JP2001057737A - Method of identifying frequency characteristics of electric power system - Google Patents

Method of identifying frequency characteristics of electric power system

Info

Publication number
JP2001057737A
JP2001057737A JP11229751A JP22975199A JP2001057737A JP 2001057737 A JP2001057737 A JP 2001057737A JP 11229751 A JP11229751 A JP 11229751A JP 22975199 A JP22975199 A JP 22975199A JP 2001057737 A JP2001057737 A JP 2001057737A
Authority
JP
Japan
Prior art keywords
power system
identification
frequency characteristic
identification signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11229751A
Other languages
Japanese (ja)
Other versions
JP3676133B2 (en
Inventor
Isao Amano
功 天野
Hirokazu Tokuda
寛和 徳田
Tokuo Kawamura
篤男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22975199A priority Critical patent/JP3676133B2/en
Publication of JP2001057737A publication Critical patent/JP2001057737A/en
Application granted granted Critical
Publication of JP3676133B2 publication Critical patent/JP3676133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

PROBLEM TO BE SOLVED: To remove the effect caused by the generating source of harmonic current as a disturbance at the time when the frequency characteristics of an electric power system is identified by treating the value obtained by dividing mutual spectral density by the self-spectral density of an identification signal as the identified value of frequency characteristics. SOLUTION: The phase of each sine wave signal that makes up an identification signal x(t) from an identification circuit 50 is injected into an electric power system 1b by being displaced by 2 π/n (rad) ('n' is a plural number) from the previous one. From the responses of the electric power system 1b based on these injected identification signals, the correlation functions of the responses to the identification signal x(t) are obtained to calculate mutual spectral density by performing the Fourier transform of the average of the addition of each correlation functions so obtained. The value obtained by dividing this mutual spectral density by the self-spectral density of the identification signals is treated as the identified value of the frequency characteristics. This method can prevent the occurrence of a resonance phenomenon and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統と連系
運転される半導体電力変換装置などを介して、該電力系
統の周波数特性の同定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying a frequency characteristic of a power system via a semiconductor power converter or the like operated in connection with the power system.

【0002】[0002]

【従来の技術】電動機駆動用インバータに代表される半
導体電力変換装置の普及に伴って、電力系統の高調波歪
みの増大など電力環境の悪化が問題となり、この悪化を
補正するために電力系統と連系運転される半導体電力変
換装置として、例えばアクティブフィルタなどを設置す
ることが行われている。
2. Description of the Related Art With the spread of semiconductor power converters typified by inverters for driving motors, deterioration of the power environment, such as an increase in harmonic distortion of the power system, has become a problem. For example, an active filter or the like is installed as a semiconductor power converter that is operated in an interconnected manner.

【0003】このアクティブフィルタにおいて、上述の
電力環境の悪化をより良く補正するためには電力系統の
周波数特性を同定する必要があり、発振周波数の異なる
複数の正弦波信号を合成した同定用信号〔x(t)〕に
基づいて前記周波数特性〔G(jω)〕を同定する際の
従来の方法について、図4(イ)のブロック線図と図4
(ロ)のフローチャートとを参照しつつ、以下に説明す
る。
In this active filter, it is necessary to identify the frequency characteristics of the power system in order to better correct the above-described deterioration of the power environment, and an identification signal obtained by combining a plurality of sinusoidal signals having different oscillation frequencies [ x (t)], a conventional method for identifying the frequency characteristic [G (jω)] based on the block diagram of FIG.
This will be described below with reference to the flowchart (b).

【0004】図4(イ)において、電力系統に注入され
た同定用信号に基づく応答y(t)としては図示の電力
系統と上位の電力系統との間の電圧または電流とする。
In FIG. 4A, a response y (t) based on the identification signal injected into the power system is a voltage or a current between the illustrated power system and a higher-level power system.

【0005】図4(ロ)に示す如く、ステップS1でx
(t)の相関関数〔Rxx(τ)〕として、下記式(1)
の演算を行う。
[0005] As shown in FIG.
As a correlation function [R xx (τ)] of (t), the following equation (1)
Is calculated.

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで、τは相関関数演算の際の仮想的な
時間パラメータであり、x* (t)はx(t)の共役関
数である。
Here, τ is a virtual time parameter in calculating the correlation function, and x * (t) is a conjugate function of x (t).

【0008】ステップS2で同定用信号x(t)を電力
系統に注入し、y(t)を検出する(ステップS3)。
In step S2, the identification signal x (t) is injected into the power system, and y (t) is detected (step S3).

【0009】次にステップS4において、下記式(2)
の演算を行い、x(t)とy(t)との相関関数〔Rxy
(τ)〕を求める。
Next, in step S4, the following equation (2)
Is calculated, and a correlation function [R xy] between x (t) and y (t) is calculated.
(Τ)].

【0010】[0010]

【数2】 (Equation 2)

【0011】ここで、y* (t)はy(t)の共役関数
である。
Here, y * (t) is a conjugate function of y (t).

【0012】さらにステップS5において、前記式
(1),式(2)それぞれをフーリエ変換し、この変換
結果を自己スペクトル密度および相互スペクトル密度と
して、ステップS6へ移る。
Further, in step S5, each of the above equations (1) and (2) is subjected to Fourier transform, and the transform results are used as the self-spectral density and the cross-spectral density, and the process proceeds to step S6.

【0013】ステップS6では相互スペクトル密度/自
己スペクトル密度の演算を行い、この演算結果を図4
(イ)に示した電力系統の周波数特性G(jω)の同定
値としている。
In step S6, the calculation of the cross-spectral density / self-spectral density is performed.
The identification value of the frequency characteristic G (jω) of the power system shown in FIG.

【0014】上述のステップS1〜S6による電力系統
の周波数特性同定方法はスペクトル解析法と称され、比
較的ノイズに強いため、微弱な同定用信号で前記周波数
特性を同定でき、フーリエ変換を用いて複数の周波数点
における特性を一度に求められるので、短時間に前記周
波数特性を同定できるなどの特長を有している。
The method for identifying the frequency characteristic of the power system in steps S1 to S6 is called a spectrum analysis method, and is relatively resistant to noise. Therefore, the frequency characteristic can be identified by a weak identification signal, and the Fourier transform is used. Since the characteristics at a plurality of frequency points can be obtained at one time, the frequency characteristics can be identified in a short time.

【0015】[0015]

【発明が解決しようとする課題】図5は、アクティブフ
ィルタにより電力系統の高調波成分を抑制する概念的な
機器構成図である。
FIG. 5 is a conceptual configuration diagram of a device for suppressing harmonic components of a power system by an active filter.

【0016】図5において、1aは上位の電力系統、1
bはこの発明の対象となる下位の電力系統、2は下位の
電力系統1bの負荷としての高調波電流発生源、4は電
圧整合用の変圧器、5は上位の電力系統1aと下位の電
力系統1bとの間の電流を検出する電流検出器、6は一
般負荷、7はLCフィルタ、10はアクティブフィル
タ、14はアクティブフィルタ10の出力電流を検出す
る電流検出器、20,30,40のいずれかは下位の電
力系統1bの周波数特性を導出し、この導出値をアクテ
ィブフィルタ10へ伝達するための同定回路であり、同
定回路20は同定用信号指令値〔x* (t)〕をアクテ
ィブフィルタ10へ指令し、この指令に基づいてアクテ
ィブフィルタ10の出力電流が〔x(t)〕になるとし
て、前述の図4(ロ)に示したフローチャートの動作を
行う。
In FIG. 5, reference numeral 1a denotes an upper power system,
b is a lower power system to which the present invention is applied, 2 is a harmonic current generation source as a load of the lower power system 1b, 4 is a voltage matching transformer, 5 is an upper power system 1a and a lower power. A current detector for detecting a current between the system 1b, 6 is a general load, 7 is an LC filter, 10 is an active filter, 14 is a current detector for detecting the output current of the active filter 10, 20, 30 and 40 Either one is an identification circuit for deriving the frequency characteristic of the lower power system 1b and transmitting this derived value to the active filter 10. The identification circuit 20 activates the identification signal command value [x * (t)]. A command is sent to the filter 10, and based on this command, assuming that the output current of the active filter 10 becomes [x (t)], the operation of the flowchart shown in FIG.

【0017】この同定回路20では、電力系統1bの周
波数特性G(jω)=〔電流検出器5の検出値y(t)
/電流検出器14の検出値x(t)〕の演算を行ってい
る。
In the identification circuit 20, the frequency characteristic G (jω) of the power system 1b = [the detection value y (t) of the current detector 5]
/ Detection value x (t) of current detector 14].

【0018】図5からも明らかなように、アクティブフ
ィルタ10以外の他の機器が全て稼働している状態で下
位の電力系統1bの周波数特性を同定する必要がある
が、このとき、前記他の機器の内には高調波電流発生源
2があるために、図6のブロック図に示す如く、この高
調波電流〔h(t)〕が外乱となり、同定回路20が導
出した同定値には外乱誤差が含まれることとなる。
As is clear from FIG. 5, it is necessary to identify the frequency characteristic of the lower power system 1b in a state where all the devices other than the active filter 10 are operating. As shown in the block diagram of FIG. 6, the harmonic current [h (t)] becomes a disturbance because the harmonic current generation source 2 exists in the device, and the identification value derived by the identification circuit 20 is disturbed. An error will be included.

【0019】すなわち、電流検出器5の検出値y(t)
=〔電流検出器14の検出値x(t)+高調波電流発生
源2の高調波電流〔h(t)〕となっている。
That is, the detection value y (t) of the current detector 5
= [Detected value x (t) of current detector 14 + harmonic current [h (t)] of harmonic current generator 2].

【0020】この発明の目的は、上位の電力系統と下位
の電力系統との間の検出値から前記同定用信号による成
分のみを抽出しつつ、電力系統の周波数特性同定方法を
提供することにある。
It is an object of the present invention to provide a method of identifying frequency characteristics of a power system while extracting only a component based on the identification signal from a detected value between an upper power system and a lower power system. .

【0021】[0021]

【課題を解決するための手段】この第1の発明は、発振
周波数の異なる複数の正弦波信号を合成した同定用信号
に基づいて電力系統の周波数特性を同定する際に、前記
同定用信号を構成する個々の正弦波信号の位相を前回よ
り2π/n〔rad〕,(n:複数)ずつ変位させつつ
電力系統に注入し、この注入された同定用信号に基づく
前記電力系統の応答から、該同定用信号と該応答との相
関関数を求め、求めたそれぞれの相関関数の加算平均値
をフーリエ変換して相互スペクトル密度を求め、この相
互スペクトル密度を前記同定用信号の自己スペクトル密
度で除算演算した値を前記周波数特性の同定値としたこ
とを特徴とする。
According to the first aspect of the present invention, when identifying frequency characteristics of a power system based on an identification signal obtained by synthesizing a plurality of sine-wave signals having different oscillation frequencies, the identification signal is used. The phase of each constituent sine wave signal is injected into the power system while being displaced by 2π / n [rad] (n: plural) from the previous time, and the power system response based on the injected identification signal is A correlation function between the identification signal and the response is obtained, and an average value of the obtained correlation functions is Fourier-transformed to obtain a cross-spectral density, and the cross-spectral density is divided by the self-spectral density of the identification signal. The calculated value is used as an identification value of the frequency characteristic.

【0022】第2の発明は、発振周波数の異なる複数の
正弦波信号を合成した同定用信号に基づいて電力系統の
周波数特性を同定する際に、それぞれの前記正弦波信号
の振幅を互いに等しくし、該正弦波信号の位相を前回よ
り2π/n〔rad〕,(n:複数)ずつ変位させつつ
電力系統に注入し、この注入された同定用信号に基づく
前記電力系統の応答から、該同定用信号と該応答との相
関関数を求め、求めたそれぞれの相関関数の加算平均値
をフーリエ変換した値を前記周波数特性の同定値とした
ことを特徴とする。
According to a second aspect of the present invention, when identifying frequency characteristics of a power system based on an identification signal obtained by combining a plurality of sine wave signals having different oscillation frequencies, the amplitudes of the sine wave signals are made equal to each other. , The phase of the sine wave signal is shifted into the power system by 2π / n [rad] (n: plural) from the previous time, and injected into the power system. From the response of the power system based on the injected identification signal, the identification is performed. A correlation function between the signal for use and the response is obtained, and a value obtained by Fourier transforming an average value of the obtained correlation functions is used as an identification value of the frequency characteristic.

【0023】第3の発明は前記第1又は第2の発明にお
いて、前記同定用信号は、電力系統と連系運転する半導
体電力変換装置に付加的に指令される同定用信号指令値
に基づき該電力変換装置で生成することを特徴とする。
In a third aspect based on the first or second aspect, the identification signal is based on an identification signal command value additionally commanded to a semiconductor power conversion device that operates in connection with a power system. It is characterized by being generated by a power converter.

【0024】第4の発明は前記第3の発明において、前
記同定用信号を半導体電力変換装置の出力電流又は出力
電圧とし、前記応答を上位の電力系統と前記電力系統と
の間の電流又は電圧として前記周波数特性の同定値を演
算することを特徴とする。
In a fourth aspect based on the third aspect, the identification signal is an output current or an output voltage of the semiconductor power converter, and the response is a current or a voltage between a higher power system and the power system. And calculating an identification value of the frequency characteristic.

【0025】第5の発明は前記第3の発明において、前
記同定用信号を前記同定用信号指令値とし、前記応答を
上位の電力系統と前記電力系統との間の電流又は電圧と
して前記周波数特性の同定値を演算することを特徴とす
る。
In a fifth aspect based on the third aspect, the identification signal is the identification signal command value, and the response is a current or a voltage between a higher power system and the power system. Is calculated.

【0026】この発明は、以下に記載の作用に着目して
なされたものである。
The present invention has been made by paying attention to the following operations.

【0027】例えば、cos波形信号で、一方をAco
s(ωt+φ1 )とし、他方をBcos(ωt+φ2
とすると、両者の間の相関関数は式(3)で表される。
For example, a cos waveform signal, one of which is Aco
s (ωt + φ 1 ) and the other is Bcos (ωt + φ 2 )
Then, the correlation function between the two is represented by equation (3).

【0028】[0028]

【数3】 (AB/2)cos{ωt+(φ2 −φ1 )} …(3) すなわち、上記相関関数には前記両者間の位相差成分が
現れる。
(AB / 2) cos {ωt + (φ 2 −φ 1 )} (3) That is, the phase difference component between the two appears in the correlation function.

【0029】そこで、前記Acos(ωt+φ1 )を同
定用信号を構成する前記正弦波信号の一部とし、前記B
cos(ωt+φ2 )をその応答分のみとした場合に、
前記φ1 を前回より2π/n〔rad〕,(n:複数)
ずつ変位させつつ電力系統に注入して得られるn組の上
記式(3)で示した相関関数それぞれの〔φ2 −φ1
の値が同じになることから、上述の如くφ1 を変位させ
てもそれぞれの同定用信号に対応する相関関数値は変わ
らない。
Therefore, the Acos (ωt + φ 1 ) is made a part of the sine wave signal constituting the identification signal,
If cos (ωt + φ 2 ) is the response only,
The above φ 1 is 2π / n [rad] from the previous time, (n: plural)
2 −φ 1 ] of each of the n sets of correlation functions shown in the above equation (3) obtained by injecting into the electric power system while displacing each other.
Are the same, the correlation function value corresponding to each identification signal does not change even if φ 1 is displaced as described above.

【0030】しかしながら、図6に示した高調波電流h
(t)に起因する分も含んだ応答のうち、該h(t)に
よる応答分は同定用信号による応答分とは無関係なある
固定された位相にあるため、得られる前記式(3)で示
した相関関数における〔φ2−φ1 〕が、上述の如くφ
1 を変位させたときにそれぞれ異なり、得られた相関関
数それぞれのベクトル的な加算平均値が零となり、その
結果、前記h(t)による応答分を排除することができ
る。
However, the harmonic current h shown in FIG.
Of the response including the component due to (t), the response component due to h (t) has a certain fixed phase irrelevant to the response component due to the identification signal. [Φ 2 −φ 1 ] in the indicated correlation function is φ φ as described above.
When 1 is displaced, the vector-wise average value of each of the obtained correlation functions becomes zero, and as a result, the response component due to the h (t) can be eliminated.

【0031】[0031]

【発明の実施の形態】図1は、この発明の第1の実施例
を示すフローチャートであり、図5に示した同定回路3
0における動作を示している。
FIG. 1 is a flow chart showing a first embodiment of the present invention. The identification circuit 3 shown in FIG.
The operation at 0 is shown.

【0032】同定用信号指令値〔x* (t)〕をアクテ
ィブフィルタ10へ指令したときに、この指令に基づい
てアクティブフィルタ10が同定用信号〔x(t)〕な
る電流を発生する。このとき、x(t)は複数のcos
波電流の合成したものとすると、x(t)は式(4)で
表される。
When the identification signal command value [x * (t)] is instructed to the active filter 10, the active filter 10 generates a current as the identification signal [x (t)] based on this command. At this time, x (t) is a plurality of cos
Assuming that wave currents are combined, x (t) is expressed by equation (4).

【0033】[0033]

【数4】 (Equation 4)

【0034】先ず、ステップS11では上記式(4)の
相関関数Rxx(τ)を演算し、この演算結果は、式
(5)で表される。
First, in step S11, the correlation function R xx (τ) of the above equation (4) is calculated, and the result of this calculation is expressed by equation (5).

【0035】[0035]

【数5】 (Equation 5)

【0036】次に、ステップS12では式(5)をフー
リエ変換して得られ、式(6)で表される自己スペクト
ル密度Sxx(jω)を求めている。
Next, in step S12, the self-spectral density S xx (jω) obtained by performing the Fourier transform on the equation (5) and expressed by the equation (6) is obtained.

【0037】[0037]

【数6】 (Equation 6)

【0038】ステップS13では式(4)で示したx
(t)のθ1 ,θ2 ,・・・が初期値の状態(すなわ
ち、前記n=nとして)で、図5に示した下位の電力系
統1bへ注入する。
In step S13, x represented by equation (4)
Theta 1 of (t), θ 2, ··· is an initial value state (i.e., the as n = n), the injection into the lower power system 1b shown in FIG.

【0039】この電力系統1bには高調波電流発生源2
が動作中であり、この高調波電流が下記式(7)で表さ
れる外乱〔h(t)〕となる。
This power system 1b includes a harmonic current source 2
Are operating, and this harmonic current becomes disturbance [h (t)] represented by the following equation (7).

【0040】[0040]

【数7】 (Equation 7)

【0041】すなわち、ステップS14で検出した〔y
(t)〕は、式(8)で表される。
That is, [y detected at step S14
(T)] is represented by equation (8).

【0042】[0042]

【数8】 (Equation 8)

【0043】ここで、Kk は周波数ωk における電力系
統1bのゲイン、ψk は周波数ωk における位相遅れを
示し、右辺の第1群は同定用信号x(t)による応答を
示し、また、右辺の第2群は外乱h(t)による応答を
示している。
[0043] Here, K k is the gain of the power system 1b at frequency ω k, ψ k represents the phase delay at frequency omega k, the first group on the right side shows the response by identification signal x (t), also , The second group on the right side shows the response due to the disturbance h (t).

【0044】ステップS15では、前記式(4)で示し
たx(t)と、式(8)で示したy(t)とを前記式
(2)の定義に従った相関関数Rxy(t)を式(9)に
示す如く求めている。
In step S15, x (t) shown by the above equation (4) and y (t) shown by the above equation (8) are correlated with the correlation function R xy (t) according to the definition of the above equation (2). ) Is obtained as shown in equation (9).

【0045】[0045]

【数9】 (Equation 9)

【0046】上述のステップS13からステップS15
の動作をステップS16とステップS17のシーケンス
により、同定用信号x(t)を構成する個々の正弦波信
号の位相を前回より2π/n〔rad〕,(n:複数)
ずつ変位させつつ電力系統に注入し、従って、それぞれ
のx(t)とy(t)とによるn個の式(9)で表され
る相関関数が得られるので、ステップS18へ移る。
The above steps S13 to S15
By the sequence of step S16 and step S17, the phase of each sine wave signal constituting the identification signal x (t) is changed by 2π / n [rad], (n: plural) from the previous time.
Injecting into the power system while displacing each time, and therefore, the correlation functions represented by n equations (9) based on the respective x (t) and y (t) are obtained, and the process proceeds to step S18.

【0047】ステップS18では得られたn個の相関関
数の加算平均値を求め、この加算平均値Rxy(t)のバ
ーは式(10)で表される。
In step S18, the average value of the obtained n correlation functions is obtained, and the bar of this average value R xy (t) is expressed by equation (10).

【0048】[0048]

【数10】 (Equation 10)

【0049】この式から明らかなように、外乱h(t)
に対する項が消去されている。
As is apparent from this equation, the disturbance h (t)
The term for has been eliminated.

【0050】ステップS19において式(10)をフー
リエ変換し、式(11)で示される相互スペクトル密度
xy(jω)を求めている。
In step S19, equation (10) is subjected to Fourier transform to obtain a mutual spectral density S xy (jω) shown in equation (11).

【0051】[0051]

【数11】 [Equation 11]

【0052】さらに、ステップS20ではステップS1
9で求めた相互スペクトル密度を、ステップ12で求め
た自己スペクトル密度で除算演算して、式(12)で示
す如く、それぞれの周波数における図5に示した下位の
電力系統1bの周波数特性G(jω)の演算値としてい
る。
Further, in step S20, step S1
9 is divided by the self-spectral density obtained in step 12 to obtain the frequency characteristic G () of the lower power system 1b shown in FIG. jω).

【0053】[0053]

【数12】 (Equation 12)

【0054】図2は、この発明の第2の実施例を示すフ
ローチャートであり、図5に示した同定回路40におけ
る動作を示している。
FIG. 2 is a flowchart showing the operation of the identification circuit 40 shown in FIG. 5 according to a second embodiment of the present invention.

【0055】同定用信号指令値〔x* (t)〕をアクテ
ィブフィルタ10へ指令したときに、この指令に基づい
てアクティブフィルタ10が同定用信号〔x(t)〕な
る電流を発生する。このとき、x(t)は複数のcos
波電流の合成し、それぞれのcos波電流の振幅が
「1」となるように規格化すると、x(t)は式(1
3)で表される。
When the identification signal command value [x * (t)] is commanded to the active filter 10, the active filter 10 generates a current as the identification signal [x (t)] based on the command. At this time, x (t) is a plurality of cos
When the wave currents are combined and normalized so that the amplitude of each of the cosine wave currents is “1”, x (t) is given by the formula (1)
It is represented by 3).

【0056】[0056]

【数13】 (Equation 13)

【0057】先ず、ステップS31では式(13)で示
したx(t)のθ1 ,θ2 ,・・・が初期値の状態(す
なわち、前記n=nとして)で、図5に示した下位の電
力系統1bへ注入する。
First, in step S31, the values of θ 1 , θ 2 ,... Of x (t) shown in equation (13) are initial values (that is, n = n), as shown in FIG. It is injected into the lower power system 1b.

【0058】この電力系統1bには高調波電流発生源2
が動作中であり、この高調波電流が前記式(7)で表さ
れる外乱〔h(t)〕となる。
This power system 1b includes a harmonic current source 2
Are operating, and this harmonic current becomes disturbance [h (t)] represented by the above equation (7).

【0059】すなわちステップS32で検出した〔y
(t)〕は、式(14)で表される。
That is, [y detected at step S32
(T)] is represented by equation (14).

【0060】[0060]

【数14】 [Equation 14]

【0061】ここで、Kk は周波数ωk における電力系
統1bのゲイン、ψk は周波数ωk における位相遅れを
示し、右辺の第1群は同定用信号x(t)による応答を
示し、また、右辺の第2群は外乱h(t)による応答を
示している。
[0061] Here, K k is the gain of the power system 1b at frequency ω k, ψ k represents the phase delay at frequency omega k, the first group on the right side shows the response by identification signal x (t), also , The second group on the right side shows the response due to the disturbance h (t).

【0062】ステップS33では、前記式(13)で示
したx(t)と、式(14)で示したy(t)とを前記
式(2)の定義に従った相関関数Rxy(t)を式(1
5)に示す如く求めている。
In step S33, x (t) shown in the above equation (13) and y (t) shown in the above equation (14) are converted into a correlation function R xy (t) according to the definition of the above equation (2). ) To the formula (1)
It is required as shown in 5).

【0063】[0063]

【数15】 (Equation 15)

【0064】上述のステップS31からステップS33
の動作をステップS34とステップS35のシーケンス
により、同定用信号x(t)を構成する個々の正弦波信
号の位相を前回より2π/n〔rad〕,(n:複数)
ずつ変位させつつ電力系統に注入し、従って、それぞれ
のx(t)とy(t)とによるn個の式(15)で表さ
れる相関関数が得られるので、ステップS36へ移る。
The above steps S31 to S33
By the sequence of steps S34 and S35, the phase of each sine wave signal constituting the identification signal x (t) is set to 2π / n [rad], (n: plural) from the previous time.
Injecting into the power system while displacing each time, and accordingly, n correlation functions represented by the equation (15) by x (t) and y (t) are obtained, and the process proceeds to step S36.

【0065】ステップS36では得られたn個の相関関
数の加算平均値を求め、この加算平均値Rxy(t)のバ
ーは式(16)で表される。
In step S36, the average value of the obtained n correlation functions is obtained, and the bar of this average value R xy (t) is expressed by equation (16).

【0066】[0066]

【数16】 (Equation 16)

【0067】この式から明らかなように、外乱h(t)
に対する項が消去されている。
As is apparent from this equation, the disturbance h (t)
The term for has been eliminated.

【0068】ステップS37において式(16)をフー
リエ変換し、さらにステップS38では式(17)で示
す如く、それぞれの周波数における図5に示した下位の
電力系統1bの周波数特性G(jω)の演算値としてい
る。
In step S37, the equation (16) is Fourier-transformed. In step S38, as shown in the equation (17), the frequency characteristic G (jω) of the lower power system 1b shown in FIG. Value.

【0069】[0069]

【数17】 [Equation 17]

【0070】図3は、この発明の第3の実施例を示す電
力系統における機器構成図であり、この実施例において
図5に示した構成と異なる点は、同定回路40または同
定回路40に代えて、同定回路50を備えていることで
ある。
FIG. 3 is a diagram showing a device configuration in a power system according to a third embodiment of the present invention. In this embodiment, the difference from the configuration shown in FIG. That is, an identification circuit 50 is provided.

【0071】すなわち、同定回路50ではアクティブフ
ィルタ10に入力される同定用信号指令値〔x
* (t)〕に基づき下位の電力系統1aの周波数特性の
同定を行うようにしており、その際の演算処理は、図1
または図2に示したフローチャートと同じでよい。
That is, in the identification circuit 50, the identification signal command value [x
* (T)], the frequency characteristic of the lower power system 1a is identified.
Alternatively, it may be the same as the flowchart shown in FIG.

【0072】なお、上述の実施例では同定用信号として
一般的な電流を用い、電力系統の電流を検出して行う例
について説明したが、同定用信号として電圧を用い、電
力系統の電圧を検出して、この発明の同定方法を行って
もよい。
In the above-described embodiment, an example in which a general current is used as the identification signal and the power system current is detected and performed is described. However, the voltage is used as the identification signal and the power system voltage is detected. Then, the identification method of the present invention may be performed.

【0073】[0073]

【発明の効果】この発明によれば、上位の電力系統と下
位の電力系統との間の検出値から該電力系統をスペクト
ル解析法に基づく同定用信号による成分のみを抽出でき
るので、この電力系統の周波数特性を同定の際の外乱と
しての高調波電流発生源の影響が除去され、例えば、ア
クティブフィルタによる高調波成分除去の際に、従来で
は問題となった、いわゆる、共振現象などが発生が阻止
される。
According to the present invention, it is possible to extract only the component of the power system from the detected value between the upper power system and the lower power system by the identification signal based on the spectrum analysis method. The effect of the harmonic current source as a disturbance when identifying the frequency characteristics of the filter is removed.For example, when removing the harmonic component using an active filter, a so-called resonance phenomenon, which has been a problem in the past, occurs. Will be blocked.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例を示すフローチャートFIG. 1 is a flowchart showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示すフローチャートFIG. 2 is a flowchart showing a second embodiment of the present invention.

【図3】この発明の第3の実施例を示す機器構成図FIG. 3 is a device configuration diagram showing a third embodiment of the present invention.

【図4】従来例を示すフローチャートFIG. 4 is a flowchart showing a conventional example.

【図5】電力系統の機器構成図FIG. 5 is a configuration diagram of an electric power system.

【図6】図5のブロック図FIG. 6 is a block diagram of FIG. 5;

【符号の説明】[Explanation of symbols]

1a…上位の電力系統、1b…下位の電力系統、2…高
調波電流発生源、4…変圧器、5…電流検出器、6…負
荷、7…LCフィルタ、10…アクティブフィルタ、1
4…電流検出器、20,30,40,50…同定回路。
1a: Upper power system, 1b: Lower power system, 2: Harmonic current generation source, 4: Transformer, 5: Current detector, 6: Load, 7: LC filter, 10: Active filter, 1
4. Current detector, 20, 30, 40, 50 ... Identification circuit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G028 BD02 BE10 CG20 DH04 FK01 FK02 GL06 5G066 EA03 EA10 5H740 NN03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G028 BD02 BE10 CG20 DH04 FK01 FK02 GL06 5G066 EA03 EA10 5H740 NN03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発振周波数の異なる複数の正弦波信号を
合成した同定用信号に基づいて電力系統の周波数特性を
同定する際に、 前記同定用信号を構成する個々の正弦波信号の位相を前
回より2π/n〔rad〕,(n:複数)ずつ変位させ
つつ電力系統に注入し、 この注入された同定用信号に基づく前記電力系統の応答
から、該同定用信号と該応答との相関関数を求め、 求めたそれぞれの相関関数の加算平均値をフーリエ変換
して相互スペクトル密度を求め、 この相互スペクトル密度を前記同定用信号の自己スペク
トル密度で除算演算した値を前記周波数特性の同定値と
したことを特徴とする電力系統の周波数特性同定方法。
When identifying a frequency characteristic of a power system based on an identification signal obtained by synthesizing a plurality of sine wave signals having different oscillation frequencies, a phase of each sine wave signal constituting the identification signal is set to a previous value. From the response of the power system based on the injected identification signal, the correlation function between the identification signal and the response. The Fourier transform is performed on the obtained average value of the obtained correlation functions to obtain a cross-spectral density, and the value obtained by dividing the cross-spectral density by the self-spectral density of the identification signal is used as the identification value of the frequency characteristic. A frequency characteristic identification method for a power system, comprising:
【請求項2】 発振周波数の異なる複数の正弦波信号を
合成した同定用信号に基づいて電力系統の周波数特性を
同定する際に、 それぞれの前記正弦波信号の振幅を互いに等しくし、該
正弦波信号の位相を前回より2π/n〔rad〕,
(n:複数)ずつ変位させつつ電力系統に注入し、 この注入された同定用信号に基づく前記電力系統の応答
から、該同定用信号と該応答との相関関数を求め、 求めたそれぞれの相関関数の加算平均値をフーリエ変換
した値を前記周波数特性の同定値としたことを特徴とす
る電力系統の周波数特性同定方法。
2. When identifying a frequency characteristic of a power system based on an identification signal obtained by synthesizing a plurality of sine wave signals having different oscillation frequencies, the amplitudes of the sine wave signals are made equal to each other, and The phase of the signal is 2π / n [rad],
(N: plural) are injected into the power system while being displaced, and from the response of the power system based on the injected identification signal, a correlation function between the identification signal and the response is obtained. A frequency characteristic identification method for a power system, wherein a value obtained by Fourier transforming an average value of a function is used as an identification value of the frequency characteristic.
【請求項3】 請求項1又は請求項2に記載の電力系統
の周波数特性同定方法において、 前記同定用信号は、電力系統と連系運転する半導体電力
変換装置に付加的に指令される同定用信号指令値に基づ
き該電力変換装置で生成することを特徴とする電力系統
の周波数特性同定方法。
3. The frequency characteristic identification method for a power system according to claim 1, wherein the identification signal is additionally commanded to a semiconductor power conversion device that operates in connection with the power system. A frequency characteristic identification method for a power system, wherein the frequency characteristic is generated by the power converter based on a signal command value.
【請求項4】 請求項3に記載の電力系統の周波数特性
同定方法において、 前記同定用信号を半導体電力変換装置の出力電流又は出
力電圧とし、 前記応答を上位の電力系統と前記電力系統との間の電流
又は電圧として前記周波数特性の同定値を演算すること
を特徴とする電力系統の周波数特性同定方法。
4. The method for identifying frequency characteristics of a power system according to claim 3, wherein the identification signal is an output current or an output voltage of a semiconductor power conversion device, and the response is a response between an upper power system and the power system. A frequency characteristic identification method for a power system, wherein an identification value of the frequency characteristic is calculated as a current or a voltage between the two.
【請求項5】 請求項3に記載の電力系統の周波数特性
同定方法において、 前記同定用信号を前記同定用信号指令値とし、 前記応答を上位の電力系統と前記電力系統との間の電流
又は電圧として前記周波数特性の同定値を演算すること
を特徴とする電力系統の周波数特性同定方法。
5. The frequency characteristic identification method for a power system according to claim 3, wherein the identification signal is the identification signal command value, and the response is a current or a current between an upper power system and the power system. A frequency characteristic identification method for a power system, comprising calculating an identification value of the frequency characteristic as a voltage.
JP22975199A 1999-08-16 1999-08-16 Frequency characteristics identification method for power system Expired - Fee Related JP3676133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22975199A JP3676133B2 (en) 1999-08-16 1999-08-16 Frequency characteristics identification method for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22975199A JP3676133B2 (en) 1999-08-16 1999-08-16 Frequency characteristics identification method for power system

Publications (2)

Publication Number Publication Date
JP2001057737A true JP2001057737A (en) 2001-02-27
JP3676133B2 JP3676133B2 (en) 2005-07-27

Family

ID=16897123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22975199A Expired - Fee Related JP3676133B2 (en) 1999-08-16 1999-08-16 Frequency characteristics identification method for power system

Country Status (1)

Country Link
JP (1) JP3676133B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510060A (en) * 2011-11-29 2012-06-20 武汉大学 Computing method of frequency characteristic coefficient of electric system
RU2548668C1 (en) * 2013-12-16 2015-04-20 Открытое акционерное общество "Научно-технический центр Единой энергетической системы" (ОАО "НТЦ ЕЭС") Method of determination of frequency characteristic of power system
JP2016539330A (en) * 2013-11-20 2016-12-15 アウトラム リサーチ リミティド Device used in disturbance estimation system based on disturbance extraction from electrical network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510060A (en) * 2011-11-29 2012-06-20 武汉大学 Computing method of frequency characteristic coefficient of electric system
JP2016539330A (en) * 2013-11-20 2016-12-15 アウトラム リサーチ リミティド Device used in disturbance estimation system based on disturbance extraction from electrical network
RU2548668C1 (en) * 2013-12-16 2015-04-20 Открытое акционерное общество "Научно-технический центр Единой энергетической системы" (ОАО "НТЦ ЕЭС") Method of determination of frequency characteristic of power system

Also Published As

Publication number Publication date
JP3676133B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP5021390B2 (en) Signal extracting device and reactive power compensator including the same
JP3136937B2 (en) Method and apparatus for detecting disconnection of resolver
JP2004502399A (en) Apparatus and method for reducing harmonics in power converters
JP4286290B2 (en) Decoupling harmonic signals from the signal path
JP2009038885A5 (en)
JP2001057737A (en) Method of identifying frequency characteristics of electric power system
SE417883B (en) SET AND DEVICE FOR DETECTING THE SPEED OF AN ASYNCHRON MOTOR MOTOR
JP2002204595A (en) Composite current supply device
JP3855449B2 (en) Active filter
JP3598710B2 (en) Power system characteristic measurement method
JP2002058163A (en) Method for determining frequency characteristic of electric power system
Wu et al. Adaptive extremum seeking control based lcl filter resonant frequency online estimation
Soltani et al. Input current interharmonics in adjustable speed drives caused by fixed-frequency modulation techniques
KR940019050A (en) Inverter Control Unit
JPH07136145A (en) Mri apparatus
US5473255A (en) Apparatus for estimating natural frequency of distribution system
Özmen et al. Harmonic Current Detection Based on the Dual-Tree Complex Wavelet Transform
JP4114871B2 (en) Digital control device and program
JP2002372556A (en) Measuring method and measuring device of square of amplitude of sinusoidal signal
JP2023053757A (en) Signal analyzer, signal analysis method, and program
Saranya et al. Selective harmonic elimination in three-phase Current Source Inverter-A generalized approach
Glare et al. Additional loss due to operation of machines from inverters
KR20060012313A (en) Phase measurement device, method, program, and recording medium
Zhang et al. Filter design at the output of the inverter in PMSM drives
JPH0576516A (en) Presaturation method for mri device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees