 20 μm.
An m-shaped circular mesa is formed, and is planarized by polyimide 7. AuZnN is applied to the exposed outermost GaAs layer.
A ring-shaped p-type ohmic electrode 8 made of i is provided, and an n-type ohmic electrode 9 made of AuGeNi is provided on the back surface.

【0023】このような構成を有する面発光レーザ装置
に室温で電流注入すると、発振波長は0.85μmのレ
ーザ発振が確認された。測定した電流-光出力特性の偏
光方向依存性を図2に示す。この場合、GaAs(31
1)B面(Bは表面原子層がAsで構成されていること
を表す)上に作製しているので、その表面の面指数は
(311~)として表記してある。図1に示した直交す
る2方向に対し、効率良く<2~33~>方向に偏光して
いる。そして、電流値17mAにおいて光出力比の最大
値25dBが得られた。これは活性層をGaAs/Al
GaAsとした従来の面発光レーザ装置より直交偏波抑
圧比10dB向上している。
When a current was injected into the surface emitting laser device having such a configuration at room temperature, laser oscillation having an oscillation wavelength of 0.85 μm was confirmed. FIG. 2 shows the polarization direction dependence of the measured current-light output characteristics. In this case, GaAs (31
1) Since it is produced on the B-plane (B indicates that the surface atomic layer is composed of As), the surface index of the surface is represented as (31111). The light is efficiently polarized in the <2 to 33> directions with respect to the two orthogonal directions shown in FIG. Then, the maximum value of the light output ratio of 25 dB was obtained at a current value of 17 mA. This is because the active layer is made of GaAs / Al
The orthogonal polarization suppression ratio is improved by 10 dB as compared with the conventional surface emitting laser device of GaAs.

【0024】なお、本実施形態では活性層にInAlG
aAs/AlGaAs量子井戸を用いたが、InGaA
sP/InGaP量子井戸や、障壁層に圧縮歪みを導入
したGaAsPやInGaP層を用いたInGaAsP
/InGaPもしくはInGaAsP/GaAsP歪み
補償量子井戸においても同様の効果が得られることは言
うまでもない。
In this embodiment, InAlG is used for the active layer.
Although an aAs / AlGaAs quantum well was used, InGaAs was used.
InGaAsP using sP / InGaP quantum wells or GaAsP or InGaP layers with compressive strain introduced into the barrier layer
It goes without saying that the same effect can be obtained also in the / InGaP or InGaAsP / GaAsP strain compensation quantum well.

【0025】また、本実施形態ではn型GaAs(31
1)B基板(Bは表面原子層がAsで構成されているこ
とを表す)を用いたが、p型GaAs(311)B基
板、また表面原子層がGaで構成されているn型GaA
s(311)A基板(Aは表面原子層がGaで構成され
ていることを表す)及びp型GaAs(311)A、面
方位が(100)面から(011)もしくは(011
~)面方向に15°〜40°傾斜した(n11)基板
(2≦n≦5)といったn型(n11)B基板、p型
(n11)B基板、n型(n11)A基板、p型(n1
1)A基板及びそのオフ基板を用いても同様の効果が得
られることは言うまでもない。
In this embodiment, n-type GaAs (31
1) A B substrate (B indicates that a surface atomic layer is composed of As) was used, but a p-type GaAs (311) B substrate and an n-type GaAs having a surface atomic layer composed of Ga were used.
s (311) A substrate (A indicates that the surface atomic layer is composed of Ga) and p-type GaAs (311) A, the plane orientation of which is (011) or (011) from the (100) plane
~) N-type (n11) B substrate, p-type (n11) B substrate, n-type (n11) A substrate, p-type such as (n11) substrate (2 ≦ n ≦ 5) inclined at 15 ° to 40 ° in the plane direction (N1
1) Needless to say, the same effect can be obtained by using the A substrate and its off substrate.

【0026】以上、本発明を実施形態に基づき具体的に
説明したが、本発明は、前記実施形態に限定されるもの
ではなく、その要旨を逸脱しない範囲において、種々変
更し得ることは勿論である。
As described above, the present invention has been specifically described based on the embodiments. However, the present invention is not limited to the above embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention. is there.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
その直交偏波抑圧比が従来のものより向上でき、偏光方
向の安定度を増加することができる。そして、偏光方向
の安定性を増加するために従来方法に面発光レーザ装置
の導波断面形状に異方性を持たせることも可能である
が、そのような方法を用いなくとも、本発明の方法を用
いれば、導波断面形状を円形のままで偏光安定性を向上
することができる。すなわち、導波断面形状に異方性を
持たせると、発光形状が円形からずれ光ファイバとの結
合効率の低下を招くが、本発明の面発光レーザ装置は光
ファイバとの高結合効率を保ったまま偏光方向の安定度
を向上することができる。
As described above, according to the present invention,
The orthogonal polarization suppression ratio can be improved as compared with the conventional one, and the stability of the polarization direction can be increased. In order to increase the stability of the polarization direction, it is possible to make the waveguide cross-sectional shape of the surface emitting laser device anisotropic in the conventional method, but even without using such a method, the present invention can be applied. If the method is used, the polarization stability can be improved while keeping the waveguide sectional shape circular. That is, if the waveguide cross-section has anisotropy, the light emission shape deviates from a circular shape and the coupling efficiency with the optical fiber is reduced, but the surface emitting laser device of the present invention maintains high coupling efficiency with the optical fiber. It is possible to improve the stability of the polarization direction as it is.

【0028】また、このような大きな直交偏波抑圧比を
持つ本発明による面発光レーザ装置を動的に駆動させた
場合にも、偏光軸と直交する発振を抑制でき過剰ノイズ
を低減することができる。また、偏波依存性のあるフリ
ースペースを用いた系等での伝送特性のエラーを低減す
ることができる。
Even when the surface emitting laser device according to the present invention having such a large orthogonal polarization suppression ratio is dynamically driven, oscillation perpendicular to the polarization axis can be suppressed and excessive noise can be reduced. it can. Further, it is possible to reduce errors in transmission characteristics in a system using a free space having polarization dependence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施形態(実施例)の面発光レ
ーザ装置の概略構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a surface emitting laser device according to one embodiment (example) of the present invention.

【図2】本実施形態に係わるGaAs(311)B面上
にInAlGaAs/AlGaAs歪み活性層を有する
面発光レーザ装置の偏光分離した電流一光強度特性を示
す図である。
FIG. 2 is a diagram showing polarization-separated current-light intensity characteristics of a surface emitting laser device having an InAlGaAs / AlGaAs strained active layer on a GaAs (311) B surface according to the present embodiment.

【図3】GaAs(311)B面上に作製した活性層の
偏波分離をしたフォトルミネッセンス(PL)スペクト
ルを表す図である。
FIG. 3 is a diagram showing a photoluminescence (PL) spectrum of an active layer formed on a GaAs (311) B plane, which is separated by polarization;

【符号の説明】[Explanation of symbols]

1…n型GaAs基板、2…n型分布帰還型反射鏡、3
…AlGaAsスペーサ層、4…InAlGaAs/A
lGaAs多重量子井戸(MQW)活性層、5…AlG
aAsスペーサ層、6…p型分布帰還型反射鏡、7…ポ
リイミド、8…p型オーミック電極9…n型オーミック
電極9。
DESCRIPTION OF SYMBOLS 1 ... n-type GaAs substrate, 2 ... n-type distributed feedback mirror, 3
... AlGaAs spacer layer, 4 ... InAlGaAs / A
lGaAs multiple quantum well (MQW) active layer, 5 ... AlG
aAs spacer layer, 6 ... p-type distributed feedback mirror, 7 ... polyimide, 8 ... p-type ohmic electrode 9 ... n-type ohmic electrode 9.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植之原 裕行 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 香川 俊明 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 天野 主税 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5F073 AA74 AB17 AB28 CA13 CA15 CB02 EA22  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Uenohara 2-3-1 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Inventor Toshiaki Kagawa 2-chome Otemachi, Chiyoda-ku, Tokyo No.3-1 Nippon Telegraph and Telephone Co., Ltd. (72) Inventor Amano Main Tax 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-Term within Nippon Telegraph and Telephone Co., Ltd. 5F073 AA74 AB17 AB28 CA13 CA15 CB02 EA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 面方位が(100)面から(011)面
もしくは(011~)(1~は1の上にバーを付したもの
を表す)面方向へ15°〜40°傾斜したGaAs基板
上にエピタキシャル成長により形成された上下の多層膜
からなる分布帰還型反射鏡とその間に挟まれた量子井戸
からなる活性層を有する面発光レーザ装置において、前
記活性層は圧縮歪みが導入されたInAlGaAs又は
InGaAsPからなる井戸層を有する多重量子井戸で
あることを特徴とする面発光レーザ装置。
1. A GaAs substrate whose plane orientation is inclined from the (100) plane to the (011) plane or the (011 ~) (1 to 1 represents a bar on 1) plane direction by 15 ° to 40 °. In a surface emitting laser device having a distributed feedback mirror formed of upper and lower multilayer films formed by epitaxial growth thereon and an active layer formed of a quantum well interposed therebetween, the active layer is formed of a compression-strained InAlGaAs or A surface emitting laser device comprising a multiple quantum well having a well layer made of InGaAsP.
JP11232601A 1999-08-19 1999-08-19 Surface emission laser Pending JP2001060739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232601A JP2001060739A (en) 1999-08-19 1999-08-19 Surface emission laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232601A JP2001060739A (en) 1999-08-19 1999-08-19 Surface emission laser

Publications (1)

Publication Number Publication Date
JP2001060739A true JP2001060739A (en) 2001-03-06

Family

ID=16941922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232601A Pending JP2001060739A (en) 1999-08-19 1999-08-19 Surface emission laser

Country Status (1)

Country Link
JP (1) JP2001060739A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069150A (en) * 2001-08-30 2003-03-07 Furukawa Electric Co Ltd:The Face light-emitting type semiconductor laser device
JP2005243743A (en) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> Long wavelength band surface emission semiconductor laser
JP2005340779A (en) * 2004-04-30 2005-12-08 Ricoh Co Ltd Surface emitting laser and its manufacturing method, surface emitting laser array, image forming apparatus, optical pickup system, optical transmission module, optical transmission reception module, and optical communication system
WO2005122350A1 (en) 2004-06-11 2005-12-22 Ricoh Company, Ltd. Surface emitting laser diode and its manufacturing method
JP2007194561A (en) * 2006-01-23 2007-08-02 Nec Corp Surface emitting laser
US7542499B2 (en) 2003-11-27 2009-06-02 Ricoh Company, Ltd. Surface-emission laser diode and surface-emission laser array, optical interconnection system, optical communication system, electrophotographic system, and optical disk system
JP2011129869A (en) * 2009-11-18 2011-06-30 Ricoh Co Ltd Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
JP2012156562A (en) * 2012-05-21 2012-08-16 Nec Corp Surface emitting laser
JP2016051883A (en) * 2014-09-02 2016-04-11 株式会社東芝 Semiconductor light emitting element and optical coupling device
JP2020017573A (en) * 2018-07-23 2020-01-30 住友電気工業株式会社 Vertical resonance type surface emitting laser

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069150A (en) * 2001-08-30 2003-03-07 Furukawa Electric Co Ltd:The Face light-emitting type semiconductor laser device
US7542499B2 (en) 2003-11-27 2009-06-02 Ricoh Company, Ltd. Surface-emission laser diode and surface-emission laser array, optical interconnection system, optical communication system, electrophotographic system, and optical disk system
US7940825B2 (en) 2003-11-27 2011-05-10 Ricoh Company, Ltd. Surface-emission laser diode and surface-emission laser array, optical interconnection system, optical communication system, electrophotographic system, and optical disk system
JP2005243743A (en) * 2004-02-24 2005-09-08 Nippon Telegr & Teleph Corp <Ntt> Long wavelength band surface emission semiconductor laser
JP4722404B2 (en) * 2004-02-24 2011-07-13 日本電信電話株式会社 Long wavelength surface emitting semiconductor laser
JP2005340779A (en) * 2004-04-30 2005-12-08 Ricoh Co Ltd Surface emitting laser and its manufacturing method, surface emitting laser array, image forming apparatus, optical pickup system, optical transmission module, optical transmission reception module, and optical communication system
US7684458B2 (en) 2004-06-11 2010-03-23 Ricoh Company, Ltd. Surface-emission laser diode and fabrication process thereof
EP1780849A4 (en) * 2004-06-11 2009-07-15 Ricoh Kk Surface emitting laser diode and its manufacturing method
EP1780849A1 (en) * 2004-06-11 2007-05-02 Ricoh Company, Ltd. Surface emitting laser diode and its manufacturing method
WO2005122350A1 (en) 2004-06-11 2005-12-22 Ricoh Company, Ltd. Surface emitting laser diode and its manufacturing method
US8199788B2 (en) 2004-06-11 2012-06-12 Ricoh Company, Ltd. Surface-emission laser diode and fabrication process thereof
US8401049B2 (en) 2004-06-11 2013-03-19 Ricoh Company, Ltd. Surface-emission laser diode and fabrication process thereof
US8743924B2 (en) 2004-06-11 2014-06-03 Ricoh Company, Ltd. Surface-emission laser diode and fabrication process thereof
JP2007194561A (en) * 2006-01-23 2007-08-02 Nec Corp Surface emitting laser
JP2011129869A (en) * 2009-11-18 2011-06-30 Ricoh Co Ltd Surface emitting laser device, surface emitting laser array, optical scanning device, and image forming apparatus
JP2012156562A (en) * 2012-05-21 2012-08-16 Nec Corp Surface emitting laser
JP2016051883A (en) * 2014-09-02 2016-04-11 株式会社東芝 Semiconductor light emitting element and optical coupling device
US9847447B2 (en) 2014-09-02 2017-12-19 Kabushiki Kaisha Toshiba Semiconductor light-emitting element and optical coupling device
JP2020017573A (en) * 2018-07-23 2020-01-30 住友電気工業株式会社 Vertical resonance type surface emitting laser

Similar Documents

Publication Publication Date Title
US7466738B2 (en) Surface emitting laser device and production method
JP5057354B2 (en) Manufacturing method of surface emitting laser
JP3504742B2 (en) Laser diode
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
US20050201439A1 (en) Semiconductor light emitting device and semiconductor light emitting device module
US8073029B2 (en) Semiconductor optical device
JP4311610B2 (en) Surface emitting laser
JP2006196852A (en) Surface-emitting semiconductor laser, surface-emitting semiconductor laser array, image forming apparatus, optical pickup, optical transmitter module, optical transmitter receiver module, and optical communications system
JP3189791B2 (en) Semiconductor laser
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JP2001060739A (en) Surface emission laser
US20050152420A1 (en) Semiconductor device having quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device, and methods of manufacturing the semiconductor device and the semiconductor laser
US5675605A (en) Semiconductor surface-emitting optical device having light emitting layer of ordered crystal structure sandwiched between bragg reflectors
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JP2901921B2 (en) Semiconductor laser device
US5309466A (en) Semiconductor laser
JP2007299895A (en) Surface emitted laser element, surface emitted laser array having the same, electronic photographing system having surface emitted laser element or surface emitted laser array, optical interconnection system having surface emitted laser element or surface emitted laser array, and optical communication system having surface emitted laser element or surface emitted laser array
JP2000223776A (en) Semiconductor light emitting element
JP2995972B2 (en) Semiconductor optical amplifier
US6587492B2 (en) Bipolar cascade arrow laser
JPH05175601A (en) Multiple quantum well semiconductor laser
JPH10256665A (en) Semiconductor light emitting device and computer system using the same
JP3247529B2 (en) Semiconductor light emitting device
JP2001144379A (en) Semiconductor laser device and optical communication device using the same
Miyamoto et al. Progress of vertical cavity surface emitting lasers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207