JP2001056203A - Non-contact displacement measuring device - Google Patents

Non-contact displacement measuring device

Info

Publication number
JP2001056203A
JP2001056203A JP11231282A JP23128299A JP2001056203A JP 2001056203 A JP2001056203 A JP 2001056203A JP 11231282 A JP11231282 A JP 11231282A JP 23128299 A JP23128299 A JP 23128299A JP 2001056203 A JP2001056203 A JP 2001056203A
Authority
JP
Japan
Prior art keywords
electromagnetic induction
induction type
measured
displacement
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231282A
Other languages
Japanese (ja)
Inventor
Shigeyasu Yanai
茂康 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP11231282A priority Critical patent/JP2001056203A/en
Publication of JP2001056203A publication Critical patent/JP2001056203A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of errors caused by the contact of a detector with an object to be measured when, for example, a change in the external form of the object to be measured such as a fuel cladding pipe in a nuclear reactor is measured. SOLUTION: Electromagnetic induction type detectors 1 to 3 are arranged at an interval of 120 degrees in the peripheral direction of a fuel cladding pipe 40. Amplitude of oscillation signals of oscillation circuits 1 to 3 is changed in accordance with displacement of a gap among them. Magnitude of the amplitude is detected in rectifying circuits 1 to 3. Size of the gap is obtained from the magnitude of the amplitude detected based on a calibration curve for the gap vs. magnitude of amplitude which is stored in advance in a signal computing circuit 44. Furthermore, displacement of a diameter of the fuel cladding pipe is obtained based on obtained size of gap in three directions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非接触変位測定器に
関する。本発明は例えば円筒状金属の直径の時間的変化
を測定するのに適するものである。
The present invention relates to a non-contact displacement measuring device. The present invention is suitable, for example, for measuring the change over time of the diameter of a cylindrical metal.

【0002】[0002]

【従来の技術】原子炉の燃料の健全性を保つための条
件、あるいは高燃焼度燃料の設計を行う上で、燃料破損
の挙動の詳細を知ることは非常に重要である。原子炉の
反応度事故時にPCMI(ペレット被覆管−相互作用)
により被覆管の変形、さらには被覆管が破損することが
ある。これまで燃料棒破損実験時の被覆管の外形の変化
は、被覆管表面に接触式のマイクロメータや、歪ゲージ
をはりつけて、その値の変化から求めていた。
2. Description of the Related Art It is very important to know the details of the behavior of fuel failure in designing conditions for maintaining the integrity of fuel in a nuclear reactor or designing a high burn-up fuel. PCMI (Pellet cladding-Interaction) during reactor reactivity accident
This may cause deformation of the cladding tube and further damage to the cladding tube. Until now, the change in the outer shape of the cladding tube at the time of the fuel rod breakage experiment was determined from the change in the value by attaching a contact type micrometer or strain gauge to the cladding tube surface.

【0003】[0003]

【発明が解決しようとする課題】従来の接触式の検出器
では、冷却効果による燃料被覆管の表面温度の低下が避
けられないため、実際の温度での燃料被覆管の外形の変
化を正確に測定することができなかった。
In the conventional contact-type detector, since the surface temperature of the fuel cladding tube is inevitably reduced due to the cooling effect, the change in the outer shape of the fuel cladding tube at the actual temperature can be accurately detected. It could not be measured.

【0004】本発明は、例えば原子炉の燃料被覆管等の
被測定対象物の外形の変化を測定するとき検出器が被測
定対象物に接触することに起因する誤差が生じない非接
触変位測定器を提供することにある。
The present invention relates to a non-contact displacement measurement method which does not cause an error caused by a detector coming into contact with an object to be measured when measuring a change in the outer shape of the object to be measured such as a fuel cladding tube of a nuclear reactor. To provide equipment.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の非接触変位測定器は、複数の電磁誘導型検
出器と、前記複数の電磁誘導型検出器に電気的に接続さ
れかつ高周波信号を発生する発振回路と、前記発振回路
により発生された高周波信号の大きさを検出する信号検
出手段と、前記信号検出手段により検出された高周波信
号の大きさに基づいて前記複数の電磁誘導型検出器の各
々と被測定対象物との間のギャップを求める手段とを備
えることを特徴とする。
In order to solve the above-mentioned problems, a non-contact displacement measuring instrument according to the present invention includes a plurality of electromagnetic induction type detectors, and is electrically connected to the plurality of electromagnetic induction type detectors. An oscillation circuit for generating a high-frequency signal; signal detection means for detecting a magnitude of the high-frequency signal generated by the oscillation circuit; and the plurality of electromagnetic inductions based on the magnitude of the high-frequency signal detected by the signal detection means. Means for determining a gap between each of the pattern detectors and the object to be measured.

【0006】[0006]

【発明の実施の形態】本発明を原子炉の燃料被覆管(又
は燃料棒)の外形変化を測定する用途に適用する場合を
事例に本発明の好適な実施形態を図面を参照して以下に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described below with reference to the drawings, in a case where the present invention is applied to an application for measuring a change in outer shape of a fuel cladding tube (or fuel rod) of a nuclear reactor. explain.

【0007】非接触型のセンサーとして、静電型、電磁
誘導型、光センサー型、超音波型などがあるが、原子炉
の燃料被覆管破損の挙動を知るための実験の1つの燃料
棒破損実験においてはその実験条件が高放射線下の水中
でありかつ気泡が発生し、さらに変化が高速であること
から高周波磁界を利用する電磁誘導型が適当であると考
えられる。
As non-contact type sensors, there are an electrostatic type, an electromagnetic induction type, an optical sensor type, an ultrasonic type, and the like. In the experiment, the conditions of the experiment are water under high radiation, bubbles are generated, and the change speed is high. Therefore, it is considered that an electromagnetic induction type using a high-frequency magnetic field is appropriate.

【0008】計測上の問題点として第1に、パルス出力
型原子炉特有の原子炉出力に同期したノイズの発生があ
る。放射線計測は、物質との相互作用によって検出され
るが、パルス運転時に発生する高放射線により生じた電
離イオンにより、すべての検出器及び信号線に電流が発
生し、パルス状のノイズとなる。
First, as a problem in measurement, there is the generation of noise synchronized with the reactor output specific to the pulse output type reactor. Radiation measurement is detected by an interaction with a substance. However, current is generated in all detectors and signal lines due to ionized ions generated by high radiation generated during pulse operation, resulting in pulsed noise.

【0009】第2の問題として、温度補償の問題があ
る。水温は大気圧状態での実験であることから100℃
以上に上がることはないが、その温度による出力変化を
補償する必要がある。
As a second problem, there is a problem of temperature compensation. Water temperature is 100 ° C because it is an experiment under atmospheric pressure
Although it does not rise above, it is necessary to compensate for the output change due to the temperature.

【0010】これらの問題点を解消する考え方として、
ダミーセンサーを用いることによりその補償を行うこと
とした。つまり、同一環境条件でダミーセンサーを1個
セットすることにより、変位信号を含まないダミー信号
(放射線ノイズ及び温度による出力変化)を検出し変位
信号を補正する。パルス状のノイズはこれまでの経験か
らダミーセンサーの信号分を引き算することによりある
程度除去できる。温度の補償についても同様に行えば良
いが、あらかじめ検出器温度特性を求めておきその温度
の程度を把握しておく必要がある。
[0010] As a method of solving these problems,
The compensation was made by using a dummy sensor. That is, by setting one dummy sensor under the same environmental condition, a dummy signal (output change due to radiation noise and temperature) not including a displacement signal is detected and the displacement signal is corrected. The pulse-like noise can be removed to some extent by subtracting the signal of the dummy sensor from the experience so far. The temperature compensation may be performed in the same manner, but it is necessary to obtain the detector temperature characteristics in advance and grasp the degree of the temperature.

【0011】さらに、円筒状燃料の被覆管径方向の微小
な変位を測定するため、1方向の測定では信頼性が少な
く、3方向の変位を測定し、その変化を演算し、直径の
時間変化を求め燃料の被覆管破損挙動を解析しようとす
るものである。
Further, since a minute displacement in the radial direction of the cladding tube of the cylindrical fuel is measured, the reliability in one direction is low and the displacement in three directions is measured, the change is calculated, and the time change of the diameter is measured. To analyze the cladding failure behavior of the fuel.

【0012】本発明の基本原理を図1を参照して説明す
る。図1の電磁誘導型検出器10(上記のセンサーに対
応)は、一般にプローブコイル又は探触子コイルとも言
われ、コイル12の中に鉄心である磁気コア14が用い
られているセンサーである。誘導起電力は、コイル12
だけでなく被測定対象物である一般の磁性金属導体16
の内部にも発生する。発振回路20からの高周波信号
(250KHz〜1.3MHz)を励磁回路22及び同
軸ケーブル24を介して電磁誘導型検出器10に加え、
電磁誘導型検出器10の先端に磁力を発生させ、電磁誘
導型検出器10に磁性金属導体16が近づくと先端から
の磁力による電磁誘導作用によって、磁性金属導体16
の表面に誘導起電力を生じ、これに基づく電流つまり渦
電流が生じる。渦電流は磁性金属導体16を貫く磁束の
変化を妨げるように発生するから、渦電流が生じれば、
渦電流による逆起電力が磁束を打ち消し、磁束は小さく
なる。
The basic principle of the present invention will be described with reference to FIG. The electromagnetic induction type detector 10 (corresponding to the above-described sensor) in FIG. 1 is a sensor in which a magnetic core 14 which is an iron core is used in a coil 12 and is generally called a probe coil or a probe coil. The induced electromotive force is
In addition to the general magnetic metal conductor 16 to be measured,
Also occurs inside the. A high frequency signal (250 KHz to 1.3 MHz) from the oscillation circuit 20 is applied to the electromagnetic induction type detector 10 via the excitation circuit 22 and the coaxial cable 24,
A magnetic force is generated at the tip of the electromagnetic induction type detector 10, and when the magnetic metal conductor 16 approaches the electromagnetic induction type detector 10, an electromagnetic induction action by the magnetic force from the tip causes the magnetic metal conductor 16.
An induced electromotive force is generated on the surface of the substrate, and a current based on the electromotive force, that is, an eddy current is generated. Since the eddy current is generated so as to prevent the change of the magnetic flux passing through the magnetic metal conductor 16, if the eddy current occurs,
The back electromotive force due to the eddy current cancels the magnetic flux, and the magnetic flux becomes small.

【0013】磁性金属導体16内に誘導される渦電流信
号は、磁性金属導体16の形状・寸法、導電率と透磁
率、割れの存在、及び相対位置などの影響を受ける。こ
こでは、磁性金属導体16が電磁誘導型検出器10に近
づいたとき、その距離によって渦電流の大きさが変化
し、前記の相互電磁誘導作用により電磁誘導型検出器1
0のインピーダンスが変化する、それによって発振回路
20の出力振幅が変化することを利用する。発振回路2
0の出力振幅の変化は、例えばダイオード等を用いた通
常の整流回路26を通し変位信号すなわちギャップ信号
として出力する。
The eddy current signal induced in the magnetic metal conductor 16 is affected by the shape and size of the magnetic metal conductor 16, conductivity and permeability, existence of cracks, and relative position. Here, when the magnetic metal conductor 16 approaches the electromagnetic induction type detector 10, the magnitude of the eddy current changes according to the distance, and the electromagnetic induction type detector 1
The fact that the impedance of 0 changes, thereby changing the output amplitude of the oscillation circuit 20 is used. Oscillation circuit 2
The change of the output amplitude of 0 is output as a displacement signal, that is, a gap signal through a normal rectifier circuit 26 using, for example, a diode.

【0014】なお、燃料被覆管表面の変位を検出する電
磁誘導型検出器10としては、3方向から変位を検出す
るのに相互干渉を出来るだけ少なくするため小型のもの
が望ましい。
The electromagnetic induction type detector 10 for detecting the displacement of the surface of the fuel cladding tube is desirably small in order to minimize mutual interference in detecting the displacement in three directions.

【0015】図1に示される回路のうちの整流回路26
を除いた構成は、図2に示されるような等価回路により
表すことができる。インダクタンスLと容量Cは周波数
によりその影響が異なる。周波数を一定にしておいても
同軸ケーブル24の信号ケーブル、配線等のL、Cも大
きく影響するため、発振回路20の発振周波数の選定と
その周波数による校正曲線を求めることが重要となる。
Rectifier circuit 26 of the circuit shown in FIG.
Can be represented by an equivalent circuit as shown in FIG. The influence of the inductance L and the capacitance C differs depending on the frequency. Even if the frequency is kept constant, L and C of the signal cable and the wiring of the coaxial cable 24 also have a large effect, so it is important to select the oscillation frequency of the oscillation circuit 20 and to obtain a calibration curve based on the frequency.

【0016】図3は、円筒状の原子炉用燃料被覆管の周
方向の外形変化を、3つの電磁誘導型検出器を用いて、
その渦電流の変化を3方向からそれぞれ測定し、外形の
変化つまり直径の変化を非接触式で測定する本発明の好
適な実施形態の非接触変位測定器をブロック図の形式で
示す。被測定対象物である原子炉用燃料被覆管40は、
材質がZr−4である磁性金属で構成され、円筒状の形
状を有する。小型の3つの電磁誘導型検出器10a、1
0b及び10cが、円筒状の燃料被覆管40の周方向に
同一高さの位置でかつ図3の平面図に示されるように互
いに120度の角度を有して配置されている。各電磁誘
導型検出器10a〜10cと燃料被覆管40とのギャッ
プは0.5〜1.0mm程度である。各電磁誘導型検出
器10a〜10cは変位増幅器42に同軸ケーブル(図
示せず)を介して接続されている。変位増幅器42に
は、3つの電磁誘導型検出器10a〜10cに対応し
て、図1に示される発振回路20と同じ発振回路1、2
及び3、励磁回路22と同じ励磁回路1、2及び3、整
流回路26と同じ整流回路1、2及び3が設けられてい
る。 対応関係を明瞭にするため、電磁誘導型検出器1
0a、10b、10cのそれぞれを電磁誘導型検出器
1、2、3とも記す。電磁誘導型検出器1〜3、発振回
路1〜3、励磁回路1〜3、整流回路1〜3は、番号が
対応して図1に示されるように接続されている。発振回
路1〜3は、数100kHzの高周波信号を発生し、3
つの発振回路の高周波信号のそれぞれは測定において相
互に干渉しない程度に異なる周波数を有する。励磁回路
1〜3は、発振回路1〜3からの高周波信号で電磁誘導
型検出器1〜3を励磁する。励磁回路1〜3の高周波信
号の振幅は、燃料被覆管40と電磁誘導型検出器1〜3
間のギャップの変化によって変化するため、その成分は
整流回路1〜3で整流されさらに増幅される。整流回路
1〜3で整流・増幅された信号は、信号演算回路44に
出力される。
FIG. 3 shows the change in the outer shape of the cylindrical fuel cladding for a nuclear reactor in the circumferential direction by using three electromagnetic induction type detectors.
A non-contact displacement measuring device according to a preferred embodiment of the present invention which measures the change of the eddy current from three directions and measures the change of the outer shape, that is, the change of the diameter in a non-contact manner, is shown in a block diagram form. The fuel cladding tube 40 for the reactor, which is the object to be measured,
It is made of a magnetic metal whose material is Zr-4 and has a cylindrical shape. Three small electromagnetic induction type detectors 10a, 1
Ob and 10c are arranged at the same height position in the circumferential direction of the cylindrical fuel cladding tube 40 and at an angle of 120 degrees to each other as shown in the plan view of FIG. The gap between each of the electromagnetic induction type detectors 10a to 10c and the fuel cladding tube 40 is about 0.5 to 1.0 mm. Each of the electromagnetic induction type detectors 10a to 10c is connected to the displacement amplifier 42 via a coaxial cable (not shown). The displacement amplifier 42 has the same oscillation circuits 1, 2 as the oscillation circuit 20 shown in FIG. 1 corresponding to the three electromagnetic induction detectors 10a to 10c.
And 3, the same exciting circuits 1, 2 and 3 as the exciting circuit 22 and the same rectifying circuits 1, 2 and 3 as the rectifying circuit 26 are provided. In order to clarify the correspondence, electromagnetic induction type detector 1
0a, 10b, and 10c are also referred to as electromagnetic induction type detectors 1, 2, and 3, respectively. The electromagnetic induction type detectors 1 to 3, the oscillation circuits 1 to 3, the excitation circuits 1 to 3, and the rectification circuits 1 to 3 are connected as shown in FIG. The oscillation circuits 1 to 3 generate high-frequency signals of several hundred kHz,
Each of the high frequency signals of the two oscillating circuits has a different frequency so as not to interfere with each other in the measurement. The excitation circuits 1 to 3 excite the electromagnetic induction type detectors 1 to 3 with high frequency signals from the oscillation circuits 1 to 3. The amplitude of the high-frequency signals of the excitation circuits 1 to 3 is determined by the fuel cladding tube 40 and the electromagnetic induction type detectors 1 to 3.
Since the component changes due to a change in the gap between the components, the component is rectified by the rectifier circuits 1 to 3 and further amplified. The signals rectified and amplified by the rectifier circuits 1 to 3 are output to the signal operation circuit 44.

【0017】信号演算回路44には、図4の(A)に示
されるようなギャップと変位増幅器42の出力電圧との
関係を表す校正曲線があらかじめ求められてその情報が
記憶されている。
In the signal operation circuit 44, a calibration curve representing the relationship between the gap and the output voltage of the displacement amplifier 42 as shown in FIG.

【0018】各電磁誘導型検出器1〜3に対して、ギャ
ップの時間的変化に起因して生じた各整流回路1〜3の
出力電圧の時間的変化の一例を図4の(B)に示す。信
号演算回路44は、図4の(B)に示されるような出力
電圧を時間の経過と共に受け取り、各電磁誘導型検出器
1〜3について、あらかじめ記憶されている図4の
(A)の示す校正曲線を用いて、図4の(C)に示され
るような変位信号すなわちギャップを表す信号を求め
る。この求め方としては、用途や測定目的に応じて、例
えば3つの電磁誘導型検出器1〜3に対応する整流回路
1〜3の出力電圧の合計、あるいはそれらの平均を用い
得る。次いで、この変位信号は変位信号記憶装置46に
記録される。
FIG. 4B shows an example of the temporal change of the output voltage of each of the rectifier circuits 1 to 3 caused by the temporal change of the gap for each of the electromagnetic induction type detectors 1 to 3. Show. The signal operation circuit 44 receives the output voltage as shown in FIG. 4B with the passage of time, and stores in advance the electromagnetic induction type detectors 1 to 3 shown in FIG. Using the calibration curve, a displacement signal as shown in FIG. For example, the sum of the output voltages of the rectifier circuits 1 to 3 corresponding to the three electromagnetic induction type detectors 1 to 3 or the average of the output voltages can be used as the method of obtaining the values. Next, the displacement signal is recorded in the displacement signal storage device 46.

【0019】燃料破損挙動解明に使用する場合は、電磁
誘導型検出器1〜3は高放射線下であるためその影響が
変位信号に含まれることになる。そこで、その影響を除
去するため、補正用のダミー検出器を設ける必要があ
る。図3において、破線で示す電磁誘導型検出器10d
は、補正用ダミー検出器4を表す。この補正用ダミー検
出器4は、変位検出用の電磁誘導型検出器1〜3と相互
に干渉しない位置で、かつこれら電磁誘導型検出器1〜
3と同じ高放射線を受ける適当な位置に配置されればよ
い。図3において、破線で囲まれた発振回路4、励磁回
路4及び整流回路4は、高放射線が電磁誘導型検出器に
与える影響を表す電圧を得るための系で、この電圧は整
流回路4から信号演算回路44に与えられ、各電磁誘導
型検出器1〜3に対応する出力電圧(図4の(B)に示
される各電圧)から減算される。
When used for elucidation of fuel failure behavior, the electromagnetic induction type detectors 1 to 3 are under high radiation, and their influence is included in the displacement signal. Therefore, in order to eliminate the influence, it is necessary to provide a dummy detector for correction. In FIG. 3, an electromagnetic induction type detector 10d indicated by a broken line
Represents a correction dummy detector 4. The correction dummy detector 4 is located at a position where it does not interfere with the electromagnetic induction type detectors 1 to 3 for displacement detection, and
It is sufficient if they are arranged at appropriate positions that receive the same high radiation as in 3. In FIG. 3, an oscillation circuit 4, an excitation circuit 4, and a rectifier circuit 4 surrounded by a broken line are systems for obtaining a voltage indicating the effect of high radiation on the electromagnetic induction type detector. The signal is supplied to the signal operation circuit 44, and is subtracted from the output voltage (each voltage shown in FIG. 4B) corresponding to each of the electromagnetic induction type detectors 1 to 3.

【0020】原子炉燃料破損実験の、燃料被覆管外形の
時間変化の測定を図3の測定系を用いて行った結果を図
5に示す。図5において、(A)は原子炉出力を、
(B)から(D)は各電磁誘導型検出器1〜3に対応す
る整流回路1〜3からの出力電圧を、(E)は補正用ダ
ミー電磁誘導型検出器4に対応する整流回路4からの出
力電圧を、(F)は変位信号の時間的変化を示す。
FIG. 5 shows the result of measurement of the time change of the outer shape of the fuel cladding tube in the reactor fuel failure experiment using the measurement system shown in FIG. In FIG. 5, (A) shows the reactor power,
(B) to (D) show the output voltages from the rectifier circuits 1 to 3 corresponding to the respective electromagnetic induction type detectors 1 to 3, and (E) show the rectifier circuit 4 corresponding to the correction dummy electromagnetic induction type detector 4. (F) shows the change over time of the displacement signal.

【0021】なお、図3に示す実施形態においては、3
つ(または4つ)の電磁誘導型検出器に対して、別々の
発振回路、励磁回路、整流回路を設けているが、例えば
時間的変化が緩慢な被測定対象物に対しては、発振回
路、励磁回路、整流回路を各々1つ設け、これらを切り
替え回路により時分割的に各電磁誘導型検出器に接続す
る構成にしてもよい。
In the embodiment shown in FIG.
Separate oscillation circuits, excitation circuits, and rectification circuits are provided for one (or four) electromagnetic induction type detectors. For example, an oscillation circuit is provided for an object to be measured whose time variation is slow. , An excitation circuit and a rectifier circuit, each of which may be connected to each electromagnetic induction type detector in a time division manner by a switching circuit.

【0022】また、さらに精度を上げる場合、あるいは
円周方向における変位のばらつきが大きい場合等には、
4つ以上の電磁誘導型検出器を円周方向に沿って配置し
てもよい。
In the case where the accuracy is further improved or the variation of the displacement in the circumferential direction is large,
Four or more electromagnetic induction type detectors may be arranged along the circumferential direction.

【0023】一方、精度をあまり要求しない場合には、
2個の電磁誘導型検出器を円筒状の被測定対象物の直径
上に配置してもよい。また、被測定の形状は円筒状に限
らず、厚みのあるものや、例えば、多角柱のような形状
のものでも、形状に応じた数の電磁誘導型検出器を被測
定対象物の周囲に配置すれば本発明の非接触変位測定器
は被測定対象物の外形を測定することが可能である。
On the other hand, when accuracy is not required much,
Two electromagnetic induction type detectors may be arranged on the diameter of the cylindrical object to be measured. In addition, the shape of the object to be measured is not limited to a cylindrical shape, and even if the object has a thickness, for example, a polygonal prism, a number of electromagnetic induction type detectors corresponding to the shape are provided around the object to be measured. If arranged, the non-contact displacement measuring device of the present invention can measure the outer shape of the object to be measured.

【0024】[0024]

【発明の効果】本発明によれば、被測定対象物の周囲に
非接触状態で電磁誘導型検出器を複数配置して被測定対
象物の外形の変位を測定することが可能となる。また、
高速の変位に対しても応答性はよい。
According to the present invention, it is possible to arrange a plurality of electromagnetic induction type detectors around the object to be measured in a non-contact state and measure the displacement of the outer shape of the object to be measured. Also,
Responsiveness is good even for high-speed displacement.

【0025】したがって、例えば原子炉の燃料被覆管等
の被測定対象物の外形の変化を測定するとき検出器が被
測定対象物に接触することに起因する誤差が生じないの
で、燃料破損挙動解明にきわめて有効である。
Therefore, when measuring the change in the outer shape of the object to be measured, for example, a fuel cladding tube of a nuclear reactor, there is no error caused by the contact of the detector with the object to be measured. It is very effective for

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本原理を説明するための図である。FIG. 1 is a diagram for explaining a basic principle of the present invention.

【図2】図1に示される回路のうちの整流回路26を除
いた構成の等価回路を示す図である。
FIG. 2 is a diagram showing an equivalent circuit of a configuration excluding a rectifier circuit 26 in the circuit shown in FIG.

【図3】円筒状の原子炉用燃料被覆管の周方向の外形変
化を、3つの電磁誘導型検出器を用いて、その渦電流の
変化を3方向からそれぞれ測定し、外形の変化つまり直
径の変化を非接触式で測定する本発明の好適な実施形態
の非接触変位測定器を示すブロック図である。
FIG. 3 is a graph showing a change in the outer shape of a cylindrical fuel cladding tube for a nuclear reactor in three directions using three electromagnetic induction detectors, and a change in the outer shape, that is, a diameter. FIG. 3 is a block diagram showing a non-contact displacement measuring device according to a preferred embodiment of the present invention for measuring a change in a non-contact type.

【図4】図3に示す非接触変位測定器の測定信号の概略
図である。
4 is a schematic diagram of a measurement signal of the non-contact displacement measuring device shown in FIG.

【図5】原子炉燃料破損実験の、燃料被覆管外形の時間
変化の測定を図3の測定系を用いて行った結果を示す図
である。
FIG. 5 is a diagram showing a result of measurement of a temporal change of a fuel cladding outer shape in a reactor fuel failure experiment using the measurement system of FIG. 3;

【符号の説明】[Explanation of symbols]

10、10a〜10c 電磁誘導型検出器 20 発振回路 22 励磁回路 26 整流回路 40 原子炉用燃料被覆管 42 変位増幅器 44 信号演算回路 10, 10a to 10c Electromagnetic induction type detector 20 Oscillation circuit 22 Excitation circuit 26 Rectification circuit 40 Fuel cladding tube for reactor 42 Displacement amplifier 44 Signal operation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の電磁誘導型検出器と、 前記複数の電磁誘導型検出器に電気的に接続されかつ高
周波信号を発生する発振回路と、 前記発振回路により発生された高周波信号の大きさを検
出する信号検出手段と、 前記信号検出手段により検出された高周波信号の大きさ
に基づいて前記複数の電磁誘導型検出器の各々と被測定
対象物との間のギャップを求める手段とを備える非接触
変位測定器。
A plurality of electromagnetic induction type detectors; an oscillation circuit electrically connected to the plurality of electromagnetic induction type detectors for generating a high frequency signal; and a magnitude of a high frequency signal generated by the oscillation circuit. And a means for calculating a gap between each of the plurality of electromagnetic induction type detectors and the object to be measured based on the magnitude of the high-frequency signal detected by the signal detecting means. Non-contact displacement measuring instrument.
JP11231282A 1999-08-18 1999-08-18 Non-contact displacement measuring device Pending JP2001056203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231282A JP2001056203A (en) 1999-08-18 1999-08-18 Non-contact displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231282A JP2001056203A (en) 1999-08-18 1999-08-18 Non-contact displacement measuring device

Publications (1)

Publication Number Publication Date
JP2001056203A true JP2001056203A (en) 2001-02-27

Family

ID=16921171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231282A Pending JP2001056203A (en) 1999-08-18 1999-08-18 Non-contact displacement measuring device

Country Status (1)

Country Link
JP (1) JP2001056203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278891A (en) * 2006-04-07 2007-10-25 Tamagawa Seiki Co Ltd Resolver signal multiplex transmission method and device
JP2009506318A (en) * 2005-08-24 2009-02-12 ウェスティングハウス エレクトリック スウェーデン アーベー System and use for measurement of eddy currents on reactor components present in water
JP2016120135A (en) * 2014-12-25 2016-07-07 公立大学法人広島市立大学 Contact detection device using electromagnetic induction
KR20190051664A (en) * 2017-11-07 2019-05-15 한국원자력연구원 Fuel rod deformation measuring apparatus
FR3111422A1 (en) 2020-06-16 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assembly comprising a wall and a non-contact measurement system of a deformation of the wall, and associated measurement method
CN116772702A (en) * 2023-08-24 2023-09-19 河南卫华重型机械股份有限公司 Eddy current distance acquisition circuit
KR102580671B1 (en) * 2023-02-09 2023-09-21 주식회사 스탠더드시험연구소 Diameter Measurement System of Nuclear Fuel Rod by Eddy Current Technique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506318A (en) * 2005-08-24 2009-02-12 ウェスティングハウス エレクトリック スウェーデン アーベー System and use for measurement of eddy currents on reactor components present in water
JP4922300B2 (en) * 2005-08-24 2012-04-25 ウェスティングハウス エレクトリック スウェーデン アーベー System and use for measurement of eddy currents on reactor components present in water
JP2007278891A (en) * 2006-04-07 2007-10-25 Tamagawa Seiki Co Ltd Resolver signal multiplex transmission method and device
JP2016120135A (en) * 2014-12-25 2016-07-07 公立大学法人広島市立大学 Contact detection device using electromagnetic induction
KR20190051664A (en) * 2017-11-07 2019-05-15 한국원자력연구원 Fuel rod deformation measuring apparatus
KR102067502B1 (en) * 2017-11-07 2020-01-20 한국원자력연구원 Fuel rod deformation measuring apparatus
FR3111422A1 (en) 2020-06-16 2021-12-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Assembly comprising a wall and a non-contact measurement system of a deformation of the wall, and associated measurement method
KR102580671B1 (en) * 2023-02-09 2023-09-21 주식회사 스탠더드시험연구소 Diameter Measurement System of Nuclear Fuel Rod by Eddy Current Technique
CN116772702A (en) * 2023-08-24 2023-09-19 河南卫华重型机械股份有限公司 Eddy current distance acquisition circuit

Similar Documents

Publication Publication Date Title
EP0101932B1 (en) Reactor in-vessel sensor and core monitoring apparatus
CN105891323A (en) Eddy probe array for detecting pipeline deformation
US8274280B2 (en) Device and process for nondestructive and noncontact detection of faults in a test piece
US20130328555A1 (en) Pulsed eddy current sensor for precision lift-off measurement
CN109946379B (en) Electromagnetic ultrasonic detection method for unidirectional stress
EP3441753B1 (en) Inspection device and inspection method
KR20010093678A (en) Eddy current loss measurement sensor, film thickness measurement device and method thereof, and storage medium
CN203534998U (en) Electromagnetic induction type device for detecting solution density
JP2001056203A (en) Non-contact displacement measuring device
US5218296A (en) Method and apparatus for determining at least one characteristic of a superconductive film
WO2016170588A1 (en) Magnetic field measurement system and failure diagnosis system using same
EP0146638B1 (en) Method for measuring transformation rate
CN111043947A (en) Nuclear fuel assembly oxide film thickness eddy current testing device
KR100609259B1 (en) Fuel rod testing apparatus
CN113720508B (en) Post porcelain insulator stress monitoring device and method based on double laser scanning
US3075145A (en) Magnetic detection of flaws using mutually coupled coils
JP3218761U (en) GAP SENSOR AND LASER MACHINE WITH THE SAME
US4072895A (en) Eddy current converter for non-destructive testing of electrically conducting coating in holes of printed circuit boards
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
JPH0815229A (en) High resolution eddy current flaw detector
Meinl et al. Application of a fiber optic sagnac interferometer for acoustic partial discharge detection in switchgears
JP3272232B2 (en) Vibration displacement detector
JPS6228674A (en) Method and instrument for noncontact measurement of conductivity of semiconductor wafer
JP2004101281A (en) Non-destructive measurement method of hydrogen concentration in nuclear fuel member
JPS61253528A (en) Automatic position coordinate deciding apparatus