JP2001046100A - Stabilized enzyme for reforming fuel and method for reforming fuel - Google Patents

Stabilized enzyme for reforming fuel and method for reforming fuel

Info

Publication number
JP2001046100A
JP2001046100A JP11222905A JP22290599A JP2001046100A JP 2001046100 A JP2001046100 A JP 2001046100A JP 11222905 A JP11222905 A JP 11222905A JP 22290599 A JP22290599 A JP 22290599A JP 2001046100 A JP2001046100 A JP 2001046100A
Authority
JP
Japan
Prior art keywords
enzyme
fuel
structural unit
reforming
fuel reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11222905A
Other languages
Japanese (ja)
Inventor
治雄 ▲高▼橋
Haruo Takahashi
Kazuhiro Akihama
一弘 秋濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11222905A priority Critical patent/JP2001046100A/en
Publication of JP2001046100A publication Critical patent/JP2001046100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject stabilized enzyme for desulfurization etc. of gasoline, gas oil, etc. by immmobilizing an enzyme such as a peroxidase or a sulfinase in a structural unit having a size nearly coincident with that of the enzyme and structural stability. SOLUTION: This stabilized enzyme is composed of an immobilized enzyme for reforming a fuel and obtained by immobilizing at least one kind of enzyme selected from a peroxidase, a sulfinase, a monooxygenase, a dioxygenase and an isomerase in a structural unit having a size nearly coincident with that of the enzyme and structural stability and formed as pores capable of accommodating the enzyme in a mesoporous silica porous body. The immobilized enzyme is charged into various kinds of fuels such as gasoline or gas oil and capable of carrying out the fuel reforming such as desulfurization, an improvement in the octane number of the gasoline, an improvement in the cetane number of the gas oil, a reduction of the aromatic content, lowering of the boiling point or removal of impurities by enzymic actions thereof and stably maintaining the enzymic activity even in the fuels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料改質用安定化酵
素及び燃料改質方法に関し、更に詳しくは、燃料改質に
関連する酵素作用を示すと共に、その酵素作用が水の混
在しない燃料中においても安定的に維持される酵素と、
かかる酵素を利用した有利な燃料改質方法とに関する。
本発明において「燃料改質」とは、燃料の脱硫,ガソリ
ンのオクタン価向上,軽油のセタン価向上,アロマ分低
減,低沸点化その他の、燃料の不純物除去もしくは性能
向上に有益な操作を言う。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stabilized enzyme for fuel reforming and a fuel reforming method, and more particularly, to an enzyme activity related to fuel reforming, and the enzyme activity in a fuel free of water. An enzyme that is stably maintained in
It relates to an advantageous fuel reforming method using such an enzyme.
In the present invention, "fuel reforming" refers to operations that are useful for removing fuel impurities or improving performance, such as desulfurization of fuel, improvement of octane number of gasoline, improvement of cetane number of light oil, reduction of aroma content, and reduction of boiling point.

【0002】[0002]

【従来の技術】従来、ガソリンや軽油等の各種燃料の改
質技術が研究され、とりわけ、燃料の硫黄分が燃焼排気
中のSOxの生成原因となったり、排気浄化触媒の硫黄
被毒による活性低下を来したりするため、燃料の有効な
脱硫技術が追求されている。
2. Description of the Related Art Hitherto, reforming technologies for various fuels such as gasoline and light oil have been studied. In particular, the sulfur content of the fuel causes SOx in combustion exhaust gas and the activity of the exhaust purification catalyst due to sulfur poisoning. In order to reduce fuel consumption, effective desulfurization technology for fuel is being pursued.

【0003】燃料脱硫技術に関して、例えば化学的脱硫
方法として代表的に例示される水素化脱硫方法において
は、石油留分中の硫黄化合物を、モリブデン担持アルミ
ナ触媒等の金属触媒の存在下に水素と還元反応させて、
分離,除去の容易な硫化水素とし、これを所定のプロセ
スによって除去している。
With respect to fuel desulfurization technology, for example, in a hydrodesulfurization method typically exemplified as a chemical desulfurization method, a sulfur compound in a petroleum fraction is converted into hydrogen in the presence of a metal catalyst such as an alumina catalyst supported on molybdenum. Let it undergo a reduction reaction,
Hydrogen sulfide is easily separated and removed, and is removed by a predetermined process.

【0004】更に、硫黄化合物分解菌等を利用するいわ
ゆる「バイオ脱硫」の研究も盛んであり、例えば特開平
11−9293号公報に開示された「アルキル化複素環
硫黄化合物を分解する微生物」の発明においては、燃料
中のアルキル化ベンゾチオフェンあるいはアルキル化ジ
ベンゾチオフェン等の難分解性硫黄化合物のC−S結合
を選択的に切断する能力(酵素活性)を持つ微生物を利
用し、難分解性硫黄化合物の分解→分離→除去を容易に
することを試みている。
Further, research on so-called "biodesulfurization" utilizing sulfur compound-decomposing bacteria and the like has been actively conducted. In the present invention, a microorganism having the ability (enzymatic activity) to selectively cleave a CS bond of a refractory sulfur compound such as an alkylated benzothiophene or an alkylated dibenzothiophene in a fuel is used. We are trying to make it easier to decompose, separate, and remove compounds.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の水素化
脱硫方法は、一般的に高い反応温度や圧力が要求される
ために処理設備とその運転が非常にコスト高になり、し
かも、特定の難分解性硫黄化合物は余り除去されないと
言う不具合がある。今後、高濃度に硫黄を含む原油をも
使用する必要性が増大すると見込まれる中で、このよう
な難分解性の硫黄化合物の存在は大きな問題となる。
又、軽油に関しては、その潤滑性に寄与する極性基が水
素化により還元されるために、軽油の潤滑性が失われる
と言う問題もある。
However, the above-mentioned hydrodesulfurization method generally requires a high reaction temperature and pressure, so that the processing equipment and its operation become very costly, and furthermore, a specific equipment is required. There is a problem that the hardly decomposable sulfur compound is not removed so much. In the future, it is expected that the necessity of using a crude oil containing a high concentration of sulfur is expected to increase, and the presence of such a hardly decomposable sulfur compound becomes a serious problem.
Further, with respect to light oil, there is also a problem that the lubricity of light oil is lost because the polar group contributing to its lubricity is reduced by hydrogenation.

【0006】次に、酵素活性を利用する脱硫技術におい
ては、特段の高い反応温度や圧力が要求されず、基質特
異性の高い酵素活性の適宜な選択により上記難分解性硫
黄化合物も分解可能であることが判明しているので、化
学的脱硫方法の代替技術もしくは少なくとも補完技術と
して、高度脱硫のための重要な技術的位置を占める可能
性がある。
[0006] Next, in the desulfurization technique utilizing the enzymatic activity, a particularly high reaction temperature and pressure are not required, and the above-mentioned hardly decomposable sulfur compound can be decomposed by appropriate selection of the enzymatic activity having high substrate specificity. As it turns out, it may occupy an important technical position for advanced desulfurization as an alternative or at least a complementary technology to the chemical desulfurization process.

【0007】しかしながら、例えば上記特開平11−9
293号公報に開示された発明のように微生物の酵素活
性を利用する脱硫技術では、燃料を水と混合・攪拌しつ
つ、水/燃料界面で微生物による脱硫を行うと言う制約
を伴っていた。従って水と燃料の混合・攪拌システム
や、脱硫後の燃料・水・菌体の分離システム等が不可欠
となり、微生物の管理も煩雑であり、かなりの処理費用
と煩雑なシステム運営を余儀なくされると言う問題があ
った。
However, for example, Japanese Patent Application Laid-Open No.
The desulfurization technique utilizing the enzymatic activity of microorganisms as in the invention disclosed in Japanese Patent No. 293 has a restriction that the microorganisms are desulfurized at the water / fuel interface while mixing and stirring the fuel with water. Therefore, a system for mixing and stirring water and fuel, a system for separating fuel, water, and cells after desulfurization are indispensable, and the management of microorganisms is complicated, and considerable processing costs and complicated system operation are required. There was a problem to say.

【0008】換言すれば、ガソリンや軽油中に直接投入
されても安定的に作用する脱硫酵素が未だ提供されてい
ないため、微生物利用方式(微生物の菌体によって保護
された酵素の活性を利用する方式)に頼らざるを得なか
った。このような事情は、ガソリンのオクタン価向上,
軽油のセタン価向上等のために酵素活性を利用しようと
する場合にも、同様である。
[0008] In other words, a desulfurizing enzyme that stably acts even when directly injected into gasoline or gas oil has not been provided yet, and therefore, a microorganism-based method (using the activity of an enzyme protected by the cells of microorganisms) is used. Method). This situation has led to an increase in the octane value of gasoline,
The same applies to the case where the enzymatic activity is to be used to improve the cetane number of light oil.

【0009】この点に関連して、近年、酵素を樹脂等に
直接固定させる酵素固定化技術、酵素をゲルに封じ込め
る包括固定化法、酵素を半透明のポリマー被膜により被
覆するマイクロカプセル法、酵素蛋白質の表面をポリエ
チレングリコールや糖脂質で修飾して安定化する表面修
飾法等も注目されている。しかし、いずれの場合におい
ても、酵素を固定するための構造ユニットが酵素分子と
合致しない形状(例えば、単なる平坦面)であったり、
酵素分子と合致した形状と大きさの構造ユニットであっ
てもその構造安定性が欠けていたりするため、燃料中に
直接投入されると言う過酷な環境において、酵素の立体
構造(即ち酵素活性)を安定的に維持することが困難で
あった。
In this connection, in recent years, an enzyme immobilization technique for directly immobilizing an enzyme on a resin or the like, a comprehensive immobilization method for encapsulating the enzyme in a gel, a microcapsule method for coating the enzyme with a translucent polymer film, Attention has also been paid to a surface modification method for stabilizing a protein surface by modifying it with polyethylene glycol or glycolipid. However, in any case, the structural unit for immobilizing the enzyme has a shape that does not match the enzyme molecule (for example, a simple flat surface),
Even in the case of a structural unit that matches the shape and size of an enzyme molecule, its structural stability is lacking. Therefore, in a severe environment where it is directly injected into fuel, the three-dimensional structure of the enzyme (ie, enzyme activity) Was difficult to maintain stably.

【0010】そこで本発明は、燃料改質に関連する酵素
作用を示すと共に、その酵素作用が燃料中においても安
定的に維持される安定化酵素と、かかる安定化酵素を利
用した有利な燃料改質方法とを提供することを、解決す
べき課題とする。
[0010] Accordingly, the present invention provides a stabilizing enzyme which exhibits an enzymatic action related to fuel reforming, and whose enzymatic action is stably maintained even in fuel, and an advantageous fuel modification utilizing such a stabilizing enzyme. Providing quality methods is an issue to be solved.

【0011】本願発明者は、脱硫等の燃料改質に関連す
る数種類の酵素を具体的に絞り込み、これらの酵素につ
いて、本件出願人の出願に係る特願平11−27702
号の願書に添付した明細書に開示した手段により固定化
した処、水の混在しない燃料中においても酵素作用が安
定的に維持されることを実験的に見出し、本願発明を完
成した。
The present inventor specifically narrows down several types of enzymes related to fuel reforming such as desulfurization. These enzymes are described in Japanese Patent Application No. 11-27702 filed by the present applicant.
The present inventors have experimentally found that the enzyme action is stably maintained even in a fuel containing no water when immobilized by the means disclosed in the specification attached to the application of the present invention, and completed the present invention.

【0012】[0012]

【課題を解決するための手段】(第1発明の構成)上記
課題を解決するための本願第1発明(請求項1に記載の
発明)の構成は、ペルオキシダーゼ(peroxidase),ス
ルフィナーゼ( sulfinase),モノオキシゲナーゼ( m
onooxygenase),ジオキシゲナーゼ( dioxygenase) ,
イソメラーゼ(isomerase)から選ばれる少なくとも1
種の酵素を、該酵素とほぼ合致した大きさで構造安定性
を有する構造ユニット中に固定したものであって、燃料
の改質に用いられる、燃料改質用安定化酵素である。
Means for Solving the Problems (Structure of the First Invention) The structure of the first invention of the present application (the invention of claim 1) for solving the above-mentioned problems is as follows: peroxidase, sulfinase, Monooxygenase (m
onooxygenase), dioxygenase (dioxygenase),
At least one selected from isomerases
Kind Code: A1 Abstract: A stabilized enzyme for fuel reforming, comprising a kind of enzyme immobilized in a structural unit having a size substantially matching that of the enzyme and having structural stability, and used for fuel reforming.

【0013】(第2発明の構成)上記課題を解決するた
めの本願第2発明(請求項2に記載の発明)の構成は、
前記第1発明に係る構造ユニットが、メソポーラスシリ
カ多孔体における前記酵素を収容可能な細孔として構成
されている、燃料改質用安定化酵素である。
(Structure of the Second Invention) The structure of the second invention of the present application (the invention according to claim 2) for solving the above problems is as follows.
The structural unit according to the first aspect of the present invention is a stabilized enzyme for fuel reforming, wherein the structural unit is configured as pores of the porous mesoporous silica capable of containing the enzyme.

【0014】(第3発明の構成)上記課題を解決するた
めの本願第3発明(請求項3に記載の発明)の構成は、
第1発明又は第2発明のいずれかに係る燃料改質用安定
化酵素を燃料中に投入し、その酵素作用により所定の燃
料改質を行う、燃料改質方法である。
(Structure of the Third Invention) The structure of the third invention (the invention according to claim 3) for solving the above problems is as follows.
A fuel reforming method in which the stabilizing enzyme for fuel reforming according to any one of the first invention and the second invention is charged into fuel, and a predetermined fuel reforming is performed by the enzyme action.

【0015】[0015]

【発明の作用・効果】(第1発明の作用・効果)第1発
明の燃料改質用安定化酵素においては、ペルオキシダー
ゼ,スルフィナーゼ,モノオキシゲナーゼ,ジオキシゲ
ナーゼ,イソメラーゼから選ばれる少なくとも1種の酵
素が、該酵素とほぼ合致した形状で構造安定性を有する
構造ユニット中に固定されている。
[Operation and Effect of the Invention] (Operation and Effect of the First Invention) In the stabilized enzyme for fuel reforming of the first invention, at least one enzyme selected from peroxidase, sulfinase, monooxygenase, dioxygenase and isomerase is used. Are immobilized in a structural unit having a structural stability substantially conforming to the enzyme.

【0016】第1発明に係る各燃料改質用安定化酵素
は、高い反応温度や圧力を要求せず、軽油の改質におい
てその潤滑性を阻害すると言う不具合もなく、又、微生
物の酵素活性を利用する前記燃料改質技術のように水/
燃料混在系を要求しないので、処理システムを著しく簡
易化、低コスト化することができる。
Each of the stabilizing enzymes for fuel reforming according to the first invention does not require a high reaction temperature or pressure, does not have the problem of impairing the lubricity in reforming gas oil, and has the enzymatic activity of microorganisms. Water / water as in the fuel reforming technology using
Since no fuel-mixed system is required, the processing system can be significantly simplified and reduced in cost.

【0017】更に、酵素をその分子にほぼ合致した大き
さの構造安定性を有する構造ユニット中に固定する点か
ら、酵素の分子レベルでの大きな変形が物理的に規制さ
れて、その立体構造が安定的に維持され、ガソリンや軽
油中に直接投入されると言う過酷な環境においても酵素
の失活が起こり難い。
Furthermore, since the enzyme is immobilized in a structural unit having a structural stability having a size substantially matching that of the molecule, large deformation at the molecular level of the enzyme is physically regulated, and the three-dimensional structure of the enzyme is reduced. The enzyme is hardly deactivated even in a harsh environment where it is stably maintained and is directly injected into gasoline or light oil.

【0018】そして、以上の作用のみから、第1発明の
安定化酵素が、その固定された酵素の種類に関わらず燃
料中で十分な酵素活性を発揮できるとは限らないが、少
なくとも上記した一定の酵素については、第1発明の安
定化酵素の形態とすることにより実際に燃料中でも安定
的で良好な酵素作用を示すことが確認できた。
From the above actions alone, the stabilized enzyme of the first invention is not always able to exhibit sufficient enzyme activity in fuel regardless of the type of the immobilized enzyme. With respect to the enzyme (1), it was confirmed that the stabilized enzyme of the first aspect of the invention actually exhibited a stable and good enzyme action even in fuel.

【0019】(第2発明の作用・効果)第2発明におい
て、前記第1発明に係る構造ユニットが、メソポーラス
シリカ多孔体における前記酵素を収容可能な細孔として
構成されているので、多孔体の多数の細孔に酵素を固定
すると言う効率の良い実施形態で酵素固定用の構造ユニ
ットが提供され、しかもシリカ多孔体である構造ユニッ
トは構造安定性が極めて高いと言う利点がある。
(Function / Effect of the Second Invention) In the second invention, the structural unit according to the first invention is constituted as pores capable of accommodating the enzyme in a porous mesoporous silica material. The structural unit for immobilizing the enzyme is provided in an efficient embodiment in which the enzyme is immobilized on a large number of pores, and the structural unit which is a porous silica material has an advantage that the structural stability is extremely high.

【0020】(第3発明の作用・効果)第3発明におい
ては、前記第1発明又は第2発明に係る燃料改質用安定
化酵素を燃料中(水を混在させない燃料中)に投入し、
その酵素作用により脱硫,オクタン価向上,セタン価向
上等の所定の燃料改質を行うので、前記第1発明及び/
又は第2発明の作用・効果を確保したもとで、燃料改質
を極めて有利に行うことができる。
(Function / Effect of Third Invention) In the third invention, the stabilized enzyme for fuel reforming according to the first invention or the second invention is introduced into fuel (in fuel in which water is not mixed),
Because of the enzymatic action, predetermined fuel reforming such as desulfurization, octane number improvement, cetane number improvement, etc. is carried out.
Alternatively, the fuel reforming can be performed very advantageously while ensuring the operation and effect of the second invention.

【0021】[0021]

【発明の実施の形態】次に、第1発明〜第3発明の実施
の形態について説明する。以下において単に「本発明」
と言うときは、第1発明〜第3発明を一括して指してい
る。
Next, embodiments of the first to third inventions will be described. In the following, simply "the present invention"
When it says, it points to 1st invention-3rd invention collectively.

【0022】〔燃料改質〕本発明において燃料の種類は
限定されないが、特にガソリンと軽油とが改質の対象と
して好ましい。燃料改質の内容も限定されないが、燃料
一般の脱硫,ガソリンにおけるオクタン価向上、軽油に
おけるセタン価向上,アロマ分低減,低沸点化等を好ま
しく例示することができる。目的とする燃料改質の内容
によって、構造ユニット中に固定すべき1種又は2種以
上の酵素の種類が決まる。
[Fuel Reforming] In the present invention, the type of fuel is not limited, but gasoline and light oil are particularly preferred as targets for reforming. Although the content of the fuel reforming is not limited, preferable examples include desulfurization of general fuels, improvement of octane number in gasoline, improvement of cetane number in light oil, reduction of aroma content, and reduction of boiling point. The type of one or more enzymes to be immobilized in the structural unit is determined by the content of the target fuel reforming.

【0023】〔酵素〕本発明において利用可能な酵素と
して、本願発明者が燃料改質上の有効な酵素作用を確認
している限りにおいて、ペルオキシダーゼ,スルフィナ
ーゼ,スルフォンモノオキシゲナーゼ等のモノオキシゲ
ナーゼ,ジオキシゲナーゼ,イソメラーゼを挙げること
ができる。なお、上記以外の酵素であっても、何らかの
意味で燃料改質上有効であり、かつ本発明の安定化方法
により燃料中での安定的な酵素活性の発現が確認される
ものは、本発明において利用可能である。
[Enzymes] As enzymes that can be used in the present invention, monooxygenases such as peroxidase, sulfinase, and sulfone monooxygenase, dioxygenases, and the like can be used as long as the present inventors have confirmed effective enzymatic action on fuel reforming. , Isomerase. It should be noted that any enzyme other than the above is effective for fuel reforming in some sense, and is confirmed to exhibit stable enzyme activity in fuel by the stabilization method of the present invention. Available at

【0024】本発明において「酵素」とは、通常の酵素
蛋白質分子、又はその活性ユニット(活性部位を含む酵
素の断片)を言う。構造ユニット中には、1種類の酵素
だけが固定されていても良く、例えば燃料改質上必要な
一連の反応に関わるような、2種類以上の酵素が同時に
固定されていても良い。後者の場合において、2種類以
上の酵素は同一の多孔体等における別々の構造ユニット
中に固定されていても良く、同一の構造ユニット中に固
定されていても良い。
In the present invention, the term "enzyme" refers to a normal enzyme protein molecule or its active unit (enzyme fragment containing an active site). In the structural unit, only one type of enzyme may be immobilized. For example, two or more types of enzymes involved in a series of reactions required for fuel reforming may be immobilized simultaneously. In the latter case, two or more types of enzymes may be fixed in separate structural units in the same porous body or the like, or may be fixed in the same structural unit.

【0025】〔安定化酵素〕本発明に係る安定化酵素
は、燃料の改質に用いられるものであって、燃料改質に
関連する前記酵素が、該酵素とほぼ合致した大きさで構
造安定性を有する構造ユニット中に固定されたものを言
う。
[Stabilizing enzyme] The stabilizing enzyme according to the present invention is used for fuel reforming, and the enzyme related to fuel reforming has a structurally stable size substantially matching that of the enzyme. Fixed in a structural unit having the property.

【0026】安定化酵素の構造の一例を図1に概念化し
て示すと、構造ユニット1はpH,熱,流体の流動等の
環境条件に対して構造安定性を有するものである。酵素
2は基質4に対して所定の酵素活性を発現する部分であ
り、通常の酵素や、酵素活性部位を含有する酵素断片等
により構成される。アンカーユニット3は、本発明の安
定化酵素において必須の構成要素ではないが、構造ユニ
ット1と酵素2とを連結する要素であって、構造ユニッ
ト1の上記構造安定性を酵素2に伝えて酵素2の立体構
造の大きな変化による失活を抑制すると共に、基質4と
の相互作用に必要な活性部位の比較的小さな構造変化は
許容する程度の自由度を与える。
FIG. 1 conceptually shows an example of the structure of the stabilized enzyme. The structural unit 1 has structural stability against environmental conditions such as pH, heat, and fluid flow. The enzyme 2 is a portion that expresses a predetermined enzyme activity on the substrate 4, and is composed of a normal enzyme, an enzyme fragment containing an enzyme active site, and the like. The anchor unit 3 is not an essential component in the stabilizing enzyme of the present invention, but is an element that connects the structural unit 1 and the enzyme 2, and transmits the above-mentioned structural stability of the structural unit 1 to the enzyme 2, In addition to suppressing the inactivation due to a large change in the three-dimensional structure of 2, the relatively small change in the structure of the active site required for the interaction with the substrate 4 gives an acceptable degree of freedom.

【0027】安定化酵素の構造の他の一例を図2に概念
化して示すと、酵素2と構造ユニット1とは上記のよう
なアンカーユニットを介することなく van der Waals力
等により結合している。個々の構造ユニット1には1個
又は少数個の酵素2が収容されており、構造ユニット1
の内径はこれらの1個又は少数個の酵素2の立体形状に
ほぼ合致していることが好ましい。
FIG. 2 conceptually shows another example of the structure of the stabilized enzyme. As shown in FIG. 2, the enzyme 2 and the structural unit 1 are bound by van der Waals force or the like without the above-mentioned anchor unit. . Each structural unit 1 contains one or a small number of enzymes 2, and the structural unit 1
Preferably approximately matches the three-dimensional shape of one or a few of these enzymes 2.

【0028】上記図1又は図2に示す構造ユニット1
は、無機材料から構成されても良く、ポリマー等の有機
材料から構成されても良い。有機材料からなる構造ユニ
ット1においては、酵素の周りを、場合によってはアン
カーユニットを介して、被覆するためのポリマー形成反
応が必要である。上記モノマーやポリマーの種類は、発
明の目的を阻害しない限りにおいて特段に限定されな
い。
The structural unit 1 shown in FIG. 1 or FIG.
May be composed of an inorganic material or an organic material such as a polymer. In the structural unit 1 made of an organic material, a polymer forming reaction is required to coat around the enzyme and possibly via an anchor unit. The type of the monomer or polymer is not particularly limited as long as the object of the invention is not hindered.

【0029】無機材料からなる構造ユニットとしては、
例えばケイ酸(SiO2)やアルミナ等の各種金属酸化
物、SiO2−MO2/n(MはAl等の金属)で表される
複合酸化物等によって構成することができる。例えば、
ケイ酸からなる構造ユニットの形成方法として、カネマ
イトのような層状シリケート,Si(OR)4(Rはア
ルキル基),シリカゲル,水ガラス,ケイ酸ソーダ等を
好ましく用いることができる。
As the structural unit made of an inorganic material,
For example, it can be composed of various metal oxides such as silicic acid (SiO 2 ) and alumina, and a composite oxide represented by SiO 2 -MO 2 / n (M is a metal such as Al). For example,
As a method for forming a structural unit composed of silicic acid, layered silicate such as kanemite, Si (OR) 4 (R is an alkyl group), silica gel, water glass, sodium silicate, or the like can be preferably used.

【0030】無機材料から構造ユニットを作製するに
は、無機材料を界面活性剤(テンプレート物質)と混合
反応させ、界面活性剤のミセルのまわりに無機の骨格が
形成された界面活性剤/無機複合体を形成させた後、例
えば400°C〜600°Cでの焼成や、有機溶剤抽出
等により界面活性剤を除去して、界面活性剤のミセルと
同じ形状のメソポア細孔を無機骨格中に形成することが
できる(メソポーラスシリカ多孔体)。
In order to form a structural unit from an inorganic material, the inorganic material is mixed and reacted with a surfactant (template substance), and a surfactant / inorganic composite in which an inorganic skeleton is formed around micelles of the surfactant. After the body is formed, for example, baking at 400 ° C. to 600 ° C., or removing the surfactant by extracting with an organic solvent, the mesopore pores having the same shape as the micelle of the surfactant are formed in the inorganic skeleton. It can be formed (porous mesoporous silica).

【0031】上記構造ユニットの作製方法において、ケ
イ素含有化合物例えばケイ酸を出発材料とする場合に
は、カネマイトの如き層状シリケートをまず形成し、こ
の層間にミセルを挿入し、ミセルが存在しない層間をシ
リケート分子で繋ぎ、その後ミセルを除去して細孔を形
成することができる。又、水ガラスのようなケイ素含有
物質を出発材料とし、ミセルの周囲にシリケートモノマ
ーを集合させて重合させることによりシリカを形成し、
次いでミセル分子を取り除いて細孔を形成することもで
きる。この場合、ミセルは通常柱状となり、その結果柱
状の細孔が形成される。
In the above method for producing a structural unit, when a silicon-containing compound such as silicic acid is used as a starting material, a layered silicate such as kanemite is first formed, micelles are inserted between the layers, and a layer having no micelles is formed. The pores can be formed by connecting with silicate molecules and then removing the micelles. In addition, a silicon-containing substance such as water glass is used as a starting material, silica is formed by assembling and polymerizing silicate monomers around micelles,
The micelle molecules can then be removed to form pores. In this case, the micelles are usually columnar, resulting in columnar pores.

【0032】カネマイトの如き層状シリケートの形成を
介して構造ユニットを形成する方法においては、細孔表
面は疎水性であり、かつアニオン性を有する。疎水性表
面は水和していない酵素の安定な固定化のために好まし
く、アニオン性表面は表面にカチオンを有する酵素の固
定化のために好ましい。
In the method of forming a structural unit through the formation of a layered silicate such as kanemite, the surface of the pores is hydrophobic and anionic. Hydrophobic surfaces are preferred for stable immobilization of unhydrated enzymes, and anionic surfaces are preferred for immobilization of enzymes having cations on the surface.

【0033】上記ミセルは、適当な媒体中に各種の界面
活性剤、例えばアルキルトリメチルアンモニウムのよう
な陽イオン界面活性剤や、例えばアルキルスルホン酸塩
のような陰イオン界面活性剤や、例えばポリエチレング
リコール系等の非イオン界面活性剤、を分散させること
により形成される。ミセル形状としては、球状,シリン
ダー状,層状等があり、又、それらが規則的に配列して
ヘキサゴナル,キュービック構造を持つ、液晶構造が形
成される。
The micelles may contain various surfactants, such as cationic surfactants such as alkyltrimethylammonium, anionic surfactants such as alkylsulfonate, polyethylene glycol in a suitable medium. It is formed by dispersing a nonionic surfactant such as a system. The micelle shape includes a spherical shape, a cylindrical shape, a layered shape, and the like, and these are regularly arranged to form a liquid crystal structure having a hexagonal and cubic structure.

【0034】界面活性剤のアルキル鎖の長さを変えるこ
とによりミセルの径を変化させ、形成される細孔の径を
制御することができる。又、界面活性剤と併せ、トリメ
チルベンゼン,トリプロピルベンゼン等の比較的疎水性
の分子を添加することにより、ミセルを膨潤させ、結果
的に更に大きな細孔を形成することもできる。構造ユニ
ットの形態としては粉末状,顆粒状,シート状,バルク
状,膜状等がある。構造ユニットを構成する多孔性細孔
の細孔径(直径)は、その中に固定される酵素の直径を
ほぼ同等であることが好ましい。この直径は通常1nm
より大きく、好ましくは2nmより大きい。孔径は一般
に30nmより小さく、通常は10nmより小さい。
By changing the length of the alkyl chain of the surfactant, the diameter of the micelle can be changed, and the diameter of the formed pores can be controlled. Further, by adding relatively hydrophobic molecules such as trimethylbenzene and tripropylbenzene together with the surfactant, the micelles can be swelled and consequently larger pores can be formed. The form of the structural unit includes powder, granule, sheet, bulk, and film. The pore diameter (diameter) of the porous pores constituting the structural unit is preferably substantially equal to the diameter of the enzyme immobilized therein. This diameter is usually 1 nm
Larger, preferably larger than 2 nm. The pore size is generally smaller than 30 nm, usually smaller than 10 nm.

【0035】前記アンカーユニットを構成する分子とし
ては構造ユニットと基本的には同じ構造が望ましく、特
に酵素が活性ユニットである場合に、これに結合するた
めに、水酸基,アミド基,アミノ基,ピリジン基,ウレ
ア基,ウレタン基,カルボン酸基,フェノール基,アゾ
基,ヒドロキシル基,シラン誘導体,アミノアルキレン
基等の官能基が結合していることが必要である。
The molecule constituting the anchor unit desirably has basically the same structure as the structural unit. In particular, when the enzyme is an active unit, a hydroxyl group, an amide group, an amino group, a pyridine It is necessary that functional groups such as a group, a urea group, a urethane group, a carboxylic acid group, a phenol group, an azo group, a hydroxyl group, a silane derivative, and an aminoalkylene group are bonded.

【0036】本発明の安定化酵素を組み立てるに当た
り、まず酵素に直接連結させる分子を介してポリマー反
応を行い、酵素を収容した状態で構造ユニットを形成し
ても良く、又、構造ユニットを先に形成しておき、これ
に、場合によっては酵素自身が有するリジンのアミノ基
等を介して、酵素を導入しても良い。酵素と構造ユニッ
トとの結合は、前記 van der Waals力による結合や共有
結合のみならず、イオン結合,水素結合,疎水結合等で
あっても良い。
In assembling the stabilized enzyme of the present invention, first, a polymer reaction may be carried out via a molecule directly linked to the enzyme to form a structural unit in a state containing the enzyme. It may be formed, and the enzyme may be introduced into this via a lysine amino group or the like of the enzyme itself. The bond between the enzyme and the structural unit may be not only a bond or a covalent bond by the van der Waals force, but also an ionic bond, a hydrogen bond, a hydrophobic bond, or the like.

【0037】[0037]

【実施例】〔実施例1メソポーラスシリカ多孔体の合成 100mlのビーカーに5.0g(0.028mol)のδ−N
2Si25及び50mlのイオン交換水を入れ、約2
5°Cで3時間攪拌してカチオン交換し、次いで水溶液
を濾過してδ−Na1.60.4Si25沈殿物を得た。こ
の沈殿物に50mlのイオン交換水を加え、均一な分散
液になるまで攪拌してA液とした。
EXAMPLES Example 1 Synthesis of Porous Mesoporous Silica 5.0 g (0.028 mol) of δ-N was placed in a 100 ml beaker.
a 2 Si 2 O 5 and 50 ml of ion-exchanged water are added.
The mixture was stirred at 5 ° C. for 3 hours for cation exchange, and then the aqueous solution was filtered to obtain a δ-Na 1.6 H 0.4 Si 2 O 5 precipitate. 50 ml of ion-exchanged water was added to the precipitate, and the mixture was stirred until a uniform dispersion was obtained to obtain a liquid A.

【0038】100mlの三角フラスコに3.0g(0.
0082 mol)のヘキサデシルトリメチルアンモニウムブロ
マイド(HDTMA−Br)及び50mlのイオン交換
水を入れて攪拌し、完全透明液になってから、5.0g
(0.025mol)のトリイソプロピルベンゼン(TIPB)
を添加して激しく10分間攪拌した。この溶液をB液と
した。
In a 100 ml Erlenmeyer flask, 3.0 g (0.
0082 mol) of hexadecyltrimethylammonium bromide (HDTMA-Br) and 50 ml of ion-exchanged water and stirred.
(0.025 mol) of triisopropylbenzene (TIPB)
Was added and stirred vigorously for 10 minutes. This solution was used as solution B.

【0039】上記A液を250ml容の三口丸形フラス
コに移して激しく攪拌しながら、それにB液を徐々に添
加し80°Cまで昇温させ、続けて同温度で3時間恒温
反応させた。次に2N塩酸を用いて反応液のpHを8.
5±0.1まで調整し、続けて3時間攪拌した。反応終
了後すぐに濾過し、イオン交換水で200mlずつ5回
洗浄濾過した。
The above solution A was transferred to a 250 ml three-necked round flask, and while vigorously stirring, solution B was gradually added to the solution and the temperature was raised to 80 ° C., followed by a constant temperature reaction at the same temperature for 3 hours. Next, the pH of the reaction solution was adjusted to 8 using 2N hydrochloric acid.
The mixture was adjusted to 5 ± 0.1 and continuously stirred for 3 hours. Immediately after the completion of the reaction, the mixture was filtered, washed and filtered five times with 200 ml of ion-exchanged water.

【0040】生成物を45°Cで24時間風乾させ、次
いで550°Cの電気炉で6時間焼成することによりテ
ンプレート物質を除いて、白色粉末を約3.5g得た。
この白色粉末の構造をX線回折装置(理学RAD−B)
で確認し、又、その細孔径や表面積及び細孔総容積をN
2 吸着装置(Autosorb)で測定した結果、白色
粉末が前記した構造ユニットを備えるメソポーラスシリ
カ多孔体の粉末であることを確認した。
The product was air-dried at 45 ° C. for 24 hours, and then calcined in an electric furnace at 550 ° C. for 6 hours to remove the template substance to obtain about 3.5 g of a white powder.
An X-ray diffractometer (Rigaku RAD-B)
And the pore diameter, surface area, and total pore volume are determined by N
2 As a result of measurement with an adsorption device (Autosorb), it was confirmed that the white powder was a powder of a porous mesoporous silica having the structural unit described above.

【0041】安定化酵素の作製 西洋ワサビ由来のペルオキシダーゼ(シグマ社製)をp
H5の50mM酢酸ナトリウム緩衝液によって5mg/
mlに調製した。そして上記で合成したメソポーラスシ
リカ多孔体の粉末200mgに酵素溶液5mlを加え、
4°Cでゆるやかに16時間以上混和した。
Preparation of Stabilizing Enzyme Peroxidase derived from horseradish (manufactured by Sigma) was added to p.
5 mg / H5 in 50 mM sodium acetate buffer
ml. Then, 5 ml of the enzyme solution was added to 200 mg of the mesoporous silica powder synthesized above,
The mixture was gently mixed at 4 ° C for 16 hours or more.

【0042】安定化酵素の作用 トルエン,ガソリン,軽油を各10ml準備し、それぞ
れに対し20mMとなるように1,2−ジアミノベンゼ
ンを溶解し、これらの溶液に、0.05Mになるように
t−ブチルヒドロキシペルオキサイドをデカン溶液に溶
解したものを2ml加え、かつ上記安定化酵素(ペルオ
キシダーゼを固定したメソポーラスシリカ多孔体)を酵
素換算で0.5mg相当分加えて、38°Cで酵素反応
(酸化反応)させた。
Action of Stabilizing Enzyme Toluene, gasoline, and light oil were each prepared in an amount of 10 ml, and 1,2-diaminobenzene was dissolved in each to a concentration of 20 mM. 2 ml of a solution of -butylhydroxyperoxide dissolved in a decane solution are added, and the above stabilizing enzyme (porous mesoporous silica on which peroxidase is immobilized) is added in an amount equivalent to 0.5 mg in terms of enzyme, and the enzyme reaction is carried out at 38 ° C. Oxidation reaction).

【0043】そして各反応時間(反応開始1〜3時間
後)において酸化反応により生じた1,2−ジニトロベ
ンゼンの470nmにおける吸光度(Absorbance)を測
定した。その結果を図3に示すが、トルエン,ガソリ
ン,軽油のいずれの溶媒中においてもペルオキシダーゼ
活性が有効に発揮されていること、トルエン中における
よりもガソリン,軽油中における場合の方が酵素活性が
高いことが分かった。
At each reaction time (1 to 3 hours after the start of the reaction), the absorbance (absorbance) at 470 nm of 1,2-dinitrobenzene generated by the oxidation reaction was measured. The results are shown in FIG. 3, which shows that the peroxidase activity is effectively exhibited in any solvent of toluene, gasoline, and light oil, and that the enzyme activity is higher in gasoline and light oil than in toluene. I understood that.

【0044】〔実施例2〕各10ml容のフラスコに、
上記の安定化酵素10mgと、前記シグマ社製のペルオ
キシダーゼ1mgをそれぞれ入れ、ジベンゾチオフェン
又は2,8−ジメチルジベンゾチオフェンを溶解したn
−テトラデカン液(硫黄濃度約100ppm)2mlを
加えて、30°Cにて18時間往復振盪することにより
脱硫反応を試みた。
Example 2 Into each 10 ml flask,
10 mg of the above-mentioned stabilizing enzyme and 1 mg of the above-mentioned peroxidase manufactured by Sigma were added, and n was obtained by dissolving dibenzothiophene or 2,8-dimethyldibenzothiophene.
A desulfurization reaction was attempted by adding 2 ml of tetradecane solution (sulfur concentration: about 100 ppm) and shaking reciprocally at 30 ° C. for 18 hours.

【0045】これらの各反応液を12000rpm,1
0分間で遠心分離し、上澄の全硫黄分をパイロ蛍光法
(アンテック製硫黄計モデル7000)にて測定した。
測定結果から算出された相対脱硫率(%)は、安定化酵
素使用例においてジベンゾチオフェンに対し100%、
2,8−ジメチルジベンゾチオフェンに対し83.4%
であったが、酵素をそのまま使用した例においてジベン
ゾチオフェンに対し12.3%、2,8−ジメチルジベ
ンゾチオフェンに対し3.1%であり、顕著な差異が見
られた。
Each of these reaction solutions was prepared at 12000 rpm, 1
The mixture was centrifuged for 0 minutes, and the total sulfur content of the supernatant was measured by a pyrofluorescence method (Antech sulfur meter model 7000).
The relative desulfurization rate (%) calculated from the measurement results is 100% relative to dibenzothiophene in the example of using the stabilized enzyme.
83.4% based on 2,8-dimethyldibenzothiophene
However, in the case where the enzyme was used as it was, it was 12.3% with respect to dibenzothiophene and 3.1% with respect to 2,8-dimethyldibenzothiophene, indicating a remarkable difference.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る安定化酵素の構造例を示す図であ
る。
FIG. 1 is a diagram showing a structural example of a stabilizing enzyme according to the present invention.

【図2】本発明に係る安定化酵素の構造例を示す図であ
る。
FIG. 2 is a diagram showing a structural example of a stabilizing enzyme according to the present invention.

【図3】実施例に係る安定化酵素の作用を示すグラフ図
である。
FIG. 3 is a graph showing the action of a stabilizing enzyme according to an example.

【符号の説明】[Explanation of symbols]

1 構造ユニット 2 酵素 3 アンカーユニット 4 基質 1 Structural unit 2 Enzyme 3 Anchor unit 4 Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ペルオキシダーゼ,スルフィナーゼ,モ
ノオキシゲナーゼ,ジオキシゲナーゼ,イソメラーゼか
ら選ばれる少なくとも1種の酵素を、該酵素とほぼ合致
した大きさで構造安定性を有する構造ユニット中に固定
したものであって、燃料の改質に用いられることを特徴
とする燃料改質用安定化酵素。
1. An enzyme comprising at least one enzyme selected from the group consisting of peroxidase, sulfinase, monooxygenase, dioxygenase, and isomerase, which is immobilized in a structural unit having a size substantially matching the enzyme and having structural stability. A stabilized enzyme for fuel reforming, which is used for fuel reforming.
【請求項2】 前記構造ユニットが、メソポーラスシリ
カ多孔体における前記酵素を収容可能な細孔として構成
されていることを特徴とする請求項1に記載の燃料改質
用安定化酵素。
2. The stabilized enzyme for fuel reforming according to claim 1, wherein the structural unit is configured as a pore in the mesoporous silica porous body capable of containing the enzyme.
【請求項3】 請求項1又は請求項2のいずれかに記載
の燃料改質用安定化酵素を、燃料中に投入し、その酵素
作用により所定の燃料改質を行うことを特徴とする燃料
改質方法。
3. A fuel characterized in that the stabilized enzyme for fuel reforming according to claim 1 or 2 is introduced into fuel, and a predetermined fuel reforming is carried out by the action of the enzyme. Reforming method.
JP11222905A 1999-08-05 1999-08-05 Stabilized enzyme for reforming fuel and method for reforming fuel Pending JP2001046100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11222905A JP2001046100A (en) 1999-08-05 1999-08-05 Stabilized enzyme for reforming fuel and method for reforming fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11222905A JP2001046100A (en) 1999-08-05 1999-08-05 Stabilized enzyme for reforming fuel and method for reforming fuel

Publications (1)

Publication Number Publication Date
JP2001046100A true JP2001046100A (en) 2001-02-20

Family

ID=16789712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11222905A Pending JP2001046100A (en) 1999-08-05 1999-08-05 Stabilized enzyme for reforming fuel and method for reforming fuel

Country Status (1)

Country Link
JP (1) JP2001046100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919263B2 (en) 2003-08-19 2011-04-05 Canon Kabushiki Kaisha Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919263B2 (en) 2003-08-19 2011-04-05 Canon Kabushiki Kaisha Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor

Similar Documents

Publication Publication Date Title
Hwang et al. Enzyme stabilization by nano/microsized hybrid materials
Sigurdardóttir et al. Enzyme immobilization on inorganic surfaces for membrane reactor applications: mass transfer challenges, enzyme leakage and reuse of materials
Cui et al. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules
Cui et al. Mesoporous metal–organic framework with well-defined cruciate flower-like morphology for enzyme immobilization
Tran et al. Perspective of recent progress in immobilization of enzymes
Wu et al. Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica
Hudson et al. Proteins in mesoporous silicates
Bolivar et al. Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica
Vinu et al. Adsorption of cytochrome c on new mesoporous carbon molecular sieves
Smith et al. Sol− Gel Encapsulated Horseradish Peroxidase: A Catalytic Material for Peroxidation
Zou et al. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase
Dong et al. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite
Kang et al. Influence of pore diameters on the immobilization of lipase in SBA-15
GB2451863A (en) Core-shell catalysts and absorbents
Liu et al. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment
Fei et al. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization
He et al. Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase
Zhang et al. Progress and perspective of enzyme immobilization on zeolite crystal materials
Song et al. Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization
Jiang et al. Enzyme@ silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability
Montiel et al. Immobilization of chloroperoxidase on silica-based materials for 4, 6-dimethyl dibenzothiophene oxidation
Cui et al. Enzyme shielding in a large mesoporous hollow silica shell for improved recycling and stability based on CaCO3 microtemplates and biomimetic silicification
Haskell et al. Glucose oxidase immobilized on magnetic zirconia: controlling catalytic performance and stability
Bian et al. Bienzyme Magnetic Nanobiocatalyst with Fe3+–Tannic Acid Film for One-Pot Starch Hydrolysis
Xu et al. Recent advances in enzyme immobilization based on nanoflowers