JP2001048094A - Soft high altitude airship and operating and controlling method therefor - Google Patents

Soft high altitude airship and operating and controlling method therefor

Info

Publication number
JP2001048094A
JP2001048094A JP11226660A JP22666099A JP2001048094A JP 2001048094 A JP2001048094 A JP 2001048094A JP 11226660 A JP11226660 A JP 11226660A JP 22666099 A JP22666099 A JP 22666099A JP 2001048094 A JP2001048094 A JP 2001048094A
Authority
JP
Japan
Prior art keywords
air
gas
chamber
gas chamber
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11226660A
Other languages
Japanese (ja)
Other versions
JP3524442B2 (en
Inventor
Masahiko Onda
田 昌 彦 恩
Hiroshi Sugimoto
本 洋 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKY PIA KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SKY PIA KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKY PIA KK, Agency of Industrial Science and Technology filed Critical SKY PIA KK
Priority to JP22666099A priority Critical patent/JP3524442B2/en
Publication of JP2001048094A publication Critical patent/JP2001048094A/en
Application granted granted Critical
Publication of JP3524442B2 publication Critical patent/JP3524442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Tents Or Canopies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the constitution capable of simply and easily performing climbing, level flight and lowering controls with extremely simple structure and an operating and controlling method therefor, in a soft high altitude airship constituted of soft pressurizing film structure in an airframe. SOLUTION: This airship is provided with an envelope 1 formed by pressurizing film structure and empennages 2. Inside the envelope 1, air chambers 11, 12 having comparatively small volume in a head part and a tail part, an air chamber 13 having large volume in a center lower part, a small gas chamber 14 to be filled with floating gas at a center upper part and a large gas chamber 15 formed in space within the envelope 1 except the air chambers 11, 12 and the small gas chamber 14 are provided. Each air chamber 11, 12 is provided with a pressure governing valve and a pressurizing air blower for making a difference of internal pressure and atmospheric pressure constant. The small gas chamber 14 is provided with a valve for emitting floating gas at the time of lowering. The large gas chamber 15 is provided with a pressurizing air blower for feeding outside atmosphere at the time of lowering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟式高々度飛行船
及びその運行制御方法に関するものであり、さらに具体
的には、成層圏に滞空し、風に抗して太陽光の光電変換
等のパワーで推進し、地球環境保全のための観測や無線
中継等を行う全軟式の巨大LTA(Lighter-Than-Air)
プラットフォームの機体に適用するのに有効な高々度飛
行船及びその運行制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible high altitude airship and a method of controlling the operation of the airship, and more specifically, to a flight in the stratosphere, which is propelled by power such as photoelectric conversion of sunlight against wind. All-soft giant LTA (Lighter-Than-Air) that performs observations and wireless relays for global environmental protection
The present invention relates to a high altitude airship effective for application to an airframe of a platform and an operation control method thereof.

【0002】[0002]

【従来の技術】既知の科学気球は、その上昇においては
空気を排気せず、気球をヘリウムと共に膨張させて余裕
浮力で上昇し、水平飛行に際してはバラストを捨てつつ
気球の移動を風にまかせ、下降開始に際しては気球の一
部を引き裂き、搭載物を落下傘で降下させる。一方、地
上から20km程度の成層圏下層の空域は、一年中晴天
で、風も弱く穏やかであるため、この空域に巨大LTA
プラットフォームを長期間滞空させて環境観測や情報中
継に利用するのが有効であるが、この場合には、上記科
学気球と同様な手段を用いて上昇及び加工を行うことに
は困難性があり、簡単な手段で安定的に軟着陸すること
が要求される。
2. Description of the Related Art Known scientific balloons do not exhaust air at the time of ascending, but inflate the balloon with helium to ascend with sufficient buoyancy. At the start of the descent, a part of the balloon is torn and the load is lowered with a parachute. On the other hand, the airspace in the lower stratosphere, about 20 km from the ground, is clear all year round and the wind is weak and calm.
It is effective to use the platform for long-term flight and environmental observation and information relay, but in this case, it is difficult to ascend and process using the same means as the above scientific balloon, Stable soft landing is required by simple means.

【0003】このような巨大LTAプラットフォームを
構成する高々度飛行船として、図4に示すような構成の
多ガス嚢式飛行船が提案されている。この飛行船は、エ
ンベロプ21内に、その頭部から尾部にかけて多数に分
割された可動で変形自在のガス房22を設け、それらの
ガス房22ヘリウム・ガスを充填すると共に、その外側
の空間23に空気を充填するようにしたもので、飛行船
の昇降は、図5に示すように、変形自在のガス房22の
内外のヘリウム・ガスと空気とを機体内において移動さ
せることにより、浮心24と重心25の位置を変動させ
て行い、しかもその変動を最小限にしようとする構成を
有するものである。
[0003] As a high altitude airship that constitutes such a huge LTA platform, a multi-gas bag type airship having a configuration as shown in FIG. 4 has been proposed. In this airship, a large number of movable and deformable gas chambers 22 are provided in the envelope 21 from the head to the tail, and the gas chambers 22 are filled with helium gas, and the space 23 outside the air chamber 22 is filled with helium gas. As shown in FIG. 5, the airship is lifted and lowered by moving the helium gas and air inside and outside the deformable gas chamber 22 inside the airframe, as shown in FIG. The position of the center of gravity 25 is changed, and the change is minimized.

【0004】この多ガス嚢式飛行船では、上述のよう
に、浮心24と重心25との間の距離が小さいため、尾
翼の制御翼を使えば水平に近い上昇姿勢を取ることも可
能になり、余剰浮力の調節によって上昇速度を自由に設
定することができるが、ガス房22が多数に細分化され
ているため、空気とヘリウム・ガスとの自由境界面が大
きくなり、膜材の面積が大きくなるためにその重量が大
きくなり、また、この自由境界面を形成する膜材が飛行
による機体の姿勢の変化等に起因して変形するため、材
料疲労が生じ易く、破壊し易い構造になっていることに
問題がある。
In this multi-gas bag type airship, as described above, since the distance between the buoyant center 24 and the center of gravity 25 is small, it is possible to take a nearly horizontal rising posture by using the control wings of the tail fin. The rising speed can be freely set by adjusting the excess buoyancy. However, since the gas chamber 22 is subdivided into a large number, the free interface between air and helium gas becomes large, and the area of the film material becomes large. As the size increases, the weight increases, and the film material forming the free boundary surface is deformed due to a change in the attitude of the aircraft due to flight, etc., so that material fatigue easily occurs and the structure is easily broken. Is a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明の技術的課題
は、基本的には、機体が軟式の加圧膜構造で構成される
軟式高々度飛行船において、極めて単純な構造で、上
昇、水平飛行及び下降の制御をも簡単且つ容易に行える
ような構成及びその運行制御方法を提供することにあ
る。本発明の他の技術的課題は、使用膜材の面積と重量
を最小限にして、機体の軽量化を図ると共に、材料疲労
による破壊を最小限にとどめるようにした軟式高々度飛
行船を提供することにある。本発明の他の技術的課題
は、もっとも安全で安価に目的を達する構造を持った軟
式高々度飛行船を提供することにある。
SUMMARY OF THE INVENTION The technical problem of the present invention is basically that of a flexible high altitude airship in which the fuselage is formed of a soft pressurized membrane structure, with a very simple structure, ascent, level flight and It is an object of the present invention to provide a configuration and an operation control method for controlling the descent easily and easily. Another technical object of the present invention is to provide a flexible high altitude airship that minimizes the area and weight of the membrane material used, reduces the weight of the fuselage, and minimizes destruction due to material fatigue. It is in. Another technical object of the present invention is to provide a flexible high altitude airship having a structure that achieves the purpose most safely and inexpensively.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明に係る軟式高々度飛行船は、加圧膜構造により
形成されたエンベロプ及び尾翼を備え、上記エンベロプ
の内部には、空気が充填される頭部及び尾部の比較的容
積が小さい空気房と、中央下部の容積が大きい空気房
と、中央上部の浮揚ガスが充填される小ガス房と、上記
空気房及び小ガス房を除くエンベロプ内の空間に形成さ
れる大ガス房とを備え、上記各空気房は、それらの内圧
と大気圧との差が一定値以上になると開放する調圧弁を
介して外界大気に連通させると共に、それらの内圧と大
気圧との差が一定値以下にならないように駆動される加
圧送風機を備え、上記小ガス房には降下に際して浮揚ガ
スを放出するガス放出手段を設け、上記大ガス房には降
下に際して外界大気を送入する空気送入手段を設けたこ
とを特徴とするものである。
According to the present invention, there is provided a flexible high altitude airship having an envelope and a tail formed by a pressurized membrane structure, and the interior of the envelope is filled with air. The air chamber with a relatively small volume at the head and tail, the air chamber with a large volume at the lower center, the small gas chamber filled with buoyant gas at the upper center, and the inside of the envelope excluding the air chamber and the small gas chamber A large gas chamber formed in the space, and each of the air chambers communicates with the outside atmosphere via a pressure regulating valve that opens when the difference between their internal pressure and atmospheric pressure becomes equal to or greater than a certain value. A pressurized blower driven so that the difference between the internal pressure and the atmospheric pressure does not fall below a certain value is provided. Atmospheric atmosphere It is characterized in the provision of the air infeed means fed.

【0007】また、上記課題を解決するための本発明に
係る軟式高々度飛行船の運行制御方法は、加圧膜構造に
より形成されたエンベロプ及び尾翼を備え、上記エンベ
ロプの内に、空気が充填される頭部及び尾部の比較的容
積が小さい空気房と、中央下部の容積が大きい空気房
と、中央上部の浮揚ガスが充填される小ガス房と、上記
空気房及び小ガス房を除くエンベロプ内の空間に形成さ
れる大ガス房とを備えた軟式高々度飛行船の運行を制御
する方法であって、飛行船の上昇時には、エンベロプ内
における浮揚ガスと空気の移動により重心と浮心が離れ
た直立の上昇姿勢を保持して、空気房の内圧と大気圧と
の差圧を一定値に保つように空気を排出させながら、上
記大ガス房における浮揚ガスの余剰浮力で上昇させ、ミ
ッション高度においては、空気と余剰浮揚ガスとをほぼ
外界大気に放出して、エンベロプ内がほとんど膨張した
浮揚ガスのみとなった状態において水平姿勢で滞空さ
せ、飛行船の下降時には、小ガス房の浮揚ガスを排出
し、且つ大ガス房の浮揚ガスに外界大気を混入して、エ
ンベロプの形状と剛性を維持しつつ自重により降下させ
ることを特徴とするものである。
In addition, a method for controlling the operation of a flexible high altitude airship according to the present invention for solving the above-mentioned problems includes an envelope and a tail formed by a pressurized film structure, and the inside of the envelope is filled with air. Relatively small air chambers at the head and tail, large air chambers at the lower center, small gas chambers filled with buoyant gas at the upper center, and air chambers in the envelope excluding the air chambers and small gas chambers A method of controlling the operation of a flexible high altitude airship with a large gas chamber formed in the space, and when the airship rises, the airborne gas and air in the envelope move upright with the center of gravity and the center of gravity separated by the movement of air. While maintaining the attitude, while discharging air so as to keep the differential pressure between the internal pressure of the air chamber and the atmospheric pressure at a constant value, the air is raised by the excess buoyancy of the floating gas in the large gas chamber, and Discharges air and surplus buoyant gas to the outside atmosphere and keeps the airspace in a horizontal position when only the buoyant gas in the envelope is almost expanded, and discharges buoyant gas in small gas chambers when the airship descends. In addition, the floating gas in the large gas chamber is mixed with the outside atmosphere to lower the envelope by its own weight while maintaining the shape and rigidity of the envelope.

【0008】上記構成を有する軟式高々度飛行船及びそ
の運行制御方法によれば、機体が軟式の加圧膜構造で構
成される軟式高々度飛行船において、極めて単純な構造
で、上昇、水平飛行及び下降の制御をも簡単且つ容易に
行うことができ、また、使用膜材の面積と重量を最小限
にして、機体の軽量化を図ると共に、材料疲労による破
壊を最小限にとどめ、それにより、安全で安価に目的を
達成する構造を持たせることができる。
According to the flexible altitude airship and the operation control method thereof having the above-described configuration, the ascent, level flight, and descent control of the flexible altitude airship having a very simple structure with a pressurized membrane structure can be performed. Can be performed easily and easily, and the area and weight of the membrane material used can be minimized to reduce the weight of the fuselage and minimize the destruction due to material fatigue, thereby ensuring safe and inexpensive Can have a structure that achieves the purpose.

【0009】[0009]

【発明の実施の形態】図1ないし図3は、本発明に係る
軟式高々度飛行船の実施例を示している。この軟式高々
度飛行船は、エンベロプ(機体本体)1と尾翼2とを備
え、これらは加圧膜構造により形成されていて、以下に
説明するように、エンベロプ1の内部には、空気が充填
される空気房11〜13、及びヘリウム・ガス等の浮揚
ガスが充填されるガス房14,15を備え、これらのガ
ス房における浮揚ガスの余剰浮力で上昇して、ミッショ
ン高度である地上約20〜22kmの低風速高度で滞空
し、下降は浮揚ガスの一部を排出して、自重により降下
するものである。即ち、この軟式高々度飛行船は、動力
推進による上昇・下降を原則として行わず、高々度での
水平飛行のみを動力推進とし、動力気球とも呼ぶことが
できるものである。
1 to 3 show an embodiment of a flexible high altitude airship according to the present invention. This soft-type high altitude airship has an envelope (body body) 1 and a tail 2 which are formed by a pressurized film structure, and as described below, the inside of the envelope 1 is filled with air. Air chambers 11 to 13 and gas chambers 14 and 15 filled with a buoyant gas such as helium gas are provided, and the buoyant gas in these gas chambers rises due to the excess buoyancy, and the mission altitude is about 20 to 22 km above the ground. At a low wind speed altitude, the aircraft descends by its own weight by discharging a part of the buoyant gas. In other words, this soft-type high altitude airship does not perform ascent or descent by power propulsion in principle, but only uses horizontal flight at high altitude as power propulsion, and can also be called a power balloon.

【0010】上記軟式高々度飛行船の構成を更に具体的
に説明すると、図1に示すように、上記エンベロプ1
は、その中が5つの空間に分割されており、空気が充填
される頭部及び尾部の比較的容積が小さい空気房11,
12と、中央下部の容積が大きい空気房13とを備え、
さらに、中央上部の浮揚ガスが充填される小ガス房14
と、上記空気房11〜13及び小ガス房14を除くエン
ベロプ1内の空間に形成される大ガス房15とを備えて
いる。上記頭部及び尾部の空気房11,12は、全体の
体積の約10%程度の容積を持ち、中央下部の大きい空
気房12は同約80%程度の容積を持つように形成さ
れ、また、中央上部の小ガス房14は、全体の体積の約
10%の容積を持つように形成されている。更に、上記
大ガス房15は、空気房11〜13及び小ガス房14内
の空気及び浮揚ガスのすべてを排出したときには、図3
に示すように、その容積がエンベロプ1内の空間の容積
とほぼ同程度になるように形成されている。
[0010] The structure of the above-mentioned flexible high altitude airship will be described more specifically. As shown in FIG.
Is divided into five spaces, and the air chambers 11 and 11, which have relatively small volumes of the head and tail filled with air,
12 and an air chamber 13 with a large volume at the lower center,
Furthermore, the small gas chamber 14 in which the floating gas in the upper center is filled
And a large gas chamber 15 formed in a space inside the envelope 1 excluding the air chambers 11 to 13 and the small gas chamber 14. The head and tail air chambers 11 and 12 have a volume of about 10% of the total volume, and the large air chamber 12 at the lower center has a volume of about 80%. The small gas chamber 14 in the upper center is formed to have a volume of about 10% of the entire volume. Further, when the large gas chamber 15 discharges all of the air and the floating gas in the air chambers 11 to 13 and the small gas chamber 14, FIG.
As shown in the figure, the volume is formed to be substantially the same as the volume of the space in the envelope 1.

【0011】上記飛行船は、その上昇時に内圧と大気圧
との差圧を一定値に保つため、エンベロプ内のすべての
空気房と加圧膜尾翼から空気を排出し、下降時には必要
に応じてそれらの空気房等に大気を送入する必要があ
る。そのため、上記三つの空気房11〜13及び加圧膜
尾翼2は、それぞれ図示しない調圧弁を介して外界大気
に開放させるようにしている。それらの調圧弁は、それ
ぞれの空気房11〜13の内圧と大気圧との差が一定値
以上になると、内部の空気を外界大気に排出するように
制御されるものである。同時に、これら三つの空気房1
1〜13及び加圧膜尾翼2には、それぞれ図示しない加
圧送風機を設け、それらの内圧と大気圧との差が一定値
以下にならないようにその加圧送風機を駆動し、外界大
気との間に一定差圧を保って剛性を維持するように制御
される。
In order to keep the pressure difference between the internal pressure and the atmospheric pressure constant when the airship rises, the airship discharges air from all the air chambers and the pressurized membrane tail in the envelope, and when the descent descends, the air is discharged as necessary. It is necessary to send the atmosphere to the air chamber and the like. Therefore, the three air chambers 11 to 13 and the pressurized membrane tail 2 are respectively opened to the outside atmosphere via a pressure regulating valve (not shown). These pressure regulating valves are controlled such that when the difference between the internal pressure of each of the air chambers 11 to 13 and the atmospheric pressure becomes equal to or more than a predetermined value, the internal air is discharged to the outside atmosphere. At the same time, these three air chambers 1
A pressure blower (not shown) is provided for each of 1 to 13 and the pressurized film tail 2, and the pressurized blower is driven so that the difference between the internal pressure and the atmospheric pressure does not become lower than a certain value. It is controlled so as to maintain a constant differential pressure in between and maintain rigidity.

【0012】また、エンベロプ1の中央上部の小ガス房
14は、ミッション高度での水平飛行から降下開始を行
う際に、全浮力の10%前後に当たる分量のヘリウム・
ガスを外界大気に放出し、降下を開始するためのもので
ある。したがって、この小ガス房14には気密が十分な
弁を設け、降下開始時にこの弁を開放するか、この弁の
代わりに、同ガス房14の外皮膜を穿孔し、ヘリウム・
ガスを放出する穿孔機構等のガス放出手段が設けられ
る。必要に応じて、外界大気との差圧を一定値以下に維
持するための調圧弁を設けることができる。小ガス房1
4に充填するヘリウム・ガスの分量は、予め、このガス
房14の容積を一定にして規定量を充填できるように設
定される。なお、上記小ガス房14は、その内部を更に
複数の小ガス房に分割し、各々の小ガス房に上記弁等を
装備してもよい。これらの分割した小ガス房の弁等を、
飛行船の降下開始時に一度に開放するか、降下速度の調
整のために部分的に逐次開放するかは、随意である。
The small gas chamber 14 in the upper center of the envelope 1 has a helium amount of about 10% of the total buoyancy when the descent starts from the horizontal flight at the mission altitude.
It is for releasing gas to the outside atmosphere and initiating descent. Therefore, the small gas chamber 14 is provided with a sufficiently airtight valve, and this valve is opened at the start of descent, or the outer membrane of the gas chamber 14 is perforated instead of this valve, and helium.
Gas release means such as a perforation mechanism for releasing gas is provided. If necessary, a pressure regulating valve for maintaining the pressure difference from the outside atmosphere at a certain value or less can be provided. Small gas bunch 1
The amount of the helium gas to be charged into the gas chamber 4 is set in advance so that the volume of the gas chamber 14 can be kept constant and the specified amount can be charged. The small gas chamber 14 may be further divided into a plurality of small gas chambers, and each of the small gas chambers may be provided with the valve or the like. These divided small gas chamber valves etc.
It is optional to open at once when the airship starts to descend, or to partially open to adjust the descending speed.

【0013】一方、エンベロプ1内の空気房11〜13
と上記小ガス房14以外の空間により形成される大ガス
房15に充填される浮揚ガスは、外界大気との差圧を一
定値以下に維持するためのガス放出を除き、飛行中には
原則として外界大気への放出等は行わないが、飛行船の
下降時に、その大ガス房15の浮揚ガスに外界大気を混
入して、エンベロプの形状と剛性を維持しつつ自重によ
り降下させるため、大ガス房15には浮揚ガス中に外界
大気を送入する加圧送風機等の空気送入手段を設けてい
る。
On the other hand, air chambers 11 to 13 in the envelope 1
The buoyant gas filled in the large gas chamber 15 formed by the space other than the small gas chamber 14 and the large gas chamber 15 is, in principle, in flight during the flight, except for gas release for maintaining the differential pressure with the outside atmosphere below a certain value. Although the air is not released into the outside atmosphere, the outside air is mixed with the buoyant gas in the large gas chamber 15 when the airship descends, and it is lowered by its own weight while maintaining the shape and rigidity of the envelope. The chamber 15 is provided with an air feeding means such as a pressurized blower for feeding the outside atmosphere into the floating gas.

【0014】飛行船の降下は、上述したように、小ガス
房14の浮揚ガスを排出することによって行うが、必要
に応じて、上記小ガス房14からの排出ヘリウム・ガス
の量を上記ガス放出手段によってその下降速度を調節
し、また、大ガス房15内の浮揚ガスに外界大気を混入
し、必要に応じて任意空気房11〜13に空気を送入し
て、降下速度及び姿勢のバランスを調整しながら、最終
降下速度が過剰になって地表物との衝突等で危険が生じ
ることがないようにして、海上もしくは地表に降りるよ
うに制御される。
The descent of the airship is performed by discharging the floating gas in the small gas chamber 14 as described above. If necessary, the amount of helium gas discharged from the small gas chamber 14 is reduced by the gas discharge. The descending speed is adjusted by means, and the outside atmosphere is mixed with the buoyant gas in the large gas chamber 15, and air is supplied to the arbitrary air chambers 11 to 13 as necessary to balance the descending velocity and attitude. Is controlled so that the final descent speed does not become excessive and a danger does not occur due to collision with a surface object or the like, and the vehicle is controlled to descend to the sea or the surface of the ground.

【0015】上記高々度飛行船は、基本的には、柔軟な
加圧膜構造により形成するものであるが、成層圏の低風
速高度において風に抗して一定位置に滞空する推進力を
発生させるための推進装置、ミッションのための各種機
器、太陽光の光電変換等によってそれらを駆動するため
の動力を発生させるパワー発生装置、その他、前述の調
圧弁や加圧送風機等を備えることは勿論である。
The above-mentioned high altitude airship is basically formed by a flexible pressurized membrane structure, but generates a propulsive force that stays at a fixed position against a wind at a low wind speed altitude in the stratosphere. Needless to say, a propulsion device, various devices for a mission, a power generation device for generating power for driving them by photoelectric conversion of sunlight, and the like, as well as the above-described pressure regulating valve and pressurized blower are provided.

【0016】次に、上記高々度飛行船の上昇、水平飛
行、下降の態様について説明する。図2は上記高々度飛
行船の上昇時の状態を示している。この場合、必要に応
じて空気房11の空気を排出するが、大ガス房15に充
填した浮揚ガスが余剰浮力を有し、エンベロプ1内で
は、浮揚ガスと空気の移動により重心17と浮心18が
離れ、自然に直立した上昇姿勢になっていく。この飛行
船の上昇時には、その内圧と大気圧との差圧を一定値に
保つため、エンベロプ内の空気房11〜13と加圧膜尾
翼2から調圧弁を介して空気が排出される。なお、図4
に示す構成の多ガス嚢式飛行船では、図5に示すよう
に、上昇時における浮心24と重心25との間の距離が
小さいために姿勢が不安定であり、尾翼の制御翼を使え
ば水平に近い上昇姿勢を取ることも可能になるが、機体
が水平になるにつれて上昇速度は極めて小さくなる。
Next, the manner of ascent, level flight, and descent of the high altitude airship will be described. FIG. 2 shows a state where the altitude airship rises. In this case, the air in the air chamber 11 is discharged as needed, but the buoyant gas filled in the large gas chamber 15 has excess buoyancy. In the envelope 1, the buoyant gas and the air move to the center of gravity 17 due to the movement of the air. 18 leaves and naturally rises upright. When the airship rises, air is discharged from the air chambers 11 to 13 and the pressurized membrane tail 2 in the envelope via the pressure regulating valve in order to keep the differential pressure between the internal pressure and the atmospheric pressure at a constant value. FIG.
As shown in FIG. 5, the multi-gas-bag type airship of the configuration shown in FIG. 5 has an unstable posture due to a small distance between the buoyancy 24 and the center of gravity 25 when ascending. Although it is possible to take an ascending posture that is nearly horizontal, the ascending speed becomes extremely small as the aircraft becomes horizontal.

【0017】飛行船の上昇速度は、基本的には余剰浮力
の平方根に比例するので、上記高々度飛行船では、余剰
浮力の調節によって上昇速度は自由に選べるが、ミッシ
ョン高度に達すると、空気のほぼすべてと大ガス房15
における余剰浮力分の浮揚ガスを外界大気に放出して、
エンベロプ1内がほとんど膨張したヘリウムのみとな
る。そのため、重心17と浮心18の位置関係を予め機
体が水平姿勢を取るように定めて置けば、そのまま水平
飛行に移ることができる。
Since the climbing speed of the airship is basically proportional to the square root of the surplus buoyancy, in the above-mentioned high altitude airship, the climbing speed can be freely selected by adjusting the surplus buoyancy. And large gas bunch 15
Release buoyant gas equivalent to the excess buoyancy in the ambient atmosphere,
The envelope 1 contains only expanded helium. Therefore, if the positional relationship between the center of gravity 17 and the buoyant center 18 is determined in advance so that the aircraft takes a horizontal attitude, it is possible to proceed to level flight as it is.

【0018】飛行船が高々度へ上昇し、低風速高度の成
層圏(ミッション高度)に達すると、上述したように、
エンベロプ1内がほとんど膨張したヘリウムのみとな
り、重心17と浮心18の位置関係から機体が水平姿勢
を取るので、風に抗して太陽光の光電変換パワー等で推
進して一定の位置を保持させることにより、地球環境保
全のためのモニタリングや情報の無線中継等のミッショ
ンを遂行させることができる。
When the airship rises to high altitude and reaches the stratosphere (mission altitude) of low wind speed altitude, as described above,
The inside of the envelope 1 is almost only expanded helium, and the aircraft takes a horizontal attitude based on the positional relationship between the center of gravity 17 and the buoyant center 18. Therefore, it is propelled by the photoelectric conversion power of sunlight against the wind to maintain a certain position. By doing so, missions such as monitoring for global environmental conservation and wireless relay of information can be performed.

【0019】図3は、ミッション遂行後の下降帰還時の
状態を現している。この飛行船の下降に際しては、基本
的には、小ガス房14の浮揚ガスを排出し、且つ、空気
送入手段により大ガス房15の浮揚ガスに外界大気を混
入し、さらに、必要に応じて任意の空気房11〜13に
加圧送風機により空気を送入して、エンベロプ1の形状
と剛性を維持しつつ自重により降下させるが、上記浮揚
ガスの排出、外界大気の送入の制御により、広い速度範
囲で下降速度を制御することができる。それにより、最
終沈下速度が過剰にならないようにして、海上もしくは
地表に帰還させる。
FIG. 3 shows a state at the time of descending return after performing the mission. When the airship descends, basically, the floating gas in the small gas chamber 14 is exhausted, and the outside air is mixed with the floating gas in the large gas chamber 15 by air inlet means. Air is blown into any of the air chambers 11 to 13 by a pressurized blower, and is lowered by its own weight while maintaining the shape and rigidity of the envelope 1. By controlling the discharge of the floating gas and the flow of the outside atmosphere, The descending speed can be controlled in a wide speed range. As a result, the ship is returned to the sea or to the surface without making the final sinking speed excessive.

【0020】なお、上記飛行船の下降に際し、外界大気
を吸い込んでそれをすべて浮揚ガスとは別の空気房11
〜13に分離しておくと、浮心と重心が離れ過ぎて機首
の引き起こしが困難となる。そのため、外界空気を大ガ
ス房15内に送入して、浮揚ガスと空気を混合し、浮心
と重心の位置関係の接近を計ることにより、尾翼制御板
での機体の引き起こしが可能となる。しかしながら、降
下速度は放出浮揚ガスの割合によるので、十分降下速度
が遅い場合は、機首を下にしたまま、地表への降着も比
較的安全であり、また、地表近くでのパラシュートの使
用によって降着速度を下げることもできる。特に、排出
浮揚ガス量の調整等によって、最終沈下速度が過剰にな
らないようにし、地表物との衝突等で危険が生じないよ
うに制御して着地させることは重要であるが、上述した
空気房及びガス房は、このような制御に適した最も簡単
な構成と配置を備えるものである。
When the airship descends, it sucks in the outside atmosphere and completely removes it from the air chamber 11 which is different from the floating gas.
If it is separated into 1313, the buoyancy and the center of gravity are too far apart, making it difficult to raise the nose. Therefore, the outside air is sent into the large gas chamber 15, the buoyant gas and the air are mixed, and the positional relationship between the buoyancy and the center of gravity is measured to thereby cause the airframe to be caused by the tail control plate. . However, since the descent speed depends on the ratio of released levitation gas, if the descent speed is low enough, landing on the ground is relatively safe with the nose down, and the use of parachutes near the ground The landing speed can also be reduced. In particular, it is important to prevent the final sinking speed from becoming excessive, such as by adjusting the amount of buoyant gas discharged, and to control the landing so as not to cause danger due to collision with a surface object. And the gas chamber has the simplest configuration and arrangement suitable for such control.

【0021】機体がすべて軟式の加圧膜構造で構成され
る上記高々度飛行船は、従来の気球と同様に着地させる
ことができて、地表に与える荷重力が小さくて済むばか
りでなく、不時着した場合も機体自体の損傷及び地表物
へ与える損傷の度合いが軽微なものである。しかも、上
記高々度飛行船は、最も単純な構造と方法で、上昇、水
平飛行、下降を行わせることができ、安全で安価に目的
を達成できるものである。
The above-mentioned high altitude airship, whose entire body is formed of a soft pressurized membrane structure, can be landed in the same manner as a conventional balloon, and not only requires a small load force to be applied to the ground surface, but also has Also, the degree of damage to the airframe itself and damage to the ground surface is slight. In addition, the high altitude airship is capable of ascending, leveling, and descending with the simplest structure and method, and can achieve its purpose safely and inexpensively.

【0022】[0022]

【発明の効果】以上に詳述した本発明によれば、機体が
軟式の加圧膜構造で構成される高々度飛行船を、極めて
単純な構造で、使用膜材の面積と重量を最小限にして、
機体の軽量化を図ったうえ、材料疲労による破壊も最小
限にとどめるようにして構成することができる。また、
その軟式高々度飛行船の上昇、水平飛行及び下降の制御
をも簡単且つ容易に行えるような構成及びその運行制御
方法を提供することができる。
According to the present invention described in detail above, a high altitude airship in which the airframe has a soft pressurized membrane structure can be provided with an extremely simple structure while minimizing the area and weight of the membrane material used. ,
It is possible to reduce the weight of the fuselage and minimize the destruction due to material fatigue. Also,
It is possible to provide a configuration capable of easily and easily controlling the ascent, level flight, and descent of the airship, and an operation control method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る軟式高々度飛行船の実施例を示す
側面図である。
FIG. 1 is a side view showing an embodiment of a flexible high altitude airship according to the present invention.

【図2】上記軟式高々度飛行船の上昇時の状態を示す側
面図である。
FIG. 2 is a side view showing a state where the above-mentioned rubber-type high altitude airship rises.

【図3】上記軟式高々度飛行船の下降時の状態を示す側
面図である。
FIG. 3 is a side view showing a state in which the rubber-type high altitude airship descends.

【図4】既に提案されている多ガス嚢式飛行船の構成を
示す側面図である。
FIG. 4 is a side view showing a configuration of a multi-gas bag type airship that has already been proposed.

【図5】上記多ガス嚢式飛行船の上昇時の状態を示す側
面図である。
FIG. 5 is a side view showing a state in which the multi-gas bag type airship rises.

【符号の説明】[Explanation of symbols]

1 エンベロプ 2 尾翼 11〜13 空気房 14 小ガス房 15 大ガス房 DESCRIPTION OF SYMBOLS 1 Envelope 2 Tail 11-13 Air chamber 14 Small gas chamber 15 Large gas chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉 本 洋 東京都渋谷区上原1−7−15 株式会社ス カイピア内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hiroshi Sugimoto 1-7-15 Uehara, Shibuya-ku, Tokyo Inside SKYPIA CORPORATION

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】加圧膜構造により形成されたエンベロプ及
び尾翼を備え、 上記エンベロプの内部には、空気が充填される頭部及び
尾部の比較的容積が小さい空気房と、中央下部の容積が
大きい空気房と、中央上部の浮揚ガスが充填される小ガ
ス房と、上記空気房及び小ガス房を除くエンベロプ内の
空間に形成される大ガス房とを備え、 上記各空気房は、それらの内圧と大気圧との差が一定値
以上になると開放する調圧弁を介して外界大気に連通さ
せると共に、それらの内圧と大気圧との差が一定値以下
にならないように駆動される加圧送風機を備え、 上記小ガス房には降下に際して浮揚ガスを放出するガス
放出手段を設け、 上記大ガス房には降下に際して外界大気を送入する空気
送入手段を設けた、ことを特徴とする軟式高々度飛行
船。
An envelope and a tail formed by a pressurized membrane structure are provided. Inside the envelope, an air chamber with a relatively small volume at a head and a tail filled with air, and a volume at a lower center portion are provided. A large gas chamber, a small gas chamber filled with buoyant gas in the upper center, and a large gas chamber formed in a space inside the envelope except for the air chamber and the small gas chamber. When the difference between the internal pressure and the atmospheric pressure exceeds a certain value, it communicates with the outside atmosphere through a pressure regulating valve that opens, and is also driven so that the difference between those internal pressures and the atmospheric pressure does not fall below a certain value. A gas blower is provided, wherein the small gas chamber is provided with gas releasing means for releasing buoyant gas when descending, and the large gas chamber is provided with air introducing means for introducing the outside atmosphere when descending. Rubber-type altitude airship.
【請求項2】加圧膜構造により形成されたエンベロプ及
び尾翼を備え、上記エンベロプの内に、空気が充填され
る頭部及び尾部の比較的容積が小さい空気房と、中央下
部の容積が大きい空気房と、中央上部の浮揚ガスが充填
される小ガス房と、上記空気房及び小ガス房を除くエン
ベロプ内の空間に形成される大ガス房とを備えた軟式高
々度飛行船の運行を制御する方法であって、 飛行船の上昇時には、エンベロプ内における浮揚ガスと
空気の移動により重心と浮心が離れた直立の上昇姿勢を
保持して、空気房の内圧と大気圧との差圧を一定値に保
つように空気を排出させながら、上記大ガス房における
浮揚ガスの余剰浮力で上昇させ、 ミッション高度においては、空気と余剰浮揚ガスとをほ
ぼ外界大気に放出して、エンベロプ内がほとんど膨張し
た浮揚ガスのみとなった状態において水平姿勢で滞空さ
せ、 飛行船の下降時には、小ガス房の浮揚ガスを排出し、且
つ大ガス房の浮揚ガスに外界大気を混入して、エンベロ
プの形状と剛性を維持しつつ自重により降下させる、こ
とを特徴とする軟式高々度飛行船の運行制御方法。
2. An air chamber having a relatively small volume of a head and a tail portion filled with air, and a large volume of a lower center portion, comprising an envelope and a tail formed by a pressurized membrane structure. Controls the operation of a flexible high altitude airship that includes an air chamber, a small gas chamber filled with buoyant gas in the upper center, and a large gas chamber formed in a space inside the envelope excluding the air chamber and the small gas chamber. When the airship rises, the vertical pressure between the inner pressure of the air chamber and the atmospheric pressure is maintained at a constant value while maintaining the upright attitude where the center of gravity and the buoyancy are separated by the movement of buoyant gas and air inside the envelope. At the mission altitude, the air and excess buoyant gas are almost released to the outside atmosphere, while the air is exhausted so as to keep the air in the large gas chamber. When the airship descends, the buoyant gas in the small gas chamber is exhausted, and the floating atmosphere in the large gas chamber is mixed with the outside atmosphere. An operation control method for a flexible high altitude airship, wherein the airship is lowered by its own weight while maintaining rigidity.
JP22666099A 1999-08-10 1999-08-10 Soft altitude airship and its operation control method Expired - Fee Related JP3524442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22666099A JP3524442B2 (en) 1999-08-10 1999-08-10 Soft altitude airship and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22666099A JP3524442B2 (en) 1999-08-10 1999-08-10 Soft altitude airship and its operation control method

Publications (2)

Publication Number Publication Date
JP2001048094A true JP2001048094A (en) 2001-02-20
JP3524442B2 JP3524442B2 (en) 2004-05-10

Family

ID=16848669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22666099A Expired - Fee Related JP3524442B2 (en) 1999-08-10 1999-08-10 Soft altitude airship and its operation control method

Country Status (1)

Country Link
JP (1) JP3524442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050310A (en) * 2001-12-18 2003-06-25 한국항공우주연구원 A New Envelope Structure Type for High Altitude Airships
CN106628098A (en) * 2016-12-30 2017-05-10 北京天恒长鹰科技股份有限公司 Stratospheric airship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030050310A (en) * 2001-12-18 2003-06-25 한국항공우주연구원 A New Envelope Structure Type for High Altitude Airships
CN106628098A (en) * 2016-12-30 2017-05-10 北京天恒长鹰科技股份有限公司 Stratospheric airship

Also Published As

Publication number Publication date
JP3524442B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US7552893B2 (en) Airship & method of operation
US7156342B2 (en) Systems for actively controlling the aerostatic lift of an airship
US6305641B1 (en) Super-pressured high-altitude airship
US11203430B2 (en) Airship launch from a cargo airship with a payload return vehicle
US7487936B2 (en) Buoyancy control system for an airship
US8104718B2 (en) Inflatable wing flight vehicle
US4995572A (en) High altitude multi-stage data acquisition system and method of launching stratospheric altitude air-buoyant vehicles
US8091826B2 (en) Aerostatic buoyancy control system
US7871035B2 (en) Propulsion system for an airship or hybrid aircraft
CN106240785A (en) The method of the stratospheric airship stable state lifting of auxiliary liter of balloon belt expanded letter adjustable wing
US20020175243A1 (en) High altitude airships
WO2006024842A2 (en) Improvements in or relating to airships
US20080035787A1 (en) Lighter-than-air gas handling system and method
WO2013041820A1 (en) A modification to gas envelopes of airships and balloons
CN210258804U (en) Stratospheric airship
JP2001048094A (en) Soft high altitude airship and operating and controlling method therefor
CN110217376B (en) Stratospheric airship and steady-state lifting and cruising method thereof
GB2366274A (en) A compact, economic and manoeuverable aircraft
JP2003048598A (en) Intake and exhaust method and system for airship
US11851155B1 (en) Small zero pressure balloon systems
RU2752326C1 (en) Folding airship-airplane
KR102607046B1 (en) Airship of vertical wing shape
JPS59501946A (en) aircraft
US11155328B1 (en) Air vehicle with a controlled buoyancy lifting system and method thereof
JP4019165B2 (en) High altitude return and aerial powered balloon and its operation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent or registration of utility model

Ref document number: 3524442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees