JP2001046248A - Vacuum double container made of stainless steel - Google Patents

Vacuum double container made of stainless steel

Info

Publication number
JP2001046248A
JP2001046248A JP26429399A JP26429399A JP2001046248A JP 2001046248 A JP2001046248 A JP 2001046248A JP 26429399 A JP26429399 A JP 26429399A JP 26429399 A JP26429399 A JP 26429399A JP 2001046248 A JP2001046248 A JP 2001046248A
Authority
JP
Japan
Prior art keywords
container
stainless steel
inner container
vacuum double
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26429399A
Other languages
Japanese (ja)
Inventor
Hiroshi Ioku
浩史 井奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiger Vacuum Bottle Co Ltd
Original Assignee
Tiger Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiger Vacuum Bottle Co Ltd filed Critical Tiger Vacuum Bottle Co Ltd
Priority to JP26429399A priority Critical patent/JP2001046248A/en
Publication of JP2001046248A publication Critical patent/JP2001046248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To make fouling and odors hard to remain, and also, easy to remove, and improve both of the heat insulating property and the outer appearance by applying an electrolytic polishing treatment on the internal surface of an internal container, and also, specifying the surface roughness Rz of the treated surface. SOLUTION: For this vacuum double container made of stainless steel, an internal container 1 and an external container 2 made of stainless steel are doubly combined with a gap, and a vacuum heat-insulating space 3 is formed between the internal and external containers. Then, the internal surface of the internal container 1 is a smooth surface having a gentle uneven shape, on which, an electrolytic polishing treatment is applied without a blast treatment. In addition, the surface roughness Rz is set to be less than 0.4 μm, and the heights of the indented sections and the protruding sections when being microscopically seen are kept small, and contamination is hard to enter and hard to settle down. Also, even when contamination enters the indented sections, the contamination is easy to remove by washing with water or the like. Therefore, the vacuum double container is hard to stain, and odors do not remain as well. Also, as the smoothness of the internal container 1 increases, the outer appearance of the surface is improved, and the heat-insulating property by the vacuum double container structure made of stainless steel having a low heat conductivity is improved as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明はステンレス鋼製真空
二重容器に関し、主として飲食用の保温容器、例えば携
帯用や定置用の保温ボトル、電気ポット、ランチジャー
に用いられるステンレス鋼製真空二重容器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel vacuum double container, and mainly to a stainless steel vacuum double container used for food and drink insulated containers, for example, portable or stationary heat insulating bottles, electric pots, and lunch jars. It concerns a container.

【従来の技術】ステンレス鋼製真空二重容器を用いた携
帯用の保温ボトルは従来、その材料であるステンレス鋼
にとしてSUS304が用いられ、内容器の内面が電界
研磨処理されたり、ブラスト処理の後フッ素樹脂をコー
ティングすることが行われている。電界研磨はリン酸と
硫酸とが主成分となる電界液を用いて行われ、処理され
た内容器の内面は、溶接スケールなどの汚れが除去され
た清潔な平滑面となり見栄えがよく、耐食性も向上する
ので、そのまま使用されている。フッ素樹脂コーティン
グ膜は表面の装飾となるし離型性がよく手入れが簡単に
なる。
2. Description of the Related Art Conventionally, a portable heat-insulating bottle using a stainless steel vacuum double container is made of SUS304 as the material of stainless steel, and the inner surface of the inner container is subjected to electric field polishing or blasting. Post-fluororesin coating has been performed. Electropolishing is performed using an electrolytic solution containing phosphoric acid and sulfuric acid as main components, and the inner surface of the treated inner container becomes a clean smooth surface from which dirt such as welding scale has been removed, and has good appearance and corrosion resistance. As it improves, it is used as it is. The fluororesin coating film serves as a decoration on the surface, has good releasability, and is easy to care for.

【発明が解決しようとする課題】しかし、このようなス
テンレス鋼製真空二重容器は、飲料に限っても、緑茶、
紅茶、烏龍茶、コーヒ、水、酒、スープ、清涼飲料など
多くの種類のものが入れられ、広く利用される中、中性
洗剤を用いて簡単に洗浄する通常の使用状態では、水
垢、茶渋、色付きといった汚れの付着などが防止し切れ
ず、匂いの残留などは異種飲料の併用の際に比較的早期
に問題になっている。これにつき、本発明者等が種々に
実験をし研究を重ねた結果、上記いずれの表面処理によ
っても表面の平滑度はあまり上がっていず、汚れや匂い
が付着しやすく、残留しやすいことが判明した。従来の
電界研磨処理による内容器の内面は一見平滑面に仕上げ
られるが、その表面粗さRzは4.0μm以上であっ
て、顕微鏡的に観察すると図2の(a)、図5に示すよ
うに、内容器表面にクレータ状ないしはボイド状の凹部
aが無数に存在する。このため、飲料中の微粒子成分が
前記凹部aに入り込み、そこに付着しやすく、またこれ
を除去するのが困難である。内容器の内面のフッ素樹脂
コーティングした表面は、その離型性、撥水性のゆえ
に、汚れが付着しにくく除去しやすいとされてきたが、
使用初期においてそうであっても、現実的には汚れ防
止、手入れ簡単にはならない。これはフッ素樹脂の性質
として匂いを吸着しやすいこと、および、コーティング
前のブラスト処理により内容器の表面にできる凹凸の影
響で、顕微鏡的に観察するとフッ素樹脂表面に図2の
(b)、図6に示すようなボイド状ないしはクレータ状
の凹部bが無数に存在し、経時的に従来の電界研磨した
表面の場合同様に汚れが付着しやすく、除去しにくい。
本発明の目的は、電界研磨処理されたもので、汚れや匂
いが残りにくく、また除去しやすく、保温性および外観
ともに優れたステンレス鋼製真空二重容器を提供するこ
とにある。
However, such a stainless steel vacuum double container is limited to green tea,
Many types of tea, such as black tea, oolong tea, coffee, water, sake, soup, and soft drinks, are put in and widely used.In normal use conditions that can be easily washed with a neutral detergent, scale, tea astringent, The adhesion of stains such as coloring cannot be completely prevented, and the residual odor has become a problem relatively early in the case of using different kinds of beverages. As a result, the present inventors conducted various experiments and conducted repeated studies, and as a result, it was found that the surface smoothness was not so much increased by any of the above surface treatments, that dirt and smell were easily attached and remained easily. did. Although the inner surface of the inner container is apparently finished to a smooth surface by the conventional electrolytic polishing, the surface roughness Rz is 4.0 μm or more, and when observed microscopically, as shown in FIGS. In addition, there are numerous crater-shaped or void-shaped recesses a on the inner container surface. For this reason, the fine particle component in the beverage enters the concave portion a and easily adheres to the concave portion a, and it is difficult to remove the fine particle component. The inner surface of the inner container coated with fluorocarbon resin has been considered to be less likely to adhere to dirt due to its releasability and water repellency.
Even in the early stage of use, it is not practically easy to prevent dirt and easy care. This is due to the fact that the odor is easily adsorbed as a property of the fluororesin, and the influence of irregularities formed on the surface of the inner container due to the blast treatment before coating. There are numerous void-like or crater-like concave portions b as shown in FIG. 6, and dirt easily adheres to the surface over time as in the case of the conventional electrolytically polished surface, and is difficult to remove.
SUMMARY OF THE INVENTION An object of the present invention is to provide a stainless steel vacuum double container which has been subjected to an electropolishing treatment, is less likely to leave dirt and odor, is easy to remove, and has excellent heat retention and appearance.

【課題を解決するための手段】上記のような目的を達成
するために、本発明のステンレス鋼製真空二重容器は、
ステンレス鋼製の内容器と外容器とを間隙を設けて二重
に組合せ、それら内外容器の間を真空空間とし、内容器
の内面が電界研磨処理され、かつその表面粗さRzが
4.0μm未満とされていることを主たる特徴としてい
る。このような構成では、内容器の内面がブラスト処理
なしに電界研磨処理されたなだらかな凹凸形状の平滑面
で、しかも、表面粗さRzが4.0μm未満とされて顕
微鏡的に見た凹と凸の高さの差が小さく抑えられている
ので、汚れが入りにくいし、沈着しにくく、また、たと
え凹部に入っても水洗等で除去しやすくなる。従って、
汚れにくく、匂いも残りにくいものとなる。また、内容
器の表面の顕微鏡的な平滑度が向上する分だけ表面の外
観が向上するし、輻射熱の反射率が高くなり、電界研磨
により内容器が薄肉化されて熱伝導を抑制できるのと相
まって、熱が外部に逃げにくくなるので、熱伝導性の低
いステンレス鋼製の真空二重容器構造による保温性のさ
らなる向上にもつながる。表面粗さRzが小さくなるほ
ど表面の凹と凸の高さの差は小さくなり、内容器の内面
の表面粗さRzが1.5μm以下になると、視覚的には
鏡面とみなし得る外観状態になり、飲料中の微粒子の付
着をほぼ確実に防止し、また付着した微粒子の水洗など
による除去を極めて容易に行うことができる。さらに、
内容器の内面の表面粗さRzが0.7μm以下になる
と、飲料中の微粒子の付着を確実に防ぎ得るとともに、
表面状態が凹凸のほとんどないほぼ平滑な面でかつ完全
な鏡面となる。内容器の材料であるステンレス鋼はMd
30(℃)の値が−50未満のものであると、内容器の
材料であるステンレス鋼が、拡管加工や絞り加工などに
よって加工誘起マルテンサイトが発生しやすいSUS3
04などのオーステナイト系ステンレス鋼であっても、
内容器を深絞り加工して形成するなどの加工によって発
生する加工誘起マルテンサイトの量、およびこの加工誘
起マルテンサイトが内容器の表面にもたらす粗面化が抑
制されているので、その後の電界研磨が従来程度に行わ
れてさえいれば上記表面粗さRz0.4μm以下の条件
を満足しており、表面処理上特に困難性はなく歩留まり
よく低コストで得られる。内容器の材料であるステンレ
ス鋼は、ニッケルまたはニッケル+銅、の含有量が10
%以上、14%以下のものであると、ニッケルまたはニ
ッケル+銅、の含有量が14%を越えて加工時に割れが
発生するようなことを防止しながら、ニッケルまたはニ
ッケル+銅、の含有量が10%を下まわってMd30
(℃)が−50を越えるようなことも防止して、内容器
の内面に必要な表面状態が安定して歩留まりよく得ら
れ、このような特徴は、ニッケルまたはニッケル+銅、
の含有量が11%以上、13%以下のものであるとより
高まる。内容器の材料であるステンレス鋼はオーステナ
イト系ステンレス鋼のうちSUS304LまたはSUS
XM7であるのが、加工性、表面仕上げ性において特に
好適である。本発明のそれ以上の目的および特徴は、以
下の詳細な説明および図面の記載によって明らかにな
る。本発明の各特徴は、それ単独で、あるいは種々な組
み合わせで複合して用いることができる。
In order to achieve the above object, a stainless steel vacuum double container according to the present invention comprises:
A stainless steel inner container and an outer container are double-coupled with a gap therebetween, a vacuum space is formed between the inner and outer containers, the inner surface of the inner container is subjected to electric field polishing treatment, and the surface roughness Rz is 4.0 μm. The main feature is that it is less than. In such a configuration, the inner surface of the inner container is a smooth surface having a gentle uneven shape subjected to electropolishing without blasting, and further, the surface roughness Rz is less than 4.0 μm, and the inner surface has a concave portion as viewed microscopically. Since the difference in the heights of the protrusions is kept small, dirt hardly enters and hardly deposits, and even if it enters the concave portion, it can be easily removed by washing with water or the like. Therefore,
It is hard to be stained and the smell is hard to remain. In addition, the appearance of the surface is improved by the degree that the microscopic smoothness of the surface of the inner container is improved, the reflectance of radiant heat is increased, and the inner container is made thinner by electropolishing, so that heat conduction can be suppressed. As a result, it becomes difficult for heat to escape to the outside, which leads to a further improvement in heat retention by a vacuum double container structure made of stainless steel having low heat conductivity. The smaller the surface roughness Rz, the smaller the difference between the heights of the concave and convex portions of the surface. If the surface roughness Rz of the inner surface of the inner container becomes 1.5 μm or less, the appearance becomes visually specular. In addition, the adhesion of the fine particles in the beverage can be almost certainly prevented, and the attached fine particles can be very easily removed by washing with water. further,
When the surface roughness Rz of the inner surface of the inner container is 0.7 μm or less, the adhesion of the fine particles in the beverage can be reliably prevented,
The surface condition is a substantially smooth surface with almost no irregularities and a perfect mirror surface. The stainless steel that is the material of the inner container is Md
When the value of 30 (° C.) is less than −50, stainless steel as a material of the inner container is susceptible to SUS3 in which work-induced martensite is liable to be generated by pipe expansion or drawing.
Even austenitic stainless steel such as 04,
Since the amount of work-induced martensite generated by processing such as forming the inner container by deep drawing and the roughening that the work-induced martensite brings to the surface of the inner container are suppressed, the subsequent electric field polishing As long as this is performed to the extent of the conventional art, the above condition of the surface roughness Rz of 0.4 μm or less is satisfied, and there is no particular difficulty in surface treatment, and a good yield can be obtained at a low cost. Stainless steel, which is the material of the inner container, has a nickel or nickel + copper content of 10%.
% Or more and 14% or less, the content of nickel or nickel + copper while preventing the content of nickel or nickel + copper from exceeding 14% and causing cracks during processing. Falls below 10% and Md30
(° C.) is also prevented from exceeding −50, and the surface condition required for the inner surface of the inner container can be stably obtained with a good yield. Such features include nickel or nickel + copper,
Is more than 11% and less than 13%. The stainless steel used for the inner container is SUS304L or SUS among austenitic stainless steels.
XM7 is particularly suitable for workability and surface finish. Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations.

【発明の実施の形態】以下、本発明の実施の形態につい
て、その実施例とともに図を参照しながら詳細に説明
し、本発明の理解に供する。本実施の形態は、主として
飲料用の携帯用保温ボトルに適用した場合の一例であ
る。しかし、これに限られることはなく、汚れにくく、
かつ汚れを除去しやすくしたい各種のステンレス鋼製真
空二重容器全般に本発明は適用でき、定置して用いられ
るもの、あるいは加熱源を備えた電気ポット、あるいは
飲料以外の食料用の保温容器でもよい。本実施の形態の
真空二重容器は図1に示すように、内容器1と外容器2
とを二重に組合せて、それらの間を真空断熱空間として
ある。内容器1と外容器2とは共にオーステナト系ステ
ンレス鋼であるSUS304、SUS304L、SUS
XMなどで形成され、口部4において溶接接合されてい
る。図1中Pはその口部4の溶接接合部を示す。口部4
の内容器1に図示しない口部材と螺合する螺条5が形成
され、口部4の外容器2には図示しない蓋体と螺合する
螺条6が形成されている。また、底部7の外容器2には
真空排気用の開口8があり、この開口8を通じて真空断
熱空間3が真空排気され、その状態で蓋板9を外容器2
にろう接やその他の方法で気密な状態で接合して開口8
を封止することにより前記真空状態が維持されるように
している。開口8の封止は蓋板9なしに封止材を開口8
に溶融充填させた後固化させることだけでも行える。特
に、本実施の形態では、内容器1の内面1aが電界研磨
処理され、かつその表面粗さRzが4.0μm未満とさ
れている。なお、表面粗さRzは、周知のように「JI
S B 0601」において定められた「十点平均粗
さ」を示すものである。このように構成されたものは、
内容器1の内面1aがブラスト処理なしに電界研磨処理
されていることによりなだらかな凹凸形状の平滑面にな
っている。しかも、電界研磨処理により表面粗さRzが
4.0μm未満とされて顕微鏡的に見た凹と凸の高さの
差が小さく抑えられている。従って、内容器1の内面1
aは、従来の電界研磨やフッ素樹脂コーティングの表面
処理で生じていた大きな凹部はなく、汚れが入りにくい
し、沈着しにくく、また、たとえ凹部に入っても水洗等
で除去しやすくなる。また、フッ素樹脂のような匂いを
吸着する働きはしない。これにより、長期に亘って汚れ
にくく、匂いも残りにくいものとなる。また、内容器1
の内面1a表面の顕微鏡的な平滑度が向上する分だけ表
面の外観が向上するし、輻射熱の反射率が高くなり、電
界研磨の高い研磨効果により内容器1が薄肉化されて熱
伝導を抑制できるのと相まって、熱が外部に逃げにくく
なるので、熱伝導性の低いステンレス鋼製の真空二重容
器構造による保温性のさらなる向上にもつながる。電界
研磨による高い研磨効果は真空二重容器の軽量化にも貢
献する。表面粗さRzが小さくなるほど表面の凹と凸の
高さの差は小さくなり、内容器1の内面1aの表面粗さ
Rzが1.5μm以下になると、視覚的には鏡面とみな
し得る外観状態になり、飲料中の微粒子の付着をほぼ確
実に防止し、また付着した微粒子の水洗などによる除去
を極めて容易に行うことができる。さらに、内容器1の
内面1aの表面粗さRzが0.7μm以下になると、飲
料中の微粒子の付着を確実に防ぎ得るとともに、表面状
態が凹凸のほとんどないほぼ平滑な面でかつ完全な鏡面
となる。本発明者等が電界研磨によって上記のような表
面粗さを満足する研究で、電界研磨処理する前の内容器
1の内面1a表面の面粗度が大きく影響し、これを所定
の面粗度以下に抑えられたときに従来程度の電界研磨に
よって必要な表面粗さRz=4.0μm未満を容易に、
かつ安定して得られることを知見した。特に、内容器1
の材料であるステンレス鋼につきMd30(℃)の値の
設定により電界研磨前の内容器1の内面1a表面の面粗
度を必要範囲になるように容易にかつ安定して操作でき
た。これは、オーステナイト系ステンレス鋼の拡管や絞
り加工の際に発生する加工誘起マルテンサイトが内容器
1の表面を粗面化するのを、加工誘起マルテンサイトの
発生度を判定するMd30(℃)法から、加工誘起マル
テンサイトの発生量を所定量以下に抑える操作であり、 Md30(℃)=551−462(C+N)−9.2
(Si)−8.1(Mn)−13.7(Cr)−29
(Ni+Cu)−18.5(Mo)−68(Nb) に従って操作する。本発明者等の実験によると、Md3
0(℃)の値が−50未満となるように条件設定してお
くことにより、内容器1の材料であるステンレス鋼が、
拡管加工や絞り加工などによって加工誘起マルテンサイ
トが発生しやすいSUS304、SUS304S、SU
S304L、SUSXM7などのオーステナイト系ステ
ンレス鋼であっても、内容器1を深絞り加工して形成す
るなどの加工によって発生する加工誘起マルテンサイト
の量、およびこの加工誘起マルテンサイトが内容器1の
表面にもたらす粗面化、ないしは梨地化が抑制されてい
るので、その後の電界研磨が従来程度に行われてさえい
れば上記表面粗さRz0.4μm以下の条件を満足して
いる。そして、表面処理上特に困難性はなく歩留まりよ
く低コストで得られた。Md30(℃)の操作で、何か
を添加することによりMd30(℃)の値が下がる。主
元素であるNiを多く加えるとMd30(℃)の値を低
下させやすい。さらに、CuもNiと同じ係数であるの
で同様な傾向を示す。図2にNiとMd30(℃)の値
との関係を示し、図4にNi+CuとMd30(℃)の
値との関係を示している。一方、Ni、Cu以外の成分
はもともとの含有量が少ないため含有%を変化させにく
いし、変化させると加工性や耐久性に影響を与えたりす
るので操作しにくい。例えば、Cの含有量が増えると粒
界腐食が起きやすくなり実用に耐えないものとなる。ま
た、Niも余り含有量が増えると加工性に影響するの
で、SUS304Lの最大値ぐらいまでにするのが好適
である。一例として、内容器1の材料であるステンレス
鋼は、ニッケルまたはニッケル+銅、の含有量が10%
以上、14%以下のものであると、ニッケルまたはニッ
ケル+銅、の含有量が14%を越えて加工時に割れが発
生するようなことを防止しながら、ニッケルまたはニッ
ケル+銅、の含有量が10%を下まわってMd30
(℃)が−50を越えるようなことも防止して、内容器
の内面に必要な表面状態が安定して歩留まりよく得ら
れ、このような特徴は、ニッケルまたはニッケル+銅、
の含有量が11%以上、13%以下のものであるとより
高まる。また、銅はステンレス鋼に対する固溶限度が4
〜5%程度とされているが限度一杯の範囲でMd30
(℃)の値の操作に用いて有効である。一例として、1
8.2Cr−11.3Ni−低Cの高NiSUS304
Lに設定すると、Md30(℃)の値は−70となり、
18.2Cr−8.9Ni−3.2CuのSUSXM7
に設定すると、Md30(℃)の値は−100となり好
適である。 (実施例1)上記のような真空二重容器は、図8に示す
よう過程で製作されている。以下説明する。上記高Ni
SUS304Lを材料とする、内容器胴1b、内容器底
1c、外容器胴2b、外容器底2cが構成部材になって
いる。内容器胴1bと内容器底1cとは予め溶接接合し
てアッセンブリ化されて、内容器1とされている。内容
器1はまた予め銅鍍金が施されている。このような内容
器1と前記外容器胴2bとが二重に組合されて口部4で
溶接接合されることにより準二重容器Aに一体化されて
いる。このような準二重容器Aは前記外容器底2cと溶
接接合して一体化され二重容器Bとされている。この二
重容器Bは真空加熱炉内で開口8を通じた真空排気によ
り真空断熱空間3が真空状態にされた状態で開口8を封
止されることで、真空二重容器Cとされている。真空二
重容器Cの状態で内容器1の内面1aの電界研磨処理に
よるミラー加工が施されている。このミラー加工は図9
に示すように真空二重容器Cを口部4を下にして、肩部
10の上方近傍位置まで電界液12に沈み込む浸潰状態
にて、電極11を内容器1内に挿入し、その先端から電
界液12を噴出させる状態で電界研磨されており、内容
器1の内面1a全体、口部4および肩部10における外
容器2の表面が電界研磨処理されたものになっている。
なお、電界研磨はリン酸主体の電界液12が用いられて
いる。ミラー加工の後、真空二重容器Cは保温性能の検
査が行われ、必要に応じて胴部外面の研磨や塗装などの
外観処理が行われている。本実施例1では、Niまたは
Ni+Cuの含有量が14%を越えて加工時に割れが発
生するようなことを防止しながら、Md30(℃)が−
70と−50を大きく下回っていることにより内容器1
の内面1aに必要な表面状態が安定して歩留まりよく得
られる。前記電界研磨により、内容器1の内面1aの全
体および外容器2の電界研磨が施された表面は、図2の
(c)に示すように、視覚的には鏡面とみなし得る程度
の表面状態になった。このときの表面粗さRzは0.1
3μm程度であった。 (実施例2)Md30(℃)の値が−100となる上記
SUSXM7の材料よりなる真空二重容器Cとした点で
実施例1の場合と異なる。他の構成は特に変わるところ
はなく重複する図示および説明は省略する。本実施例で
前記電界研磨により、内容器1の内面1aの全体および
外容器2の電界研磨が施された表面は、図2の(d)、
図5に示すように、内容器1の内面状態が凹凸のほとん
どない平滑な面で、かつ完全な鏡面となり、その表面粗
さRzが0.25μm程度となった。以下に示す表1
は、従来の電界研磨により表面処理をしたもの(従来例
1)、従来のフッ素樹脂コーティングにより表面処理を
したもの(従来例2)、および前記実施例1、2のそれ
ぞれにつき、内容器の内面の表面粗さを測定した結果を
示している。なお、表面粗さRz、表面粗さRmax
は、それぞれ「JIS B 0601」において定めら
れた「中心線平均粗さ」、「最大高さ」である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings together with the embodiments to provide an understanding of the present invention. This embodiment is an example of a case where the present invention is mainly applied to a portable heat-insulating bottle for beverages. However, it is not limited to this, it is hard to get dirty,
In addition, the present invention can be applied to various stainless steel vacuum double containers that want to easily remove dirt, and can be used in a stationary state, or in an electric pot equipped with a heating source, or in a thermal insulation container for food other than beverages. Good. As shown in FIG. 1, the vacuum double container of the present embodiment has an inner container 1 and an outer container 2.
Are double combined to form a vacuum insulation space between them. The inner container 1 and the outer container 2 are both SUS304, SUS304L, SUS made of austenitic stainless steel.
It is formed of XM or the like and is welded at the mouth 4. In FIG. 1, P indicates a welded joint of the mouth 4. Mouth 4
The inner container 1 has a screw thread 5 screwed to a not-shown mouth member, and the outer container 2 of the mouth portion 4 has a screw thread 6 screwed to a not-shown lid. Further, the outer container 2 at the bottom 7 has an opening 8 for evacuation, and the vacuum heat insulating space 3 is evacuated through the opening 8.
It is joined to the opening 8 by soldering or other methods in an airtight manner.
Is sealed so that the vacuum state is maintained. The sealing of the opening 8 is performed by using a sealing material without the cover plate 9.
It can be performed only by melt-filling and then solidifying. In particular, in the present embodiment, the inner surface 1a of the inner container 1 is subjected to the electric field polishing treatment, and the surface roughness Rz is set to less than 4.0 μm. The surface roughness Rz is, as is well known, "JI
It shows the "ten-point average roughness" defined in "SB 0601". Those configured in this way,
Since the inner surface 1a of the inner container 1 is subjected to the electropolishing treatment without the blast treatment, the inner surface 1a has a smooth surface having a gentle uneven shape. In addition, the surface roughness Rz is reduced to less than 4.0 μm by the electric field polishing treatment, and the difference between the height of the concave and the convex when viewed microscopically is suppressed to a small value. Therefore, the inner surface 1 of the inner container 1
a does not have a large concave portion caused by the conventional electric field polishing or the surface treatment of the fluororesin coating, it is difficult for dirt to enter and hard to deposit, and even if it enters the concave portion, it is easily removed by washing with water or the like. Also, it does not work to adsorb odors such as fluororesin. As a result, it becomes difficult to stain over a long period of time, and the smell hardly remains. In addition, inner container 1
The appearance of the surface improves as much as the microscopic smoothness of the inner surface 1a surface improves, the reflectance of radiant heat increases, and the inner container 1 is thinned by the high polishing effect of electric field polishing to suppress heat conduction. In addition to the fact that the heat is hard to escape to the outside, it is possible to further improve the heat retention by the stainless steel vacuum double container structure having low heat conductivity. The high polishing effect by electropolishing also contributes to the weight reduction of the vacuum double container. The smaller the surface roughness Rz, the smaller the difference between the heights of the concave and convex portions of the surface. If the surface roughness Rz of the inner surface 1a of the inner container 1 becomes 1.5 μm or less, an appearance state that can be visually regarded as a mirror surface Thus, adhesion of the fine particles in the beverage can be almost certainly prevented, and the attached fine particles can be very easily removed by washing with water. Furthermore, when the surface roughness Rz of the inner surface 1a of the inner container 1 is 0.7 μm or less, the adhesion of the fine particles in the beverage can be surely prevented, and the surface state is a substantially smooth surface with almost no irregularities and a perfect mirror surface. Becomes In a study by the present inventors to satisfy the above-described surface roughness by electropolishing, the surface roughness of the inner surface 1a of the inner container 1 before the electropolishing treatment has a large effect, and this is considered to be a predetermined surface roughness. The surface roughness Rz of less than 4.0 μm required by conventional electric field polishing when suppressed below
And found that it can be obtained stably. In particular, inner container 1
By setting the value of Md30 (° C.) for the stainless steel as the material, the inner surface 1a of the inner container 1 before the electropolishing was easily and stably operated so that the surface roughness of the inner surface 1a was within a necessary range. This is based on the Md30 (° C.) method for determining the degree of occurrence of the work-induced martensite by determining the degree of occurrence of the work-induced martensite by roughening the surface of the inner container 1 by the work-induced martensite generated at the time of expanding or drawing austenitic stainless steel. Therefore, this is an operation for suppressing the generation amount of the work-induced martensite to a predetermined amount or less. Md30 (° C.) = 551-462 (C + N) −9.2
(Si) -8.1 (Mn) -13.7 (Cr) -29
Operate according to (Ni + Cu) -18.5 (Mo) -68 (Nb). According to experiments by the present inventors, Md3
By setting the conditions so that the value of 0 (° C.) is less than −50, the stainless steel as the material of the inner container 1 is
SUS304, SUS304S, SU in which work-induced martensite is likely to be generated by pipe expansion or drawing
Even with austenitic stainless steel such as S304L and SUSXM7, the amount of work-induced martensite generated by processing such as forming the inner container 1 by deep drawing, and the amount of the work-induced martensite on the surface of the inner container 1 The surface roughness Rz of 0.4 μm or less is satisfied as long as the subsequent electropolishing is performed to the extent of the prior art, since the surface roughening or matte finish caused by the above is suppressed. There was no particular difficulty in the surface treatment, and the yield was good and the cost was low. By adding something in the operation of Md30 (° C), the value of Md30 (° C) decreases. When a large amount of Ni as a main element is added, the value of Md30 (° C.) tends to decrease. Further, since Cu has the same coefficient as Ni, it shows the same tendency. FIG. 2 shows the relationship between Ni and the value of Md30 (° C.), and FIG. 4 shows the relationship between Ni + Cu and the value of Md30 (° C.). On the other hand, components other than Ni and Cu originally have a small content, so that it is difficult to change the content%, and if changed, the workability and durability are affected, so that it is difficult to operate. For example, when the content of C is increased, intergranular corrosion is likely to occur, which makes the alloy unsuitable for practical use. In addition, since the content of Ni excessively increases the workability, it is preferable that the Ni content is set to about the maximum value of SUS304L. As an example, the stainless steel as the material of the inner container 1 has a content of nickel or nickel + copper of 10%.
As described above, when the content is 14% or less, the content of nickel or nickel + copper is prevented while preventing the content of nickel or nickel + copper from exceeding 14% and causing cracks during processing. Md30 below 10%
(° C.) is also prevented from exceeding −50, and the surface condition required for the inner surface of the inner container can be stably obtained with a good yield. Such features include nickel or nickel + copper,
Is more than 11% and less than 13%. Copper has a solid solution limit of 4 for stainless steel.
-5%, but Md30
It is effective for use in manipulating the value of (° C.). As an example, 1
8.2Cr-11.3Ni-Low C high NiSUS304
When set to L, the value of Md30 (° C) is -70,
SUSXM7 of 18.2Cr-8.9Ni-3.2Cu
, The value of Md30 (° C.) is -100, which is preferable. (Embodiment 1) The vacuum double container as described above is manufactured in the process shown in FIG. This will be described below. High Ni above
An inner container body 1b, an inner container bottom 1c, an outer container body 2b, and an outer container bottom 2c made of SUS304L are constituent members. The inner container body 1b and the inner container bottom 1c are welded in advance and assembled to form an inner container 1. The inner container 1 is also pre-plated with copper. Such an inner container 1 and the outer container body 2b are double-combined and welded and joined at the mouth 4 to be integrated with the quasi-double container A. Such a quasi-double container A is welded and joined to the outer container bottom 2c to form a double container B. The double container B is formed as a vacuum double container C by sealing the opening 8 in a state where the vacuum heat insulating space 3 is evacuated by vacuum evacuation through the opening 8 in a vacuum heating furnace. In the state of the vacuum double container C, the inner surface 1a of the inner container 1 is mirror-processed by electric field polishing. This mirror processing is shown in FIG.
As shown in FIG. 3, the electrode 11 is inserted into the inner container 1 in a state where the vacuum dual container C is immersed in the electrolytic solution 12 up to a position near the upper part of the shoulder 10 with the mouth portion 4 facing down. The surface of the outer container 2 at the entire inner surface 1a of the inner container 1, the mouth portion 4, and the shoulder portion 10 is subjected to the electrolytic polishing in a state where the electrolytic solution 12 is ejected from the tip.
Note that the electrolytic polishing uses an electrolytic solution 12 mainly composed of phosphoric acid. After the mirror processing, the vacuum double container C is inspected for its heat retaining performance, and the outer surface of the body is polished or painted as necessary. In the first embodiment, Md30 (° C.) is reduced while preventing the Ni or Ni + Cu content from exceeding 14% from generating cracks during processing.
Inner container 1 due to significantly lower than 70 and -50
The surface condition required for the inner surface 1a can be stably obtained with a high yield. As shown in FIG. 2C, the entire inner surface 1a of the inner container 1 and the surface on which the outer container 2 has been subjected to the electropolishing by the electropolishing are surface states that can be visually regarded as mirror surfaces. Became. The surface roughness Rz at this time is 0.1
It was about 3 μm. (Example 2) This is different from Example 1 in that a vacuum double container C made of the above SUSXM7 material having a value of Md30 (° C) of -100 is used. The other configurations are not particularly changed, and overlapping illustrations and descriptions are omitted. In the present embodiment, the entire inner surface 1a of the inner container 1 and the surface of the outer container 2 on which the electropolishing is performed by the electropolishing are shown in FIG.
As shown in FIG. 5, the inner surface state of the inner container 1 was a smooth surface with almost no irregularities and a perfect mirror surface, and the surface roughness Rz was about 0.25 μm. Table 1 below
Are the inner surface of the inner container for each of the surface treated by the conventional electropolishing (conventional example 1), the surface treated by the conventional fluororesin coating (conventional example 2), and the embodiments 1 and 2. Shows the results of measuring the surface roughness of the sample. In addition, the surface roughness Rz, the surface roughness Rmax
Are "center line average roughness" and "maximum height" defined in "JIS B 0601", respectively.

【表1】 [Table 1]

【発明の効果】本発明によれば、上記説明で明らかなよ
うに、水垢や茶渋などの汚れや匂いが残りにくく、ま
た、汚れや匂いを水洗など通常の洗浄により容易に除去
できるとともに、保温性に優れ、美観上も優れたステン
レス鋼製真空二重容器を提供することができる。
According to the present invention, as is apparent from the above description, dirt and smell such as water scale and tea astringent hardly remain, and dirt and smell can be easily removed by ordinary washing such as washing with water. It is possible to provide a vacuum double container made of stainless steel which has excellent properties and aesthetic appearance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る実施例1の真空二重
容器を示す断面図である。
FIG. 1 is a cross-sectional view showing a vacuum double container of Example 1 according to an embodiment of the present invention.

【図2】従来例1、2および本発明の実施例1、2を
(a)〜(d)に比較して、内容器内面の断面形状を模
式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a cross-sectional shape of an inner surface of an inner container, comparing Conventional Examples 1 and 2 and Examples 1 and 2 of the present invention with (a) to (d).

【図3】NiとMd30(℃)との関係を示すグラフで
ある。
FIG. 3 is a graph showing a relationship between Ni and Md30 (° C.).

【図4】Ni+CuとMd30(℃)との関係を示すグ
ラフである。
FIG. 4 is a graph showing a relationship between Ni + Cu and Md30 (° C.).

【図5】従来例1の内容器内面を200倍に拡大して示
す図である。
FIG. 5 is an enlarged view of the inner surface of the inner container of Conventional Example 1 at a magnification of 200 times.

【図6】従来例2の内容器内面を500倍に拡大して示
す図である。
FIG. 6 is a diagram showing the inner surface of the inner container of Conventional Example 2 at a magnification of 500 times.

【図7】実施例2の内容器内面を200倍に拡大して示
す図である。
FIG. 7 is a diagram showing the inner surface of the inner container of Example 2 enlarged 200 times.

【図8】実施例1の真空二重容器が形成された過程を示
すフローチャートである。
FIG. 8 is a flowchart showing a process of forming the vacuum double container of the first embodiment.

【図9】実施例1、2で採用した電界研磨処理の概念図
である。
FIG. 9 is a conceptual diagram of an electric field polishing process adopted in Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 内容器 2 外容器 3 真空断熱空間 1 inner container 2 outer container 3 vacuum insulation space

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼製の内容器と外容器とを間
隙を設けて二重に組合せ、それら内外容器の間を真空空
間としたステンレス鋼製真空二重容器において、 内容器の内面が電界研磨処理され、かつその表面粗さR
zが4.0μm未満とされていることを特徴とするステ
ンレス鋼製真空二重容器。
A stainless steel inner container and an outer container are double-coupled to each other with a gap provided therebetween, and a vacuum space is provided between the inner and outer containers. Polished and its surface roughness R
A stainless steel vacuum double container, wherein z is less than 4.0 μm.
【請求項2】 表面粗さRzが1.5μm以下である請
求項1に記載のステンレス鋼製真空二重容器。
2. The stainless steel vacuum double container according to claim 1, wherein the surface roughness Rz is 1.5 μm or less.
【請求項3】 表面粗さRzが0.7μm以下である請
求項1に記載のステンレス鋼製真空二重容器。
3. The stainless steel vacuum double container according to claim 1, wherein the surface roughness Rz is 0.7 μm or less.
【請求項4】 内容器の材料であるステンレス鋼はMd
30(℃)の値が−50未満のものである請求項1〜3
のいずれか1項に記載のステンレス鋼製真空二重容器。
4. The stainless steel used for the inner container is made of Md.
The value of 30 (° C) is less than -50.
The stainless steel vacuum double container according to any one of the above.
【請求項5】 内容器の材料であるステンレス鋼はニッ
ケルの含有量が10%以上、14%以下のものである請
求項1〜4のいずれか1項に記載のステンレス鋼製真空
二重容器。
5. The stainless steel vacuum double container according to claim 1, wherein the stainless steel as the material of the inner container has a nickel content of 10% or more and 14% or less. .
【請求項6】 内容器の材料であるステンレス鋼はニッ
ケルの含有量が11%以上、13%以下のものである請
求項1〜4のいずれか1項に記載のステンレス鋼製真空
二重容器。
6. The stainless steel vacuum double container according to claim 1, wherein the stainless steel as the material of the inner container has a nickel content of 11% or more and 13% or less. .
【請求項7】 内容器の材料であるステンレス鋼はニッ
ケル+銅の含有量が10%以上、14%以下のものであ
る請求項1〜4のいずれか1項に記載のステンレス鋼製
真空二重容器。
7. The stainless steel vacuum cylinder according to claim 1, wherein the stainless steel as the material of the inner container has a nickel + copper content of 10% or more and 14% or less. Heavy container.
【請求項8】 内容器の材料であるステンレス鋼はニッ
ケル+銅の含有量が11%以上、13%以下のものであ
る請求項1〜4のいずれか1項に記載のステンレス鋼製
真空二重容器。
8. The stainless steel vacuum cylinder according to claim 1, wherein the stainless steel as a material of the inner container has a nickel + copper content of 11% or more and 13% or less. Heavy container.
【請求項9】 内容器の材料であるステンレス鋼がSU
S304LまたはSUSXM7である請求項1〜8のい
ずれか1項に記載のステンレス鋼製真空二重容器。
9. The stainless steel as the material of the inner container is SU
The stainless steel vacuum double container according to any one of claims 1 to 8, which is S304L or SUSXM7.
JP26429399A 1999-08-12 1999-08-12 Vacuum double container made of stainless steel Pending JP2001046248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26429399A JP2001046248A (en) 1999-08-12 1999-08-12 Vacuum double container made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26429399A JP2001046248A (en) 1999-08-12 1999-08-12 Vacuum double container made of stainless steel

Publications (1)

Publication Number Publication Date
JP2001046248A true JP2001046248A (en) 2001-02-20

Family

ID=17401166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26429399A Pending JP2001046248A (en) 1999-08-12 1999-08-12 Vacuum double container made of stainless steel

Country Status (1)

Country Link
JP (1) JP2001046248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144334A (en) * 2005-11-29 2007-06-14 Honda Electronic Co Ltd Atomization nozzle
WO2016052060A1 (en) * 2014-09-30 2016-04-07 Dic株式会社 Organic material container and storage and transportation method
JP2019089570A (en) * 2017-11-13 2019-06-13 象印マホービン株式会社 Double wall container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144334A (en) * 2005-11-29 2007-06-14 Honda Electronic Co Ltd Atomization nozzle
WO2016052060A1 (en) * 2014-09-30 2016-04-07 Dic株式会社 Organic material container and storage and transportation method
JPWO2016052060A1 (en) * 2014-09-30 2017-04-27 Dic株式会社 Organic material containers and storage and transport methods
JP2019089570A (en) * 2017-11-13 2019-06-13 象印マホービン株式会社 Double wall container

Similar Documents

Publication Publication Date Title
JP4225633B2 (en) Anti-seize coating for cookware
Barry et al. Tin and its Alloys and Compounds
US20030022027A1 (en) Stick resistant ceramic coating for cookware
JP4818755B2 (en) Steel plate for welding can
CN110449692A (en) A kind of Phase Proportion control method of carbon steel surface overlaying two-phase anti-corrosion layer
JP2001046248A (en) Vacuum double container made of stainless steel
CA2238779A1 (en) Insulating double-layered container
Cvetkovski Stainless steel in contact with food and bevarage
JP2000116541A (en) Metallic vacuum double container, and coating method for interior of same
TWI569761B (en) Titanium vacuum insulated cup and method for manufacturing the same
KR890001754B1 (en) Draw-ironed can formed of surface-treated steel plate
JP2000333848A (en) Stainless steel vacuum double container and production thereof
KR20100082687A (en) Cooking vessel and manufacturing method thereof
JPH0274223A (en) Manufacture of cooling-retaining or heat-retaining metallic doubled vessel
JP3202675B2 (en) Metal vacuum double container and manufacturing method thereof
JP3225896B2 (en) Manufacturing method of metal vacuum double container
JPH11227764A (en) Metallic container
JP7410401B2 (en) container
TWM581865U (en) Improved structure of metal water container
CN203314775U (en) Composite layer cooking utensil structure
JP3414210B2 (en) Manufacturing method of metal vacuum double container
JP4428933B2 (en) Cooking container
JP2928198B2 (en) Metal vacuum double-walled container
JP2021016615A (en) Lightweight insulating bottle
JP2007056278A (en) Steel sheet for welded can having excellent weldability, adhesiveness and corrosion resistance