JP2001056973A - Production of optical disk - Google Patents

Production of optical disk

Info

Publication number
JP2001056973A
JP2001056973A JP11232124A JP23212499A JP2001056973A JP 2001056973 A JP2001056973 A JP 2001056973A JP 11232124 A JP11232124 A JP 11232124A JP 23212499 A JP23212499 A JP 23212499A JP 2001056973 A JP2001056973 A JP 2001056973A
Authority
JP
Japan
Prior art keywords
substrate
film
lower dielectric
dielectric layer
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11232124A
Other languages
Japanese (ja)
Inventor
Katsunari Hanaoka
克成 花岡
Ryuichi Furukawa
龍一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11232124A priority Critical patent/JP2001056973A/en
Publication of JP2001056973A publication Critical patent/JP2001056973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress residual stress based on difference in thermal expansion coefficient and to lessen warpage of a substrate by setting the gas pressure at the time of film-forming a lower dielectric body layer which come into contact with the substrate of phase transition recording layer by sputtering higher than the gas pressure at the time of film-forming the other layer. SOLUTION: The sputtering device is provided with six film-forming chambers and the substrate successively passes through the same. The lower dielectric body layer consisting of ZnS-SiO2 is formed in all of the first, second, third and fifth film-forming chambers, and a recording layer and a reflecting layer and a heat radiating layer are respectively formed in fourth and sixth chambers. In the step of sputtering process, the warpage is generated in the substrate based on the difference in thermal expansion coefficient between the substrate and the lower dielectric body layer. For example, the pressure of Ar gas in the second, third and fifth film-forming chambers is set to be 2 mTorr and the pressure of Ar gas in the first film-forming chamber is set to be 10 mTorr. Further, the density of the dielectric body layer of the lowermost layer being in contact with the substrate is lowered to 2.2 g/cm3 and, thereby, the warpage of the substrate is reduced to 1.6 deg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ディスクの製造方
法に関し、特にDVD(Digital Versatile Disc)−RW
(Rewritable)等の光記録媒体の製造工程において基板に
生じる反りをなくすようにした光ディスクの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical disk, and more particularly to a DVD (Digital Versatile Disc) -RW.
The present invention relates to a method for manufacturing an optical disc which eliminates warpage of a substrate in a manufacturing process of an optical recording medium such as (Rewritable).

【0002】[0002]

【従来の技術】デジタル信号の記録媒体用光ディスクと
して、相変化の記録層を備えた光ディスクが、製造ある
いは販売されている。例えば、CD−RW、DVD−R
WやCD−RAM(Random Access Memory)がそれにあた
る。こららは一般に、プラスチック基板/ZnS−Si
2/カルコゲン系相変化記録媒体/ZnS−SiO2
Al系合金のような4層構成の膜構成を有している。こ
のような相変化型の記録層を備えた光ディスクは、記録
材料の結晶層に光を照射して光照射部を非晶質層に変化
させ、記録する。従って、記録層は初期状態(光記録が
可能な状態)で結晶層になっていなくてはならない。こ
の記録層は一般にスパッタリング等により100℃程度
の温度で成膜されるため、製造された段階では非晶質層
であり、記録層を全面的に結晶化する初期結晶化が必要
である。
2. Description of the Related Art An optical disk having a phase change recording layer is manufactured or sold as an optical disk for a digital signal recording medium. For example, CD-RW, DVD-R
W and CD-RAM (Random Access Memory) correspond to this. These are generally plastic substrates / ZnS-Si
O 2 / chalcogen phase change recording medium / ZnS—SiO 2 /
It has a four-layer film structure such as an Al-based alloy. An optical disc having such a phase-change type recording layer irradiates a crystal layer of a recording material with light to change a light-irradiated portion to an amorphous layer, and performs recording. Therefore, the recording layer must be a crystalline layer in an initial state (a state where optical recording is possible). Since this recording layer is generally formed at a temperature of about 100 ° C. by sputtering or the like, it is an amorphous layer at the stage of manufacture, and requires initial crystallization for crystallizing the entire recording layer.

【0003】光ディスクの製造工程では、スパッタ成膜
時に基板表面全面が100℃程度の温度に、相変化記録
ディスクの製造では、更に初期結晶化プロセス時にレー
ザスポットサイズの領域が100℃以上に温度上昇す
る。光記録ディスクとして、安価なプラスチック基板を
用いる場合、スパッタリング成膜時の基板表面と裏面の
温度差、相変化記録ディスクにおいての初期結晶化プロ
セス時の高温処理により基板が大きく反る。記録密度の
高い、DVD−RW基板の場合はその厚さが従来のCD
−RWに比べて1/2の厚さの0.6mmであるため更
に深刻な問題となる。そこで、特開平8−287527
号公報では、0.6mm基板を貼り合わせて平らな状態
に矯正した後に、初期結晶化プロセスを行っている。
In the manufacturing process of an optical disk, the temperature of the entire surface of the substrate is raised to about 100 ° C. during film formation by sputtering, and in the manufacture of a phase change recording disk, the temperature of the laser spot size is further increased to 100 ° C. or more during the initial crystallization process. I do. When an inexpensive plastic substrate is used as the optical recording disk, the substrate is greatly warped due to the temperature difference between the front and back surfaces of the substrate during sputtering deposition and high temperature processing during the initial crystallization process for the phase change recording disk. In the case of a DVD-RW substrate with a high recording density, the thickness is
This is a more serious problem because the thickness is 0.6 mm, which is 1 / of the thickness of the RW. Therefore, Japanese Patent Application Laid-Open No. 8-287527
In the publication, an initial crystallization process is performed after a 0.6 mm substrate is bonded and corrected to a flat state.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来の方法は、成膜後の基板の反りが小さい場合は有効で
あるが、成膜後の反りが2度程度になると貼り合わせに
よる矯正が困難になる。そもそも、基板の反りは、基板
と誘電体薄膜の間の熱膨張係数に大きな差がある事に起
因する。両者に熱膨張係数差があるので、基板が100
℃程度の高温から室温まで冷却する際に必ず残留応力が
生じ、その応力によって基板が反ることとなる。すなわ
ち、高温時に基板の方がより大きく膨張することが反り
に起因している。
However, this conventional method is effective when the warpage of the substrate after film formation is small, but it is difficult to correct by warping when the warp after film formation is about twice. become. In the first place, the warpage of the substrate is caused by a large difference in the coefficient of thermal expansion between the substrate and the dielectric thin film. Since there is a difference in thermal expansion coefficient between the two,
When cooling from a high temperature of about ° C. to room temperature, a residual stress always occurs, and the stress warps the substrate. That is, the fact that the substrate expands more at high temperatures is caused by the warpage.

【0005】本発明はこの問題点を解決するためのもの
であり、基板と誘電体薄膜の間の熱膨張の差に起因する
残留応力が少しでも小さくなるように基板と接する部分
の誘電体層の密度を他の部分よりも密度が小さくして基
板の反りをなくす光ディスク製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve this problem, and a dielectric layer in contact with a substrate so that residual stress caused by a difference in thermal expansion between the substrate and a dielectric thin film is reduced as much as possible. It is an object of the present invention to provide an optical disk manufacturing method in which the density of a substrate is made smaller than that of other portions to eliminate the warpage of a substrate.

【0006】[0006]

【課題を解決するための手段】前記問題点を解決するた
めに、本発明に係る、相変化の記録層を有する光ディス
クの製造方法は、基板に接する下部誘電体層をスパッタ
リング成膜する際のガス圧力を他の層の成膜時のガス圧
力より高くしてスパッタリングを行うことに特徴があ
る。よって、成膜時のガス圧力が高いことにより形成中
の薄膜に衝突する成膜ガス等のエネルギー粒子が散乱さ
せる頻度が高いので基板に接する下部誘電体層の密度が
低くなり、それに伴って基板と下部誘電体層の熱膨張係
数差によって生じる残留応力が小さくなり、初期液晶化
後の基板の反り量を小さくすることができる。
In order to solve the above-mentioned problems, a method of manufacturing an optical disk having a phase-change recording layer according to the present invention is directed to a method for forming a lower dielectric layer in contact with a substrate by sputtering. It is characterized in that sputtering is performed with a gas pressure higher than a gas pressure at the time of forming another layer. Therefore, since the gas pressure during film formation is high, energy particles such as film formation gas that collide with the thin film being formed are frequently scattered, so that the density of the lower dielectric layer in contact with the substrate decreases, and accordingly, the substrate Residual stress caused by a difference in thermal expansion coefficient between the substrate and the lower dielectric layer is reduced, and the amount of warpage of the substrate after the initial liquid crystal conversion can be reduced.

【0007】更に、下部誘電体層の熱膨張係数が基板の
熱膨張係数より小さい場合は下部誘電体層の密度が他の
層よりも低く、下部誘電体層の熱膨張係数が基板の熱膨
張係数よりも大きい場合は下部誘電体層の密度が他の層
よりも高いことにより、いずれの場合でも結果基板と下
部誘電体層の熱膨張係数差によって生じる残留応力が小
さくなり、初期液晶化後の基板の反り量を小さくするこ
とができる。
Further, when the thermal expansion coefficient of the lower dielectric layer is smaller than the thermal expansion coefficient of the substrate, the density of the lower dielectric layer is lower than that of the other layers, and the thermal expansion coefficient of the lower dielectric layer is lower than that of the substrate. If the coefficient is larger than the coefficient, the density of the lower dielectric layer is higher than that of the other layers, so that in any case, the residual stress caused by the difference in thermal expansion coefficient between the substrate and the lower dielectric layer is reduced, and after the initial liquid crystal conversion, Of the substrate can be reduced.

【0008】また、下部誘電体層をスパッタリング成膜
する際、ガス中に2原子分子を混入することにより、形
成される下部誘電体層の密度は小さくなる。よって、初
期液晶化後の基板の反り量を小さくできる。
When the lower dielectric layer is formed by sputtering, by mixing diatomic molecules into the gas, the density of the formed lower dielectric layer is reduced. Therefore, the amount of warpage of the substrate after the initial liquid crystal conversion can be reduced.

【0009】更に、下部誘電体層をスパッタリングする
際、2原子分子によるスパッタリングと不活性ガスによ
るスパッタリングを交互に行う、また2原子分子が
2、不活性ガスがArであることにより、衝突の際の
弾性定数が不活性ガスよりも小さい2原子分子により成
膜を行った部分の応力を緩和することができるので、光
ディスクの反り量を小さくすることができる。
Further, when sputtering the lower dielectric layer, sputtering with diatomic molecules and sputtering with an inert gas are alternately performed. Further, since the diatomic molecules are N 2 and the inert gas is Ar, a collision is caused. In this case, the stress at the portion where the film is formed can be reduced by diatomic molecules whose elastic constant is smaller than that of the inert gas, so that the amount of warpage of the optical disk can be reduced.

【0010】また、基板に接する下部誘電体層をスパッ
タリング成膜する際の下部誘電体層の膜厚を他の層の成
膜時の膜厚より厚くしてスパッタリングを行うことによ
り、初期液晶化後の基板の反り量を小さくすることがで
きる。
[0010] In addition, when the lower dielectric layer in contact with the substrate is formed by sputtering, the thickness of the lower dielectric layer is made larger than the thickness of the other layers when the film is formed. Subsequent warpage of the substrate can be reduced.

【0011】[0011]

【発明の実施の形態】相変化の記録層を有する光ディス
クの製造方法は、基板に接する下部誘電体層の密度を基
板の密度に比して小さくするために下部誘電体層をスパ
ッタリング成膜する際のガス圧力を他の層の成膜時のガ
ス圧力より高くしてスパッタリングを行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a method for manufacturing an optical disk having a phase-change recording layer, a lower dielectric layer is formed by sputtering to reduce the density of a lower dielectric layer in contact with a substrate as compared with the density of the substrate. The sputtering is performed with the gas pressure at that time higher than the gas pressure at the time of forming the other layers.

【0012】[0012]

【実施例】図1は本発明の一実施例に係る製造方法によ
るスパッタ装置の概略構成を示す平面図である。同図に
示すスパッタ装置は6個の成膜室1〜6及び基板導入部
7を有するが成膜室数は6個である必要はなく、3個以
上であれば生産上可能である。成膜の内訳を以下に示
す。
FIG. 1 is a plan view showing a schematic configuration of a sputtering apparatus by a manufacturing method according to one embodiment of the present invention. Although the sputtering apparatus shown in FIG. 1 has six film-forming chambers 1 to 6 and a substrate introducing section 7, the number of film-forming chambers does not need to be six and three or more film-forming chambers can be produced. The details of the film formation are shown below.

【0013】 成膜室1(以下PC1と称す):ZnS−SiO2(下部誘電体層) 成膜室2(以下PC2と称す):ZnS−SiO2(下部誘電体層) 成膜室3(以下PC3と称す):ZnS−SiO2(下部誘電体層) 成膜室4(以下PC4と称す):AgInSbTe(記録層) 成膜室5(以下PC5と称す):ZnS−SiO2(下部誘電体層) 成膜室6(以下PC6と称す):Al(反射放熱層)Deposition chamber 1 (hereinafter referred to as PC1): ZnS—SiO 2 (lower dielectric layer) Deposition chamber 2 (hereinafter referred to as PC2): ZnS—SiO 2 (lower dielectric layer) Deposition chamber 3 ( hereinafter referred to as PC3): referred to as ZnS-SiO 2 (lower dielectric layer) deposition chamber 4 (hereinafter PC 4): AgInSbTe (referred to as recording layer) deposition chamber 5 (hereinafter PC5): ZnS-SiO 2 (lower dielectric Body layer) Film forming chamber 6 (hereinafter referred to as PC6): Al (reflective heat dissipation layer)

【0014】次に、比較例と本実施例による実験例につ
いて説明する。
Next, a comparative example and an experimental example according to the present embodiment will be described.

【0015】〔比較例〕射出成形により直径120c
m、厚さ0.6mmのPC基板を形成する。PC1で、
以下の条件によりZnS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:63nm
[Comparative Example] A diameter of 120c was obtained by injection molding.
m, a PC board having a thickness of 0.6 mm is formed. On PC1,
A ZnS—SiO 2 film is formed under the following conditions. Input power: RF 4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 63 nm

【0016】PC2及びPC3で、以下の条件によりZ
nS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:63nm
In PC2 and PC3, Z
forming the nS-SiO 2 film. Input power: RF 4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 63 nm

【0017】PC4で、以下の条件によりAgInSb
Te膜を形成する。 投入電力:DC 0.4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC4, AgInSb was used under the following conditions.
A Te film is formed. Input power: DC 0.4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0018】PC5で、以下の条件によりZnS−Si
2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC5, ZnS-Si is formed under the following conditions.
An O 2 film is formed. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0019】PC6で、以下の条件によりAl膜を形成
する。 投入電力:DC 5kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:140nm
On the PC 6, an Al film is formed under the following conditions. Input power: DC 5 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 140 nm

【0020】そして、UV硬化樹脂を塗布した後、UV
光を照射する。その後、1μm×96μmの大きさでフ
ォーカスされたレーザビームをAgInSbTe記録層
に照射して、AgInSbTeを結晶化する。なお、結
晶化条件は、回転線速を4m/s、レーザ送り速度を5
0μm/回転、レーザ投入パワーを800mWとする。
Then, after applying the UV curable resin,
Irradiate light. Thereafter, the AgInSbTe recording layer is irradiated with a laser beam focused at a size of 1 μm × 96 μm to crystallize the AgInSbTe. The crystallization conditions were as follows: a linear rotation speed of 4 m / s and a laser feed speed of 5 m / s.
0 μm / rotation, laser input power is 800 mW.

【0021】〔実験例1〕射出成形により直径120c
m、厚さ0.6mmのポリカーボネート基板(以下PC
基板と称す)を形成する。PC1で、以下の条件により
ZnS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:10mTorr ガス種:Ar 膜厚:90nm
[Experimental Example 1] A diameter of 120c was obtained by injection molding.
m, polycarbonate substrate with a thickness of 0.6 mm (hereinafter referred to as PC
(Referred to as a substrate). On the PC1, a ZnS—SiO 2 film is formed under the following conditions. Input power: RF 4 kW / 8 inch target, gas pressure: 10 mTorr Gas type: Ar Film thickness: 90 nm

【0022】PC2及びPC3で、以下の条件によりZ
nS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:50nm
In PC2 and PC3, Z
forming the nS-SiO 2 film. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 50 nm

【0023】PC4で、以下の条件によりAgInSb
Te膜を形成する。 投入電力:DC 0.4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC4, AgInSb was used under the following conditions.
A Te film is formed. Input power: DC 0.4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0024】PC5で、以下の条件によりZnS−Si
2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC5, ZnS-Si is formed under the following conditions.
An O 2 film is formed. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0025】PC6で、以下の条件によりAl膜を形成
する。 投入電力:DC 5kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:140nm
On the PC 6, an Al film is formed under the following conditions. Input power: DC 5 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 140 nm

【0026】そして、UV硬化樹脂を塗布した後、UV
光を照射する。その後、1μm×96μmの大きさでフ
ォーカスされたレーザビームをAgInSbTe記録層
に照射して、AgInSbTeを結晶化する。なお、結
晶化条件は、回転線速を4m/s、レーザ送り速度:を
0μm/回転、レーザ投入パワーを800mWとする。
Then, after applying the UV curing resin,
Irradiate light. Thereafter, the AgInSbTe recording layer is irradiated with a laser beam focused at a size of 1 μm × 96 μm to crystallize the AgInSbTe. The crystallization conditions are as follows: a linear rotation speed of 4 m / s, a laser feed speed of 0 μm / rotation, and a laser input power of 800 mW.

【0027】ここで、ZnS−SiO2を成膜する際
の、成膜圧力と密度の関係を図2に示す。図2に示した
ように、PC1においてガス圧10mTorrで成膜し
たZnS−SiO2は密度2.2g/cm3、PC2、P
C3においてガス圧2mTorrで成膜したZnS−S
iO2は密度3.3g/cm3である。また、PC1で成
膜する膜厚、すなわち密度2.2g/cm3のZnS−
SiO2の膜厚と、初期結晶化後のディスク反り角の関
係を図3に示す。上述の比較例の反り2.2degに対
して上記実験例1の反りは1.6degであり、基板と
接する部分の密度を低密度にした効果が出ている。ま
た、低密度部の膜厚は10nmでも、反り量減少の効果
が見られる。これは、成膜時のガス圧力が高いことによ
り形成中の薄膜に衝突する成膜ガス等のエネルギー粒子
が散乱させる頻度が高いので基板に接する下部誘電体層
の密度が低くなったことによるものである。
FIG. 2 shows the relationship between the film forming pressure and the density when forming a film of ZnS-SiO 2 . As shown in FIG. 2, ZnS—SiO 2 formed at a gas pressure of 10 mTorr on PC1 has a density of 2.2 g / cm 3 , PC2, P
ZnS-S deposited at C3 at a gas pressure of 2 mTorr
iO 2 has a density of 3.3 g / cm 3 . In addition, a film thickness formed by the PC1, that is, a ZnS— film having a density of 2.2 g / cm 3 .
FIG. 3 shows the relationship between the SiO 2 film thickness and the disk warpage angle after the initial crystallization. The warpage of Experimental Example 1 was 1.6 deg, compared to the warpage of 2.2 deg of the above-described comparative example, and the effect of reducing the density of the portion in contact with the substrate was obtained. Further, even if the film thickness of the low-density portion is 10 nm, the effect of reducing the amount of warpage is observed. This is because the density of the lower dielectric layer in contact with the substrate was lowered because the gas pressure during film formation was high, and the energy particles such as film formation gas that collided with the thin film being formed were frequently scattered. It is.

【0028】〔実験例2〕射出成形により直径120c
m、厚さ0.6mmのPC基板を形成する。PC1で、
以下の条件によりZnS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar and N2(ガス流量比1:1) 膜厚:63nm
[Experimental Example 2] Injection molding was performed to obtain a diameter of 120c.
m, a PC board having a thickness of 0.6 mm is formed. On PC1,
A ZnS—SiO 2 film is formed under the following conditions. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar and N 2 (gas flow ratio 1: 1) Film thickness: 63 nm

【0029】PC2及びPC3で、以下の条件によりZ
nS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar and N2(ガス流量比1:1) 膜厚:63nm
In PC2 and PC3, Z
forming the nS-SiO 2 film. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar and N 2 (gas flow ratio 1: 1) Film thickness: 63 nm

【0030】PC4で、以下の条件によりAgInSb
Te膜を形成する。 投入電力:DC 0.4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In PC4, AgInSb was used under the following conditions.
A Te film is formed. Input power: DC 0.4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0031】PC5で、以下の条件によりZnS−Si
2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC5, ZnS-Si was formed under the following conditions.
An O 2 film is formed. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0032】PC6で、以下の条件によりAl膜を形成
する。 投入電力:DC 5kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:140nm
On the PC 6, an Al film is formed under the following conditions. Input power: DC 5 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 140 nm

【0033】このとき、N2ガスを用いて成膜した部分
のZnS−SiO2薄膜には、N原子が含まれている。
At this time, the portion of the ZnS—SiO 2 thin film formed by using the N 2 gas contains N atoms.

【0034】そして、UV硬化樹脂を塗布した後、UV
光を照射する。その後、1μm×96μmの大きさでフ
ォーカスされたレーザビームをAgInSbTe記録層
に照射して、AgInSbTeを結晶化する。なお、結
晶化条件は、回転線速を4m/s、レーザ送り速度を5
0μm/回転、レーザ投入パワーを800mWとする。
After applying the UV curable resin,
Irradiate light. Thereafter, the AgInSbTe recording layer is irradiated with a laser beam focused at a size of 1 μm × 96 μm to crystallize the AgInSbTe. The crystallization conditions were as follows: a linear rotation speed of 4 m / s, and a laser feed speed of 5 m / s.
0 μm / rotation, laser input power is 800 mW.

【0035】ここで、図4にガス流量比と膜密度の関係
を示す。図5にガス流量比と初期結晶化後の反り角の関
係を示す。両図からわかるように、上述の比較例の反り
角2.2degに対して実験例2の反り角1.4deg
であり、ZnS−SiO2の密度を低密度とした効果が
出ている。
FIG. 4 shows the relationship between the gas flow ratio and the film density. FIG. 5 shows the relationship between the gas flow ratio and the warpage angle after the initial crystallization. As can be seen from both figures, the warp angle of the comparative example is 2.2 deg, whereas the warp angle of the experimental example 2 is 1.4 deg.
This has the effect of reducing the density of ZnS—SiO 2 .

【0036】〔実験例3〕射出成形により直径120c
m、厚さ0.6mmのPC基板を形成する。PC1で、
以下の条件によりZnS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:N2 膜厚:90nm
[Experimental Example 3] Diameter 120c by injection molding
m, a PC board having a thickness of 0.6 mm is formed. On PC1,
A ZnS—SiO 2 film is formed under the following conditions. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: N 2 film thickness: 90 nm

【0037】PC2及びPC3で、以下の条件によりZ
nS−SiO2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:50nm
In PC2 and PC3, Z
forming the nS-SiO 2 film. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 50 nm

【0038】PC4で、以下の条件によりAgInSb
Te膜を形成する。 投入電力:DC 0.4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
On the PC4, AgInSb was used under the following conditions.
A Te film is formed. Input power: DC 0.4 kW / 8 inch target, Gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0039】PC5で、以下の条件によりZnS−Si
2膜を形成する。 投入電力:RF4kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:20nm
In the PC5, ZnS-Si was formed under the following conditions.
An O 2 film is formed. Input power: RF 4 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 20 nm

【0040】PC6で、以下の条件によりAl膜を形成
する。 投入電力:DC 5kW/8インチターゲット、 ガス圧力:2mTorr ガス種:Ar 膜厚:140nm
An Al film is formed on the PC 6 under the following conditions. Input power: DC 5 kW / 8 inch target, gas pressure: 2 mTorr Gas type: Ar Film thickness: 140 nm

【0041】このとき、N2ガスを用いて成膜した部分
のZnS−SiO2薄膜には、N原子が含まれている。
At this time, the portion of the ZnS-SiO 2 thin film formed by using the N 2 gas contains N atoms.

【0042】そして、UV硬化樹脂を塗布した後、UV
光を照射する。その後、1μm×96μmの大きさでフ
ォーカスされたレーザビームをAgInSbTe記録層
に照射して、AgInSbTeを結晶化する。なお、結
晶化条件は、回転線速を4m/s、レーザ送り速度を5
0μm/回転、レーザ投入パワーを800mWとする。
Then, after applying the UV curable resin,
Irradiate light. Thereafter, the AgInSbTe recording layer is irradiated with a laser beam focused at a size of 1 μm × 96 μm to crystallize the AgInSbTe. The crystallization conditions were as follows: a linear rotation speed of 4 m / s, and a laser feed speed of 5 m / s.
0 μm / rotation, laser input power is 800 mW.

【0043】ここで、図6にPC1で成膜する膜厚、す
なわちN2ガスで成膜する膜厚と初期結晶化後の反り角
の関係を示す。上述の比較例の反り角2.2degに対
して、実験例3の反り角は1.0degであり、基板と
接するZnS−SiO2の密度を低くした効果が出てい
る。N2ガスで成膜する膜厚は10nmでも効果が出て
いる。
FIG. 6 shows the relationship between the film thickness formed by the PC 1, that is, the film thickness formed by the N 2 gas, and the warp angle after the initial crystallization. The warp angle of Experimental Example 3 was 1.0 deg, compared to the warp angle of 2.2 deg of the above-described comparative example, and the effect of reducing the density of ZnS—SiO 2 in contact with the substrate was obtained. The effect is obtained even when the film thickness formed by the N 2 gas is 10 nm.

【0044】なお、本発明は上記実施例に限定されるも
のではなく、特許請求の範囲内の記載であれば多種の変
形や置換可能であることは言うまでもない。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications and substitutions can be made within the scope of the claims.

【0045】[0045]

【発明の効果】以上説明したように、本発明に係る、相
変化の記録層を有する光ディスクの製造方法は、基板に
接する下部誘電体層の密度を基板の密度に比して小さく
するために下部誘電体層をスパッタリング成膜する際の
ガス圧力を他の層の成膜時のガス圧力より高くしてスパ
ッタリングを行うことに特徴がある。よって、成膜時の
ガス圧力が高いことにより形成中の薄膜に衝突する成膜
ガス等のエネルギー粒子が散乱させる頻度が高くので基
板に接する下部誘電体層の密度が低くなり、それに伴っ
て基板と下部誘電体層の熱膨張係数差によって生じる残
留応力が小さくなり、初期液晶化後の基板の反り量を小
さくすることができる。
As described above, the method for manufacturing an optical disk having a phase-change recording layer according to the present invention is intended to reduce the density of the lower dielectric layer in contact with the substrate in comparison with the density of the substrate. It is characterized in that sputtering is performed with the gas pressure at the time of forming the lower dielectric layer by sputtering higher than the gas pressure at the time of forming the other layers. Therefore, the density of the lower dielectric layer in contact with the substrate is reduced due to a high frequency of scattering of energy particles such as a deposition gas that collide with the thin film being formed due to a high gas pressure at the time of film formation. Residual stress caused by a difference in thermal expansion coefficient between the substrate and the lower dielectric layer is reduced, and the amount of warpage of the substrate after the initial liquid crystal conversion can be reduced.

【0046】更に、下部誘電体層の熱膨張係数が基板の
熱膨張係数より小さい場合は下部誘電体層の密度が他の
層よりも低く、下部誘電体層の熱膨張係数が基板の熱膨
張係数よりも大きい場合は下部誘電体層の密度が他の層
よりも高いことにより、いずれの場合でも結果基板と下
部誘電体層の熱膨張係数差によって生じる残留応力が小
さくなり、初期液晶化後の基板の反り量を小さくするこ
とができる。
Further, when the thermal expansion coefficient of the lower dielectric layer is smaller than the thermal expansion coefficient of the substrate, the density of the lower dielectric layer is lower than that of the other layers, and the thermal expansion coefficient of the lower dielectric layer is lower than that of the substrate. If the coefficient is larger than the coefficient, the density of the lower dielectric layer is higher than that of the other layers, so that in any case, the residual stress caused by the difference in thermal expansion coefficient between the substrate and the lower dielectric layer is reduced, and after the initial liquid crystal conversion, Of the substrate can be reduced.

【0047】また、下部誘電体層をスパッタリング成膜
する際、ガス中に2原子分子を混入することにより、形
成される下部誘電体層の密度は小さくなる。よって、初
期液晶化後の基板の反り量を小さくできる。
When the lower dielectric layer is formed by sputtering, by mixing diatomic molecules into the gas, the density of the formed lower dielectric layer is reduced. Therefore, the amount of warpage of the substrate after the initial liquid crystal conversion can be reduced.

【0048】更に、下部誘電体層をスパッタリングする
際、2原子分子によるスパッタリングと不活性ガスによ
るスパッタリングを交互に行う、また2原子分子が
2、不活性ガスがArであることにより、衝突の際の
弾性定数が不活性ガスよりも小さい2原子分子により成
膜を行った部分の応力を緩和することができるので、光
ディスクの反り量を小さくすることができる。
Further, when sputtering the lower dielectric layer, sputtering with diatomic molecules and sputtering with an inert gas are alternately performed. Further, since the diatomic molecules are N 2 and the inert gas is Ar, a collision is prevented. In this case, the stress at the portion where the film is formed can be reduced by diatomic molecules whose elastic constant is smaller than that of the inert gas, so that the amount of warpage of the optical disk can be reduced.

【0049】また、基板に接する下部誘電体層の密度を
基板の密度に比して小さくするために下部誘電体層をス
パッタリング成膜する際の下部誘電体層の膜厚を他の層
の成膜時の膜厚より厚くしてスパッタリングを行うこと
により、初期液晶化後の基板の反り量を小さくすること
ができる。
Further, in order to make the density of the lower dielectric layer in contact with the substrate smaller than the density of the substrate, the thickness of the lower dielectric layer when the lower dielectric layer is formed by sputtering is made different from that of the other layers. By performing sputtering with a thickness larger than the film thickness at the time of film formation, the amount of warpage of the substrate after the initial liquid crystalization can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る光ディスクの製造方法
によるスパッタ装置の概略構成を示す平面図である。
FIG. 1 is a plan view showing a schematic configuration of a sputtering apparatus according to a method for manufacturing an optical disk according to one embodiment of the present invention.

【図2】本実施例におけるガス圧力と密度の関係を示す
図である。
FIG. 2 is a diagram showing the relationship between gas pressure and density in the present embodiment.

【図3】本実施例における膜厚と反り角の関係を示す図
である。
FIG. 3 is a diagram showing a relationship between a film thickness and a warp angle in the present embodiment.

【図4】本実施例におけるガス流量比と膜密度の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a gas flow ratio and a film density in the present embodiment.

【図5】本実施例におけるガス流量比と反り角の関係を
示す図である。
FIG. 5 is a diagram showing a relationship between a gas flow ratio and a warpage angle in the present embodiment.

【図6】本実施例における膜厚と反り角の関係を示す図
である。
FIG. 6 is a diagram showing a relationship between a film thickness and a warp angle in the present embodiment.

【符号の説明】[Explanation of symbols]

1〜6:成膜室、7:基板導入部。 1 to 6: film formation chamber, 7: substrate introduction part.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相変化の記録層を有する光ディスクの製
造方法において、 基板に接する下部誘電体層をスパッタリング成膜する際
のガス圧力を他の層の成膜時のガス圧力より高くしてス
パッタリングを行うことを特徴とする光ディスクの製造
方法。
1. A method for manufacturing an optical disk having a phase-change recording layer, wherein the lower dielectric layer in contact with the substrate is sputtered by setting the gas pressure at the time of sputtering to be higher than the gas pressure at the time of forming the other layers. A method for manufacturing an optical disk, comprising:
【請求項2】 前記下部誘電体層の熱膨張係数が基板の
熱膨張係数より小さい場合は前記下部誘電体層の密度が
他の層よりも低く、前記下部誘電体層の熱膨張係数が基
板の熱膨張係数よりも大きい場合は前記下部誘電体層の
密度が他の層よりも高い請求項1記載の光ディスクの製
造方法。
2. When the coefficient of thermal expansion of the lower dielectric layer is smaller than the coefficient of thermal expansion of the substrate, the density of the lower dielectric layer is lower than that of the other layers, and the coefficient of thermal expansion of the lower dielectric layer is lower than the substrate. 2. The method according to claim 1, wherein the density of the lower dielectric layer is higher than that of the other layers when the coefficient of thermal expansion of the lower dielectric layer is larger than that of the other layers.
【請求項3】 前記下部誘電体層をスパッタリング成膜
する際、ガス中に2原子分子を混入する請求項1又は2
に記載の光ディスクの製造方法。
3. The method according to claim 1, wherein when the lower dielectric layer is formed by sputtering, diatomic molecules are mixed in the gas.
3. The method for manufacturing an optical disk according to claim 1.
【請求項4】 前記下部誘電体層をスパッタリングする
際、2原子分子によるスパッタリングと不活性ガスによ
るスパッタリングを交互に行う請求項1〜3のいずれか
に記載の光ディスクの製造方法。
4. The method for manufacturing an optical disk according to claim 1, wherein when sputtering the lower dielectric layer, sputtering using diatomic molecules and sputtering using an inert gas are alternately performed.
【請求項5】 前記2原子分子がN2、前記不活性ガス
がArである請求項4に記載の光ディスクの製造方法。
5. The method according to claim 4, wherein the diatomic molecule is N 2 and the inert gas is Ar.
【請求項6】 前記下部誘電体層をスパッタリング成膜
する際の前記下部誘電体層の膜厚を他の層の成膜時の膜
厚より厚くしてスパッタリングを行う請求項1〜5のい
ずれかに記載の光ディスクの製造方法。
6. The sputtering method according to claim 1, wherein said lower dielectric layer is formed by sputtering with a film thickness of said lower dielectric layer being larger than a film thickness of other layers when said lower dielectric layer is formed by sputtering. Or a method for manufacturing an optical disk.
JP11232124A 1999-08-19 1999-08-19 Production of optical disk Pending JP2001056973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11232124A JP2001056973A (en) 1999-08-19 1999-08-19 Production of optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11232124A JP2001056973A (en) 1999-08-19 1999-08-19 Production of optical disk

Publications (1)

Publication Number Publication Date
JP2001056973A true JP2001056973A (en) 2001-02-27

Family

ID=16934389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11232124A Pending JP2001056973A (en) 1999-08-19 1999-08-19 Production of optical disk

Country Status (1)

Country Link
JP (1) JP2001056973A (en)

Similar Documents

Publication Publication Date Title
US5904819A (en) Optical disk and method of manufacturing optical disk
JP2001056973A (en) Production of optical disk
KR100284693B1 (en) Initialization method of phase change disk
JP2003272172A (en) Method and device for initializing optical disk
JP2001297491A (en) Optical information recording medium and method for manufacturing the same
JP2002190137A (en) Laminated body and optical disc using it
JP4021691B2 (en) Phase change optical information recording medium and method for manufacturing the same
JP2002264513A (en) Phase-change optical information recording medium
JP2002269854A (en) Method for manufacturing optical information recording medium and optical information recording medium
JPH02278538A (en) Method for crystallization of phase-transition type recording medium
JP2001297490A (en) Optical information recording medium and method for manufacturing the same
JP2002279705A (en) Method for manufacturing phase change type optical information recording medium
JP2003091891A (en) Method and apparatus for manufacturing optical information recording medium
JPH10289478A (en) Optical information recording medium and its production
JPS6235888A (en) Optical recording medium
JP2002225436A (en) Optical information recording medium and its manufacturing method
JPH0249228A (en) Recording medium, optical disk and optical card
JP3619705B2 (en) Manufacturing method of optical recording medium
JP2004241046A (en) Phase change optical information recording medium and its manufacturing method
JPH0227536A (en) Optical recording medium
JPH0916961A (en) Initializing method for information recording medium
JP2002133732A (en) Optical information recording medium and manufacturing method for optical information recording medium
JP2002319180A (en) Phase transition recording type optical disk and manufacturing method therefor
JP2003301263A (en) Method for manufacturing thin film and phase-change type optical information recording medium
JPH01286141A (en) Manufacture of optical recording medium