JP2001058842A - Production of optical fiber base material - Google Patents
Production of optical fiber base materialInfo
- Publication number
- JP2001058842A JP2001058842A JP23335799A JP23335799A JP2001058842A JP 2001058842 A JP2001058842 A JP 2001058842A JP 23335799 A JP23335799 A JP 23335799A JP 23335799 A JP23335799 A JP 23335799A JP 2001058842 A JP2001058842 A JP 2001058842A
- Authority
- JP
- Japan
- Prior art keywords
- starting material
- glass
- optical fiber
- burner
- glass fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/66—Relative motion
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、OVD法(外付け
法)で製造する光ファイバ母材の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform manufactured by an OVD method (external method).
【0002】[0002]
【従来の技術】近年、大型の光ファイバ母材の製造にお
いては、VAD法等で製造したコアロッドを出発材と
し、その周囲に火炎加水分解で生成したガラス微粒子を
積層して堆積させる所謂OVD法(外付け法)が用いら
れている。図1は、そのOVD法にかかる製造装置を説
明する縦断面図であって、1は出発材、2は支持棒、3
はガラス微粒子堆積体、4はチャック、5は回転駆動機
構、6は基台、7はバーナ、7aはガラス微粒子の流
れ、8は反応容器、9は排気フードである。2. Description of the Related Art In recent years, in the production of large optical fiber preforms, a so-called OVD method is used in which a core rod produced by a VAD method or the like is used as a starting material, and glass particles produced by flame hydrolysis are laminated and deposited around the core rod. (External method) is used. FIG. 1 is a longitudinal sectional view illustrating a manufacturing apparatus according to the OVD method, wherein 1 is a starting material, 2 is a support rod,
, A chuck; 5, a rotary drive mechanism; 6, a base; 7, a burner; 7a, a flow of glass fine particles; 8, a reaction vessel;
【0003】この製造装置においては、VAD法等で製
造した石英ガラスを主成分とする細長い円柱状の出発材
1の両端にそれぞれガラス棒からなる支持棒2を連結し
て、その支持棒2を両側に配置したチャック4で把持
し、それら全体を反応容器8内に配置する。基台6上に
は回転駆動機構5を配置して、その回転駆動機構5によ
ってチャック4及びそれによって把持された出発材1と
支持棒2を主軸周りに回転させる。In this manufacturing apparatus, support rods 2 made of glass rods are connected to both ends of an elongated cylindrical starting material 1 mainly composed of quartz glass manufactured by a VAD method or the like, and the support rods 2 are connected. It is gripped by the chucks 4 arranged on both sides, and the whole of them is arranged in the reaction vessel 8. A rotation drive mechanism 5 is disposed on the base 6, and the rotation drive mechanism 5 rotates the chuck 4, the starting material 1 and the support bar 2 gripped by the chuck 4 around the main axis.
【0004】また、バーナ7には四塩化珪素、酸素、水
素等を供給して燃焼させ、ガラス微粒子を生成させる。
バーナ7の方向を出発材1に向けて、バーナ7からガラ
ス微粒子の流れ7aを出発材7に吹付ける。また、バー
ナ又は出発材1を相対的に図示しない駆動機構によって
出発材の長手方向に往復移動、即ちトラバースさせる。
図1ではバーナ7の方を移動させているが、出発材1の
方を移動させてもよい。Further, silicon tetrachloride, oxygen, hydrogen and the like are supplied to the burner 7 and burned to generate glass fine particles.
With the burner 7 directed toward the starting material 1, a flow 7 a of glass fine particles is sprayed from the burner 7 onto the starting material 7. The burner or the starting material 1 is relatively reciprocated in the longitudinal direction of the starting material, that is, traversed by a driving mechanism (not shown).
In FIG. 1, the burner 7 is moved, but the starting material 1 may be moved.
【0005】バーナ7で生成されたガラス微粒子は、出
発材1の周囲に積層して堆積され、ガラス微粒子堆積体
3が出発材1の周囲に形成される。なお、ガラス微粒子
堆積体3の外径はガラス微粒子の堆積によって徐々に大
きくなるので、バーナ7とガラス微粒子堆積体3との距
離があまり接近しないようにバーナ7を主軸から遠ざか
る方向に動かすこともある。また、火炎加水分解では塩
化水素等の腐食性ガスも生じるので、反応容器内8内に
は排気フード9を設け、不要なガスを排気する。The glass fine particles generated by the burner 7 are stacked and deposited around the starting material 1, and a glass fine particle deposit 3 is formed around the starting material 1. Since the outer diameter of the glass fine particle deposit 3 gradually increases due to the deposition of the glass fine particles, the burner 7 may be moved in a direction away from the main axis so that the distance between the burner 7 and the glass fine particle deposit 3 is not so close. is there. In addition, since corrosive gas such as hydrogen chloride is generated in flame hydrolysis, an exhaust hood 9 is provided in the reaction vessel 8 to exhaust unnecessary gas.
【0006】以上のようにして形成した多孔質の光ファ
イバ母材は、次の工程にて脱水・焼結されて透明なガラ
ス母材となり、その透明なガラス母材は線引き炉にて線
引きされて、光ファイバが製造される。The porous optical fiber preform formed as described above is dehydrated and sintered into a transparent glass preform in the next step, and the transparent glass preform is drawn in a drawing furnace. Thus, an optical fiber is manufactured.
【0007】以上説明した光ファイバ母材の製造装置で
は、外気と共に侵入してきた異物、反応容器の内壁面に
付着したシリカ粉等が剥がれて出来た異物、等の異物が
反応容器中には浮遊しており、それらの異物が出発材あ
るいは堆積中のガラス微粒子堆積体の上に付着し、ガラ
ス微粒子堆積体の中に取り込まれて異物を含んだ光ファ
イバ母材が出来ることがある。このような光ファイバ母
材を使って透明なガラス母材とすると、ガラス母材中に
異物を核とする気泡が生じ、そのガラス母材を線引きす
ると断線、線径変動等の不具合が発生することがある。[0007] In the optical fiber preform manufacturing apparatus described above, foreign matter such as foreign matter that has invaded with the outside air, foreign matter formed by stripping silica powder or the like attached to the inner wall surface of the reaction vessel, etc., floats in the reaction vessel. These foreign substances may adhere to the starting material or the glass particle deposit being deposited, and may be taken into the glass particulate deposit to form an optical fiber preform containing the foreign substance. When a transparent glass preform is formed by using such an optical fiber preform, bubbles having foreign substances as nuclei are generated in the glass preform, and when the glass preform is drawn, problems such as disconnection and wire diameter variation occur. Sometimes.
【0008】それらの異物に対する対処方法が、特開平
5−116979号公報、特開平7−300333号公
報に記載されている。特開平5−116979号公報に
記載された方法は、エアカーテン噴出口を設けてそこか
ら清浄なガス流を堆積中のガラス微粒子堆積体に向かっ
て吹付け、異物がガラス微粒子堆積体の表面に付着しな
いように吹き飛ばそうとするものである。また、特開平
7−30333号公報に記載された方法は、反応容器の
上部内壁面近くにヒータを設け、そのヒータにて反応容
器の内壁面を加熱し、シリカ粉が反応容器の内壁面に付
着しないようにするものである。[0008] Methods for dealing with such foreign matter are described in JP-A-5-11679 and JP-A-7-300333. In the method described in Japanese Patent Application Laid-Open No. 5-116979, an air curtain jet port is provided, and a clean gas flow is sprayed from the air curtain jet port toward a glass particle deposit being deposited, and foreign matter is deposited on the surface of the glass particle deposit. They are to be blown away so that they do not adhere. Further, in the method described in JP-A-7-30333, a heater is provided near an upper inner wall surface of a reaction vessel, and the inner wall surface of the reaction vessel is heated by the heater. This is to prevent adhesion.
【0009】[0009]
【発明が解決しようとする課題】本発明者らは、特開平
5−116979号公報、特開平7−30333号公報
に記載された方法について試みたが、光ファイバ母材か
ら得られた透明なガラス母材が線引きで断線あるいは光
ファイバの線径変動を起こさないようにするという目的
には、必ずしも十分な成果が得られなかった。清浄ガス
を吹付ける方法は、噴出されるガス流は清浄であって
も、ガス流がガラス微粒子堆積体に達するまでに反応容
器内に浮遊している異物を巻込むことが考えられる。ま
た、清浄ガスは堆積中のガラス微粒子堆積体に吹付ける
ので、バーナから吹付けるガラス微粒子の流れと干渉し
ないようにすることが難しいという問題もある。The present inventors have tried the methods described in JP-A-5-11697 and JP-A-7-30333, but have tried to obtain a transparent material obtained from an optical fiber preform. Sufficient results have not always been obtained for the purpose of preventing the glass base material from being broken by drawing or causing a change in the diameter of the optical fiber. In the method of spraying a clean gas, it is conceivable that even if the jetted gas stream is clean, foreign matter floating in the reaction vessel is involved before the gas stream reaches the glass fine particle deposit. Further, since the clean gas is blown onto the glass fine particle deposit being deposited, there is also a problem that it is difficult to prevent interference with the flow of the glass fine particles blown from the burner.
【0010】また、反応容器の内壁面を加熱することに
よる方法は、シリカ粉の内壁面への付着を完全に無くす
ことは難しいといった問題のほかに、外部から侵入した
シリカ粉以外の異物についてはガラス微粒子堆積体表面
への付着を防止出来ないという問題がある。そこで、本
発明者は、他の方法を検討した結果、本発明の光ファイ
バ母材の製造方法を見出した。In addition, the method of heating the inner wall surface of the reaction vessel has a problem that it is difficult to completely eliminate the adhesion of silica powder to the inner wall surface. There is a problem that adhesion to the surface of the glass fine particle deposit cannot be prevented. Then, the present inventor studied other methods, and as a result, found a method of manufacturing the optical fiber preform of the present invention.
【0011】[0011]
【課題を解決するための手段】本発明の光ファイバ母材
の製造方法は、火炎加水分解にて生成したガラス微粒子
を細長い円柱状の出発材の周囲に層状に堆積させる光フ
ァイバ母材の製造方法であって、前記出発材又はその上
に既に堆積されたガラス微粒子堆積体の定常部の表面最
低温度を150℃以上、好ましくは150℃〜800℃
に保ちながら、バーナ又は出発材のいずれかを相対的に
出発材の長手方向に往復移動させて、該バーナで生成し
たガラス微粒子を前記出発材又は既に堆積されたガラス
微粒子堆積体に吹付け、該出発材の周上にガラス微粒子
を積層して堆積させるものである。SUMMARY OF THE INVENTION A method of manufacturing an optical fiber preform according to the present invention is a method of manufacturing an optical fiber preform in which glass fine particles generated by flame hydrolysis are deposited in a layer around an elongated cylindrical starting material. A method wherein the starting material or the glass particle deposit already deposited on the starting material has a surface minimum temperature of a stationary part of 150 ° C. or more, preferably 150 ° C. to 800 ° C.
While maintaining the above, either the burner or the starting material is relatively reciprocated in the longitudinal direction of the starting material, and the glass fine particles generated by the burner are sprayed on the starting material or the already deposited glass fine particle deposit, Glass particles are laminated and deposited on the periphery of the starting material.
【0012】これによって、出発材又はその上に堆積さ
れつつあるガラス微粒子堆積体の表面最低温度は150
℃以上、好ましくは150℃〜800℃に保たれている
ので、サーモフォレシス効果により浮遊した異物がそれ
らの表面に付着することを抑制することが出来る。ま
た、その光ファイバ母材を透明化して得たガラス母材
は、線引き時の断線あるいは線径変動等の不具合が極め
て少なくなり、良好な品質のものとなる。As a result, the minimum surface temperature of the starting material or the glass fine particle deposit being deposited thereon is 150 ° C.
Since the temperature is maintained at a temperature of at least 150 ° C., preferably 150 ° C. to 800 ° C., it is possible to suppress the adhesion of floating foreign substances to their surfaces due to the thermophoresis effect. Further, the glass base material obtained by making the optical fiber base material transparent has extremely few defects such as disconnection or wire diameter fluctuation at the time of drawing, and is of good quality.
【0013】なお、ガラス微粒子堆積体の定常部という
のは、長手方向両端部の製品化出来ない部分を除く製品
化可能な部分のことで、表面最低温度というのは定常部
の表面各箇所の温度の最低温度という意味である。ま
た、表面温度は、通常サーモトレーサ等の放射温度計に
よって測定する。The stationary part of the glass particle deposit is a part that can be commercialized except for the parts that cannot be commercialized at both ends in the longitudinal direction, and the minimum surface temperature is the temperature of each part of the surface of the stationary part. It means the lowest temperature. The surface temperature is usually measured by a radiation thermometer such as a thermo tracer.
【0014】[0014]
【発明の実施の形態】本発明の光ファイバ母材の製造方
法においても、製造装置としては図1に示す装置と同様
な装置を用いることが出来る。また、出発材1として
は、主としてVAD法等によって製造した石英ガラスを
主成分とし屈折率が半径方向に変化した細長い円柱体で
あるコアロッドを使用する。光ファイバ母材の種類によ
っては、単なる純粋の石英ロッドを出発材1として使用
することもある。また、バーナ7には四塩化珪素、酸
素、水素を供給して燃焼させ、火炎加水分解によってガ
ラス微粒子を生成させる。また、バーナ7には必要に応
じてドーパントとなる他の添加材料を併せて供給するこ
ともある。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of manufacturing an optical fiber preform according to the present invention, the same apparatus as the apparatus shown in FIG. 1 can be used as a manufacturing apparatus. Further, as the starting material 1, a core rod which is an elongated cylindrical body mainly composed of quartz glass manufactured by a VAD method or the like and whose refractive index changes in a radial direction is used. Depending on the type of optical fiber preform, a pure quartz rod may be used as the starting material 1. Further, silicon tetrachloride, oxygen, and hydrogen are supplied to the burner 7 and burned to generate glass fine particles by flame hydrolysis. The burner 7 may be supplied with another additive material serving as a dopant, if necessary.
【0015】そして、出発材1の長手方向にバーナ7を
相対的に往復移動、即ちトラバースさせる。バーナを固
定し、出発材をトラバースさせることも可能である。ま
た、トラバース速度を大きくすれば、高温のガラス微粒
子と火炎が既に堆積されたガラス微粒子堆積体の表面に
吹付けられてから、次に再び高温のガラス微粒子と火炎
が既に堆積されたガラス微粒子堆積体の表面に吹付けら
れるまでの時間が短くなるので、ガラス微粒子堆積体の
表面最低温度を高く保つことが出来る。図2は、バーナ
のトラバース速度以外の条件を一定にして、トラバース
速度とトラバース100ターン目のガラス微粒子堆積体
の表面最低温度の関係を調べた結果であって、トラバー
ス速度が大きくなると、表面最低温度も高くなる。Then, the burner 7 is relatively reciprocated, that is, traversed in the longitudinal direction of the starting material 1. It is also possible to fix the burner and traverse the starting material. If the traverse speed is increased, high-temperature glass particles and a flame are sprayed on the surface of the already-deposited glass particle deposit, and then the high-temperature glass particles and the flame are again deposited on the glass-particle deposit. Since the time until spraying on the surface of the body is shortened, the minimum surface temperature of the glass fine particle deposit can be kept high. FIG. 2 shows the result of examining the relationship between the traverse speed and the minimum surface temperature of the glass particle deposit at the 100th turn of the traverse while keeping the conditions other than the traverse speed of the burner constant. The temperature will also be higher.
【0016】勿論、ガラス微粒子堆積体の表面最低温度
はトラバース速度のみで決まるのではなく、主軸回転
数、ガラス微粒子堆積体の熱容量、バーナに供給する酸
素、水素のガス流量等も関係するが、ガラス微粒子堆積
体の熱容量、バーナに供給する酸素、水素のガス流量等
の他の要件が同じであれば、バーナのトラバース速度を
大きくすれば、ガラス微粒子堆積体の表面最低温度を高
くすることが出来る。Of course, the minimum surface temperature of the glass particle deposit is determined not only by the traverse speed but also by the spindle speed, the heat capacity of the glass particle deposit, the gas flow rates of oxygen and hydrogen supplied to the burner, etc. If the other requirements such as the heat capacity of the glass particle deposit, the gas flow rate of the oxygen supplied to the burner, and the hydrogen gas flow rate are the same, increasing the burner traverse speed can raise the minimum surface temperature of the glass particle deposit. I can do it.
【0017】そして、出発材1又は堆積されつつあるガ
ラス微粒子堆積体3の定常部(製品化可能部分)の表面
最低温度を150℃以上、好ましくは150℃〜800
℃に保ちながら、その上にガラス微粒子の積層、堆積を
行なうことによって、次の実施例の項で述べる通り、光
ファイバ母材から得られる透明なガラス母材中の異物を
少なくして、そのガラス母材線引き工程での断線、線径
変動を殆ど零にすることが出来る。また、ガラス微粒子
堆積体の外径が大きくなって、表面最低温度が低下し易
くなっても、ガラス微粒子堆積体の堆積層数の増加に応
じてトラバース速度を早くすれば、容易にガラス微粒子
堆積体の表面最低温度を150℃以上に維持することが
出来る。Then, the minimum temperature of the surface of the starting material 1 or the stationary part (producable part) of the glass particle deposit 3 being deposited is set to 150 ° C. or more, preferably 150 ° C. to 800 ° C.
While maintaining the temperature at ° C., laminating and depositing glass fine particles thereon, as described in the section of the next example, to reduce the amount of foreign matter in the transparent glass preform obtained from the optical fiber preform. Disconnection and wire diameter fluctuation in the glass base material drawing step can be almost zero. In addition, even if the outer diameter of the glass fine particle deposit increases and the minimum surface temperature tends to decrease, if the traverse speed is increased according to the increase in the number of layers of the glass fine particle deposit, the glass fine particle deposition can be easily performed. The minimum body surface temperature can be maintained at 150 ° C. or higher.
【0018】なお、表面最低温度の上限を800℃が好
ましいとする理由は次の通りである。ガラス微粒子を堆
積させて出来上がった光ファイバ母材を脱水処理して、
OH、不純物を除去する際、ガラス微粒子堆積体の嵩密
度が高すぎるとOH、不純物の除去が十分に行なえなく
なる。また、ガラス微粒子堆積体の表面最低温度と嵩密
度は密接な関係があり、表面最低温度が高いほど嵩密度
も高くなる。従って、嵩密度を適当な値にするには、表
面最低温度を800℃以下にすることが望ましい。The reason why the upper limit of the minimum surface temperature is preferably 800 ° C. is as follows. Dehydrate the optical fiber preform made by depositing glass particles,
In removing OH and impurities, if the bulk density of the glass fine particle deposit is too high, OH and impurities cannot be sufficiently removed. Further, the minimum surface temperature and the bulk density of the glass particle deposit are closely related, and the higher the minimum surface temperature, the higher the bulk density. Therefore, in order to make the bulk density an appropriate value, it is desirable that the minimum surface temperature be 800 ° C. or less.
【0019】[0019]
【実施例】直径10mmのステップ状の屈折率分布を持
つコアロッドを出発材として用い、バーナから四塩化珪
素、酸素、水素を供給して燃焼させて生成したガラス微
粒子を出発材の周囲に吹付けてガラス微粒子を積層して
堆積させ、ガラス微粒子堆積体を形成して、多孔質の光
ファイバ母材を製造した。なお、光ファイバ母材の外径
は100mmであった。また、その時のバーナのトラバ
ース速度、出発材の主軸回転数を種々変えて、5つのケ
ースについて実験を行なったところ、ガラス微粒子堆積
体の定常部(製品化可能部分)における表面最低温度は
表1の通りであった。EXAMPLE Using a core rod having a step-shaped refractive index distribution with a diameter of 10 mm as a starting material, glass tetragonal particles produced by supplying silicon tetrachloride, oxygen and hydrogen from a burner and burning them are sprayed around the starting material. Glass fine particles were laminated and deposited to form a glass fine particle deposit, thereby producing a porous optical fiber preform. The outer diameter of the optical fiber preform was 100 mm. Experiments were performed on five cases with various traverse speeds of the burner and the number of revolutions of the main shaft of the starting material at that time. It was as follows.
【0020】バーナのトラバース速度は、ケース1から
ケース4については一定とし、ケース5については、ト
ラバース回数に応じてトラバース速度を3段階に大きく
した。なお、ガラス微粒子堆積体の外径が大きくなるに
従って表面最低温度の低下が大きくなるため、バーナへ
の酸素、水素の供給量を徐々に増加させて、常にガラス
微粒子堆積体の表面最低温度が一定になるようにした。
また、ケース5については、トラバース速度を3段階で
大きくし、ガラス微粒子堆積体の外径の増加による表面
最低温度の低下を補償している。なお、表面最低温度は
時間の経過と共に少し変動するので、表1においては表
面最低温度をその範囲で示している。The traverse speed of the burner was constant for Cases 1 to 4, and for Case 5, the traverse speed was increased in three stages according to the number of traverses. In addition, since the lowering of the minimum surface temperature increases as the outer diameter of the glass fine particle deposit increases, the supply amount of oxygen and hydrogen to the burner is gradually increased so that the minimum surface temperature of the glass fine particle deposit is always constant. I tried to be.
In case 5, the traverse speed is increased in three stages to compensate for a decrease in the minimum surface temperature due to an increase in the outer diameter of the glass fine particle deposit. Since the surface minimum temperature slightly changes with the passage of time, Table 1 shows the surface minimum temperature in that range.
【0021】また、そのようにして製造した光ファイバ
母材を脱水・焼結して透明化し、透明なガラス母材を得
た。透明なガラス母材を目視で観察したところ、ガラス
母材中の異物の数は表1の通りであった。また、そのガ
ラス母材を使って線引き炉にて線引きを行い光ファイバ
を製造したところ、線引き時の断線の発生頻度及び線引
きで得た光ファイバの線径変動の発生頻度は、表1の通
りであった。なお、光ファイバの線径が125±1μm
の範囲を外れたものを線径変動の発生とした。Further, the optical fiber preform thus manufactured was dehydrated and sintered to be transparent, and a transparent glass preform was obtained. When the transparent glass base material was visually observed, the number of foreign substances in the glass base material was as shown in Table 1. In addition, when an optical fiber was manufactured by drawing using a glass preform using a drawing furnace, the frequency of occurrence of disconnection at the time of drawing and the frequency of occurrence of variation in the diameter of the optical fiber obtained by drawing were as shown in Table 1. Met. The optical fiber has a diameter of 125 ± 1 μm.
Those out of the range were regarded as the occurrence of wire diameter fluctuation.
【0022】[0022]
【表1】 [Table 1]
【0023】表1の結果によれば、ガラス微粒子堆積体
の表面最低温度が高くなると、透明化後のガラス母材中
の異物の数が少なくなり、線引き時の断線の発生頻度、
線径変動も少なくなる。そして、ガラス微粒子堆積体の
表面最低温度が150℃以上になると、ガラス母材中の
異物の数は2以下になり、線引き時の断線頻度及び線径
変動は、ほぼ零になる。According to the results shown in Table 1, when the minimum surface temperature of the glass fine particle deposit increases, the number of foreign substances in the glass base material after the transparency decreases, and the frequency of occurrence of disconnection during drawing,
Wire diameter variation is also reduced. Then, when the surface minimum temperature of the glass fine particle deposit becomes 150 ° C. or more, the number of foreign substances in the glass base material becomes 2 or less, and the disconnection frequency and wire diameter variation during drawing become almost zero.
【0024】また、トラバース速度をトラバース回数と
共に大きくしたケース5の結果によれば、積層初期のト
ラバース速度は200mm/分とかなり小さくても、積
層終期のトラバース速度を1000mm/分と大きくす
れば、ガラス微粒子堆積体の表面最低温度を150℃以
上に維持することが可能で、ガラス母材中の異物を零と
し、線引き時の断線及び線径変動を零にすることが出来
る。According to the result of Case 5 in which the traverse speed is increased along with the number of traverses, even if the traverse speed at the initial stage of lamination is considerably low at 200 mm / min, the traverse speed at the end of lamination is increased to 1000 mm / min. The minimum surface temperature of the glass fine particle deposit can be maintained at 150 ° C. or higher, foreign matter in the glass base material can be reduced to zero, and disconnection and wire diameter variation during drawing can be reduced to zero.
【0025】[0025]
【発明の効果】本発明の光ファイバ母材の製造方法で
は、出発材又は既に堆積されたガラス微粒子堆積体の定
常部の表面最低温度を150℃以上に保ちながら、バー
ナで生成したガラス微粒子をそれらに吹付けて、出発材
の周上にガラス微粒子堆積体を形成するものであるの
で、異物は出発材又は堆積されつつあるガラス微粒子堆
積体の表面に付着することが抑制され、形成されたガラ
ス微粒子堆積体の中に異物が取り込まれることは少なく
なる。According to the method for manufacturing an optical fiber preform of the present invention, the glass fine particles generated by the burner are kept while keeping the minimum temperature of the surface of the stationary part of the starting material or the already deposited glass fine particle deposit at 150 ° C. or higher. By spraying them, a fine glass particle deposit is formed on the periphery of the starting material, so that foreign substances are suppressed from adhering to the surface of the starting material or the fine glass particle deposit being deposited. Foreign matter is less likely to be taken into the glass particle deposit.
【0026】その結果、その光ファイバ母材から透明化
して得たガラス母材は、異物、気泡等が少なく、それを
使った線引き工程での断線、線径変動等の異常の発生も
少なくなる。また、ガラス微粒子堆積中の光ファイバ母
材を高温に保つことは、光ファイバ母材中の応力低減に
もつながり、光ファイバ母材のクラック発生防止という
効果もある。As a result, the glass base material obtained by making the optical fiber base material transparent has less foreign matter, bubbles, etc., and less occurrence of abnormalities such as disconnection and wire diameter fluctuation in the drawing process using the same. . Keeping the optical fiber preform at a high temperature during the deposition of the glass microparticles also leads to a reduction in stress in the optical fiber preform, and has the effect of preventing cracks in the optical fiber preform.
【0027】また、ガラス微粒子の堆積層数に応じてバ
ーナのトラバース速度を早くすることによって、堆積初
期のトラバース速度は遅くても堆積終期のトラバース速
度を早くするだけで、出発材又は堆積されつつあるガラ
ス微粒子堆積体の表面最低温度を150℃以上に保つこ
とが出来、効率のよい生産が可能になる。Further, by increasing the traverse speed of the burner in accordance with the number of layers of the deposited glass fine particles, the traverse speed at the beginning of the deposition is low, but the traverse speed at the end of the deposition is only increased. The minimum surface temperature of a certain glass fine particle deposit can be maintained at 150 ° C. or higher, and efficient production can be achieved.
【図1】OVD法にかかる光ファイバ母材の製造装置を
説明する縦断面図である。FIG. 1 is a longitudinal sectional view illustrating an optical fiber preform manufacturing apparatus according to an OVD method.
【図2】トラバース速度とガラス微粒子堆積体の表面最
低温度との関係の一例を示すグラフである。FIG. 2 is a graph showing an example of a relationship between a traverse speed and a minimum surface temperature of a glass fine particle deposit.
1:出発材 2:支持棒 3:ガラス微粒子堆積体 4:チャック 5:回転駆動機構 6:基台 7:バーナ 7a:ガラス微粒子の流れ 8:反応容器 9:排気フード 1: Starting material 2: Support rod 3: Glass fine particle deposit 4: Chuck 5: Rotary drive mechanism 6: Base 7: Burner 7a: Flow of glass fine particles 8: Reaction vessel 9: Exhaust hood
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 元宣 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 平野 正晃 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 Fターム(参考) 4G021 EA03 EB02 EB06 EB14 EB26 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Motonobu Nakamura 1 Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (72) Inventor Masaaki Hirano 1-Tagamachi, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo 4G021 EA03 EB02 EB06 EB14 EB26
Claims (2)
を細長い円柱状の出発材の周囲に層状に堆積させる光フ
ァイバ母材の製造方法において、前記出発材又はその上
に既に堆積されたガラス微粒子堆積体の定常部の表面最
低温度を150℃以上に保ちながら、バーナ又は出発材
のいずれかを相対的に該出発材の長手方向に往復移動さ
せて、該バーナで生成したガラス微粒子を前記出発材又
は既に堆積されたガラス微粒子堆積体の上に吹付け、該
出発材の周上にガラス微粒子を積層して堆積させること
を特徴とする光ファイバ母材の製造方法。1. A method for producing an optical fiber preform in which glass fine particles generated by flame hydrolysis are deposited in a layer around an elongated cylindrical starting material, wherein said starting material or glass fine particles already deposited thereon Either the burner or the starting material is relatively reciprocated in the longitudinal direction of the starting material while maintaining the surface minimum temperature of the stationary portion of the deposit at 150 ° C. or higher, and the glass fine particles generated by the burner are discharged from the starting material. A method for producing an optical fiber preform, comprising spraying onto a material or an already deposited glass fine particle deposit, and laminating and depositing glass fine particles around the starting material.
移動速度を、積層して堆積されるガラス微粒子の堆積層
数の増加に応じて早くすることを特徴とする請求項1に
記載の光ファイバ母材の製造方法。2. The light according to claim 1, wherein the moving speed of the burner or the starting material in the longitudinal direction is increased in accordance with an increase in the number of layers of the glass fine particles to be stacked and deposited. Manufacturing method of fiber preform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23335799A JP2001058842A (en) | 1999-08-20 | 1999-08-20 | Production of optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23335799A JP2001058842A (en) | 1999-08-20 | 1999-08-20 | Production of optical fiber base material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001058842A true JP2001058842A (en) | 2001-03-06 |
Family
ID=16953892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23335799A Pending JP2001058842A (en) | 1999-08-20 | 1999-08-20 | Production of optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001058842A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066834B (en) * | 2007-05-28 | 2011-01-05 | 江苏法尔胜股份有限公司 | Process of preparing fiber preformrod |
-
1999
- 1999-08-20 JP JP23335799A patent/JP2001058842A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101066834B (en) * | 2007-05-28 | 2011-01-05 | 江苏法尔胜股份有限公司 | Process of preparing fiber preformrod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0067050B1 (en) | Method of forming an optical waveguide fiber | |
US3933453A (en) | Flame hydrolysis mandrel and method of using | |
CA1115508A (en) | Carbon coating for a starting member used in producing optical waveguide | |
JP5091111B2 (en) | Manufacturing method for optical fiber preform | |
US4302230A (en) | High rate optical fiber fabrication process using thermophoretically enhanced particle deposition | |
FI73405B (en) | METHOD FOR FRAMSTAELLNING AV ETT YTTERST RENT GLASFOEREMAOL, T.EX. EN FOERFORMAD PRODUKT TILL EN OPTISK FIBER. | |
RU2236386C2 (en) | Method of manufacturing optic fiber intermediate product | |
JP3946645B2 (en) | Optical glass and manufacturing method thereof | |
JP2001058842A (en) | Production of optical fiber base material | |
JP2013056808A (en) | Method for producing glass preform | |
JP5380018B2 (en) | Optical fiber preform manufacturing method | |
KR100456125B1 (en) | Apparatus for efficiently removing shoot, for the preparation of optical fiber preform | |
JP2003261336A (en) | Method for manufacturing transparent glass preform | |
JP2003212550A (en) | Method of manufacturing glass tube and target rod for the same | |
JP2016188151A (en) | Production of optical fiber preform | |
JP2000327341A (en) | Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same | |
JP2004010368A (en) | Process and apparatus for manufacturing optical fiber preform | |
JP2003226545A (en) | Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform | |
JP2004338992A (en) | Method for manufacturing glass preform | |
JPH1072231A (en) | Apparatus for producing optical fiber preform and production thereof | |
JP4094787B2 (en) | Optical fiber glass rod processing equipment | |
JP4071348B2 (en) | Optical fiber preform dehydration method | |
JP2003286033A (en) | Method and apparatus for manufacturing glass particulate deposit | |
JP2006327858A (en) | Method of treating quartz glass base material and method of manufacturing optical fiber preform | |
JP4252871B2 (en) | Optical fiber preform manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050712 |