JP2001046100A - Stabilizing enzyme for fuel reforming and fuel reforming method - Google Patents
Stabilizing enzyme for fuel reforming and fuel reforming methodInfo
- Publication number
- JP2001046100A JP2001046100A JP11222905A JP22290599A JP2001046100A JP 2001046100 A JP2001046100 A JP 2001046100A JP 11222905 A JP11222905 A JP 11222905A JP 22290599 A JP22290599 A JP 22290599A JP 2001046100 A JP2001046100 A JP 2001046100A
- Authority
- JP
- Japan
- Prior art keywords
- enzyme
- fuel
- fuel reforming
- structural unit
- reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 110
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 110
- 239000000446 fuel Substances 0.000 title claims abstract description 64
- 238000002407 reforming Methods 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 22
- 230000000087 stabilizing effect Effects 0.000 title description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 239000011148 porous material Substances 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- 102000003992 Peroxidases Human genes 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 7
- 102000016680 Dioxygenases Human genes 0.000 claims description 5
- 108010028143 Dioxygenases Proteins 0.000 claims description 5
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims description 5
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims description 5
- -1 sulfinase Proteins 0.000 claims description 5
- 102000004195 Isomerases Human genes 0.000 claims description 4
- 108090000769 Isomerases Proteins 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 20
- 108010093096 Immobilized Enzymes Proteins 0.000 abstract description 2
- 238000006477 desulfuration reaction Methods 0.000 description 14
- 230000023556 desulfurization Effects 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000693 micelle Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000002255 enzymatic effect Effects 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- RRYWCJRYULRSJM-UHFFFAOYSA-N 2,8-dimethyldibenzothiophene Chemical compound C1=C(C)C=C2C3=CC(C)=CC=C3SC2=C1 RRYWCJRYULRSJM-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000003100 immobilizing effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- LGXAANYJEHLUEM-UHFFFAOYSA-N 1,2,3-tri(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC(C(C)C)=C1C(C)C LGXAANYJEHLUEM-UHFFFAOYSA-N 0.000 description 2
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- KKIGDGWHHNXWNM-UHFFFAOYSA-N 1,2,3-tripropylbenzene Chemical compound CCCC1=CC=CC(CCC)=C1CCC KKIGDGWHHNXWNM-UHFFFAOYSA-N 0.000 description 1
- IZUKQUVSCNEFMJ-UHFFFAOYSA-N 1,2-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1[N+]([O-])=O IZUKQUVSCNEFMJ-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000006294 amino alkylene group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical class C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
(57)【要約】
【課題】 燃料活性に関わる酵素活性を有し、その酵素
活性が燃料中においても安定的に維持される固定化酵素
の提供。
【解決手段】 所定の手段によって、酵素分子とほぼ合
致する安定的な構造ユニットを構成し、このユニット中
に燃料活性に関わる酵素活性を有する酵素を固定する。
(57) [Problem] To provide an immobilized enzyme having an enzyme activity related to fuel activity, and the enzyme activity is stably maintained even in fuel. SOLUTION: By a predetermined means, a stable structural unit substantially matching an enzyme molecule is formed, and an enzyme having an enzyme activity related to fuel activity is immobilized in this unit.
Description
【0001】[0001]
【発明の属する技術分野】本発明は燃料改質用安定化酵
素及び燃料改質方法に関し、更に詳しくは、燃料改質に
関連する酵素作用を示すと共に、その酵素作用が水の混
在しない燃料中においても安定的に維持される酵素と、
かかる酵素を利用した有利な燃料改質方法とに関する。
本発明において「燃料改質」とは、燃料の脱硫,ガソリ
ンのオクタン価向上,軽油のセタン価向上,アロマ分低
減,低沸点化その他の、燃料の不純物除去もしくは性能
向上に有益な操作を言う。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stabilized enzyme for fuel reforming and a fuel reforming method, and more particularly, to an enzyme activity related to fuel reforming, and the enzyme activity in a fuel free of water. An enzyme that is stably maintained in
It relates to an advantageous fuel reforming method using such an enzyme.
In the present invention, "fuel reforming" refers to operations that are useful for removing fuel impurities or improving performance, such as desulfurization of fuel, improvement of octane number of gasoline, improvement of cetane number of light oil, reduction of aroma content, and reduction of boiling point.
【0002】[0002]
【従来の技術】従来、ガソリンや軽油等の各種燃料の改
質技術が研究され、とりわけ、燃料の硫黄分が燃焼排気
中のSOxの生成原因となったり、排気浄化触媒の硫黄
被毒による活性低下を来したりするため、燃料の有効な
脱硫技術が追求されている。2. Description of the Related Art Hitherto, reforming technologies for various fuels such as gasoline and light oil have been studied. In particular, the sulfur content of the fuel causes SOx in combustion exhaust gas and the activity of the exhaust purification catalyst due to sulfur poisoning. In order to reduce fuel consumption, effective desulfurization technology for fuel is being pursued.
【0003】燃料脱硫技術に関して、例えば化学的脱硫
方法として代表的に例示される水素化脱硫方法において
は、石油留分中の硫黄化合物を、モリブデン担持アルミ
ナ触媒等の金属触媒の存在下に水素と還元反応させて、
分離,除去の容易な硫化水素とし、これを所定のプロセ
スによって除去している。With respect to fuel desulfurization technology, for example, in a hydrodesulfurization method typically exemplified as a chemical desulfurization method, a sulfur compound in a petroleum fraction is converted into hydrogen in the presence of a metal catalyst such as an alumina catalyst supported on molybdenum. Let it undergo a reduction reaction,
Hydrogen sulfide is easily separated and removed, and is removed by a predetermined process.
【0004】更に、硫黄化合物分解菌等を利用するいわ
ゆる「バイオ脱硫」の研究も盛んであり、例えば特開平
11−9293号公報に開示された「アルキル化複素環
硫黄化合物を分解する微生物」の発明においては、燃料
中のアルキル化ベンゾチオフェンあるいはアルキル化ジ
ベンゾチオフェン等の難分解性硫黄化合物のC−S結合
を選択的に切断する能力(酵素活性)を持つ微生物を利
用し、難分解性硫黄化合物の分解→分離→除去を容易に
することを試みている。Further, research on so-called "biodesulfurization" utilizing sulfur compound-decomposing bacteria and the like has been actively conducted. In the present invention, a microorganism having the ability (enzymatic activity) to selectively cleave a CS bond of a refractory sulfur compound such as an alkylated benzothiophene or an alkylated dibenzothiophene in a fuel is used. We are trying to make it easier to decompose, separate, and remove compounds.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記の水素化
脱硫方法は、一般的に高い反応温度や圧力が要求される
ために処理設備とその運転が非常にコスト高になり、し
かも、特定の難分解性硫黄化合物は余り除去されないと
言う不具合がある。今後、高濃度に硫黄を含む原油をも
使用する必要性が増大すると見込まれる中で、このよう
な難分解性の硫黄化合物の存在は大きな問題となる。
又、軽油に関しては、その潤滑性に寄与する極性基が水
素化により還元されるために、軽油の潤滑性が失われる
と言う問題もある。However, the above-mentioned hydrodesulfurization method generally requires a high reaction temperature and pressure, so that the processing equipment and its operation become very costly, and furthermore, a specific equipment is required. There is a problem that the hardly decomposable sulfur compound is not removed so much. In the future, it is expected that the necessity of using a crude oil containing a high concentration of sulfur is expected to increase, and the presence of such a hardly decomposable sulfur compound becomes a serious problem.
Further, with respect to light oil, there is also a problem that the lubricity of light oil is lost because the polar group contributing to its lubricity is reduced by hydrogenation.
【0006】次に、酵素活性を利用する脱硫技術におい
ては、特段の高い反応温度や圧力が要求されず、基質特
異性の高い酵素活性の適宜な選択により上記難分解性硫
黄化合物も分解可能であることが判明しているので、化
学的脱硫方法の代替技術もしくは少なくとも補完技術と
して、高度脱硫のための重要な技術的位置を占める可能
性がある。[0006] Next, in the desulfurization technique utilizing the enzymatic activity, a particularly high reaction temperature and pressure are not required, and the above-mentioned hardly decomposable sulfur compound can be decomposed by appropriate selection of the enzymatic activity having high substrate specificity. As it turns out, it may occupy an important technical position for advanced desulfurization as an alternative or at least a complementary technology to the chemical desulfurization process.
【0007】しかしながら、例えば上記特開平11−9
293号公報に開示された発明のように微生物の酵素活
性を利用する脱硫技術では、燃料を水と混合・攪拌しつ
つ、水/燃料界面で微生物による脱硫を行うと言う制約
を伴っていた。従って水と燃料の混合・攪拌システム
や、脱硫後の燃料・水・菌体の分離システム等が不可欠
となり、微生物の管理も煩雑であり、かなりの処理費用
と煩雑なシステム運営を余儀なくされると言う問題があ
った。However, for example, Japanese Patent Application Laid-Open No.
The desulfurization technique utilizing the enzymatic activity of microorganisms as in the invention disclosed in Japanese Patent No. 293 has a restriction that the microorganisms are desulfurized at the water / fuel interface while mixing and stirring the fuel with water. Therefore, a system for mixing and stirring water and fuel, a system for separating fuel, water, and cells after desulfurization are indispensable, and the management of microorganisms is complicated, and considerable processing costs and complicated system operation are required. There was a problem to say.
【0008】換言すれば、ガソリンや軽油中に直接投入
されても安定的に作用する脱硫酵素が未だ提供されてい
ないため、微生物利用方式(微生物の菌体によって保護
された酵素の活性を利用する方式)に頼らざるを得なか
った。このような事情は、ガソリンのオクタン価向上,
軽油のセタン価向上等のために酵素活性を利用しようと
する場合にも、同様である。[0008] In other words, a desulfurizing enzyme that stably acts even when directly injected into gasoline or gas oil has not been provided yet, and therefore, a microorganism-based method (using the activity of an enzyme protected by the cells of microorganisms) is used. Method). This situation has led to an increase in the octane value of gasoline,
The same applies to the case where the enzymatic activity is to be used to improve the cetane number of light oil.
【0009】この点に関連して、近年、酵素を樹脂等に
直接固定させる酵素固定化技術、酵素をゲルに封じ込め
る包括固定化法、酵素を半透明のポリマー被膜により被
覆するマイクロカプセル法、酵素蛋白質の表面をポリエ
チレングリコールや糖脂質で修飾して安定化する表面修
飾法等も注目されている。しかし、いずれの場合におい
ても、酵素を固定するための構造ユニットが酵素分子と
合致しない形状(例えば、単なる平坦面)であったり、
酵素分子と合致した形状と大きさの構造ユニットであっ
てもその構造安定性が欠けていたりするため、燃料中に
直接投入されると言う過酷な環境において、酵素の立体
構造(即ち酵素活性)を安定的に維持することが困難で
あった。In this connection, in recent years, an enzyme immobilization technique for directly immobilizing an enzyme on a resin or the like, a comprehensive immobilization method for encapsulating the enzyme in a gel, a microcapsule method for coating the enzyme with a translucent polymer film, Attention has also been paid to a surface modification method for stabilizing a protein surface by modifying it with polyethylene glycol or glycolipid. However, in any case, the structural unit for immobilizing the enzyme has a shape that does not match the enzyme molecule (for example, a simple flat surface),
Even in the case of a structural unit that matches the shape and size of an enzyme molecule, its structural stability is lacking. Therefore, in a severe environment where it is directly injected into fuel, the three-dimensional structure of the enzyme (ie, enzyme activity) Was difficult to maintain stably.
【0010】そこで本発明は、燃料改質に関連する酵素
作用を示すと共に、その酵素作用が燃料中においても安
定的に維持される安定化酵素と、かかる安定化酵素を利
用した有利な燃料改質方法とを提供することを、解決す
べき課題とする。[0010] Accordingly, the present invention provides a stabilizing enzyme which exhibits an enzymatic action related to fuel reforming, and whose enzymatic action is stably maintained even in fuel, and an advantageous fuel modification utilizing such a stabilizing enzyme. Providing quality methods is an issue to be solved.
【0011】本願発明者は、脱硫等の燃料改質に関連す
る数種類の酵素を具体的に絞り込み、これらの酵素につ
いて、本件出願人の出願に係る特願平11−27702
号の願書に添付した明細書に開示した手段により固定化
した処、水の混在しない燃料中においても酵素作用が安
定的に維持されることを実験的に見出し、本願発明を完
成した。The present inventor specifically narrows down several types of enzymes related to fuel reforming such as desulfurization. These enzymes are described in Japanese Patent Application No. 11-27702 filed by the present applicant.
The present inventors have experimentally found that the enzyme action is stably maintained even in a fuel containing no water when immobilized by the means disclosed in the specification attached to the application of the present invention, and completed the present invention.
【0012】[0012]
【課題を解決するための手段】(第1発明の構成)上記
課題を解決するための本願第1発明(請求項1に記載の
発明)の構成は、ペルオキシダーゼ(peroxidase),ス
ルフィナーゼ( sulfinase),モノオキシゲナーゼ( m
onooxygenase),ジオキシゲナーゼ( dioxygenase) ,
イソメラーゼ(isomerase)から選ばれる少なくとも1
種の酵素を、該酵素とほぼ合致した大きさで構造安定性
を有する構造ユニット中に固定したものであって、燃料
の改質に用いられる、燃料改質用安定化酵素である。Means for Solving the Problems (Structure of the First Invention) The structure of the first invention of the present application (the invention of claim 1) for solving the above-mentioned problems is as follows: peroxidase, sulfinase, Monooxygenase (m
onooxygenase), dioxygenase (dioxygenase),
At least one selected from isomerases
Kind Code: A1 Abstract: A stabilized enzyme for fuel reforming, comprising a kind of enzyme immobilized in a structural unit having a size substantially matching that of the enzyme and having structural stability, and used for fuel reforming.
【0013】(第2発明の構成)上記課題を解決するた
めの本願第2発明(請求項2に記載の発明)の構成は、
前記第1発明に係る構造ユニットが、メソポーラスシリ
カ多孔体における前記酵素を収容可能な細孔として構成
されている、燃料改質用安定化酵素である。(Structure of the Second Invention) The structure of the second invention of the present application (the invention according to claim 2) for solving the above problems is as follows.
The structural unit according to the first aspect of the present invention is a stabilized enzyme for fuel reforming, wherein the structural unit is configured as pores of the porous mesoporous silica capable of containing the enzyme.
【0014】(第3発明の構成)上記課題を解決するた
めの本願第3発明(請求項3に記載の発明)の構成は、
第1発明又は第2発明のいずれかに係る燃料改質用安定
化酵素を燃料中に投入し、その酵素作用により所定の燃
料改質を行う、燃料改質方法である。(Structure of the Third Invention) The structure of the third invention (the invention according to claim 3) for solving the above problems is as follows.
A fuel reforming method in which the stabilizing enzyme for fuel reforming according to any one of the first invention and the second invention is charged into fuel, and a predetermined fuel reforming is performed by the enzyme action.
【0015】[0015]
【発明の作用・効果】(第1発明の作用・効果)第1発
明の燃料改質用安定化酵素においては、ペルオキシダー
ゼ,スルフィナーゼ,モノオキシゲナーゼ,ジオキシゲ
ナーゼ,イソメラーゼから選ばれる少なくとも1種の酵
素が、該酵素とほぼ合致した形状で構造安定性を有する
構造ユニット中に固定されている。[Operation and Effect of the Invention] (Operation and Effect of the First Invention) In the stabilized enzyme for fuel reforming of the first invention, at least one enzyme selected from peroxidase, sulfinase, monooxygenase, dioxygenase and isomerase is used. Are immobilized in a structural unit having a structural stability substantially conforming to the enzyme.
【0016】第1発明に係る各燃料改質用安定化酵素
は、高い反応温度や圧力を要求せず、軽油の改質におい
てその潤滑性を阻害すると言う不具合もなく、又、微生
物の酵素活性を利用する前記燃料改質技術のように水/
燃料混在系を要求しないので、処理システムを著しく簡
易化、低コスト化することができる。Each of the stabilizing enzymes for fuel reforming according to the first invention does not require a high reaction temperature or pressure, does not have the problem of impairing the lubricity in reforming gas oil, and has the enzymatic activity of microorganisms. Water / water as in the fuel reforming technology using
Since no fuel-mixed system is required, the processing system can be significantly simplified and reduced in cost.
【0017】更に、酵素をその分子にほぼ合致した大き
さの構造安定性を有する構造ユニット中に固定する点か
ら、酵素の分子レベルでの大きな変形が物理的に規制さ
れて、その立体構造が安定的に維持され、ガソリンや軽
油中に直接投入されると言う過酷な環境においても酵素
の失活が起こり難い。Furthermore, since the enzyme is immobilized in a structural unit having a structural stability having a size substantially matching that of the molecule, large deformation at the molecular level of the enzyme is physically regulated, and the three-dimensional structure of the enzyme is reduced. The enzyme is hardly deactivated even in a harsh environment where it is stably maintained and is directly injected into gasoline or light oil.
【0018】そして、以上の作用のみから、第1発明の
安定化酵素が、その固定された酵素の種類に関わらず燃
料中で十分な酵素活性を発揮できるとは限らないが、少
なくとも上記した一定の酵素については、第1発明の安
定化酵素の形態とすることにより実際に燃料中でも安定
的で良好な酵素作用を示すことが確認できた。From the above actions alone, the stabilized enzyme of the first invention is not always able to exhibit sufficient enzyme activity in fuel regardless of the type of the immobilized enzyme. With respect to the enzyme (1), it was confirmed that the stabilized enzyme of the first aspect of the invention actually exhibited a stable and good enzyme action even in fuel.
【0019】(第2発明の作用・効果)第2発明におい
て、前記第1発明に係る構造ユニットが、メソポーラス
シリカ多孔体における前記酵素を収容可能な細孔として
構成されているので、多孔体の多数の細孔に酵素を固定
すると言う効率の良い実施形態で酵素固定用の構造ユニ
ットが提供され、しかもシリカ多孔体である構造ユニッ
トは構造安定性が極めて高いと言う利点がある。(Function / Effect of the Second Invention) In the second invention, the structural unit according to the first invention is constituted as pores capable of accommodating the enzyme in a porous mesoporous silica material. The structural unit for immobilizing the enzyme is provided in an efficient embodiment in which the enzyme is immobilized on a large number of pores, and the structural unit which is a porous silica material has an advantage that the structural stability is extremely high.
【0020】(第3発明の作用・効果)第3発明におい
ては、前記第1発明又は第2発明に係る燃料改質用安定
化酵素を燃料中(水を混在させない燃料中)に投入し、
その酵素作用により脱硫,オクタン価向上,セタン価向
上等の所定の燃料改質を行うので、前記第1発明及び/
又は第2発明の作用・効果を確保したもとで、燃料改質
を極めて有利に行うことができる。(Function / Effect of Third Invention) In the third invention, the stabilized enzyme for fuel reforming according to the first invention or the second invention is introduced into fuel (in fuel in which water is not mixed),
Because of the enzymatic action, predetermined fuel reforming such as desulfurization, octane number improvement, cetane number improvement, etc. is carried out.
Alternatively, the fuel reforming can be performed very advantageously while ensuring the operation and effect of the second invention.
【0021】[0021]
【発明の実施の形態】次に、第1発明〜第3発明の実施
の形態について説明する。以下において単に「本発明」
と言うときは、第1発明〜第3発明を一括して指してい
る。Next, embodiments of the first to third inventions will be described. In the following, simply "the present invention"
When it says, it points to 1st invention-3rd invention collectively.
【0022】〔燃料改質〕本発明において燃料の種類は
限定されないが、特にガソリンと軽油とが改質の対象と
して好ましい。燃料改質の内容も限定されないが、燃料
一般の脱硫,ガソリンにおけるオクタン価向上、軽油に
おけるセタン価向上,アロマ分低減,低沸点化等を好ま
しく例示することができる。目的とする燃料改質の内容
によって、構造ユニット中に固定すべき1種又は2種以
上の酵素の種類が決まる。[Fuel Reforming] In the present invention, the type of fuel is not limited, but gasoline and light oil are particularly preferred as targets for reforming. Although the content of the fuel reforming is not limited, preferable examples include desulfurization of general fuels, improvement of octane number in gasoline, improvement of cetane number in light oil, reduction of aroma content, and reduction of boiling point. The type of one or more enzymes to be immobilized in the structural unit is determined by the content of the target fuel reforming.
【0023】〔酵素〕本発明において利用可能な酵素と
して、本願発明者が燃料改質上の有効な酵素作用を確認
している限りにおいて、ペルオキシダーゼ,スルフィナ
ーゼ,スルフォンモノオキシゲナーゼ等のモノオキシゲ
ナーゼ,ジオキシゲナーゼ,イソメラーゼを挙げること
ができる。なお、上記以外の酵素であっても、何らかの
意味で燃料改質上有効であり、かつ本発明の安定化方法
により燃料中での安定的な酵素活性の発現が確認される
ものは、本発明において利用可能である。[Enzymes] As enzymes that can be used in the present invention, monooxygenases such as peroxidase, sulfinase, and sulfone monooxygenase, dioxygenases, and the like can be used as long as the present inventors have confirmed effective enzymatic action on fuel reforming. , Isomerase. It should be noted that any enzyme other than the above is effective for fuel reforming in some sense, and is confirmed to exhibit stable enzyme activity in fuel by the stabilization method of the present invention. Available at
【0024】本発明において「酵素」とは、通常の酵素
蛋白質分子、又はその活性ユニット(活性部位を含む酵
素の断片)を言う。構造ユニット中には、1種類の酵素
だけが固定されていても良く、例えば燃料改質上必要な
一連の反応に関わるような、2種類以上の酵素が同時に
固定されていても良い。後者の場合において、2種類以
上の酵素は同一の多孔体等における別々の構造ユニット
中に固定されていても良く、同一の構造ユニット中に固
定されていても良い。In the present invention, the term "enzyme" refers to a normal enzyme protein molecule or its active unit (enzyme fragment containing an active site). In the structural unit, only one type of enzyme may be immobilized. For example, two or more types of enzymes involved in a series of reactions required for fuel reforming may be immobilized simultaneously. In the latter case, two or more types of enzymes may be fixed in separate structural units in the same porous body or the like, or may be fixed in the same structural unit.
【0025】〔安定化酵素〕本発明に係る安定化酵素
は、燃料の改質に用いられるものであって、燃料改質に
関連する前記酵素が、該酵素とほぼ合致した大きさで構
造安定性を有する構造ユニット中に固定されたものを言
う。[Stabilizing enzyme] The stabilizing enzyme according to the present invention is used for fuel reforming, and the enzyme related to fuel reforming has a structurally stable size substantially matching that of the enzyme. Fixed in a structural unit having the property.
【0026】安定化酵素の構造の一例を図1に概念化し
て示すと、構造ユニット1はpH,熱,流体の流動等の
環境条件に対して構造安定性を有するものである。酵素
2は基質4に対して所定の酵素活性を発現する部分であ
り、通常の酵素や、酵素活性部位を含有する酵素断片等
により構成される。アンカーユニット3は、本発明の安
定化酵素において必須の構成要素ではないが、構造ユニ
ット1と酵素2とを連結する要素であって、構造ユニッ
ト1の上記構造安定性を酵素2に伝えて酵素2の立体構
造の大きな変化による失活を抑制すると共に、基質4と
の相互作用に必要な活性部位の比較的小さな構造変化は
許容する程度の自由度を与える。FIG. 1 conceptually shows an example of the structure of the stabilized enzyme. The structural unit 1 has structural stability against environmental conditions such as pH, heat, and fluid flow. The enzyme 2 is a portion that expresses a predetermined enzyme activity on the substrate 4, and is composed of a normal enzyme, an enzyme fragment containing an enzyme active site, and the like. The anchor unit 3 is not an essential component in the stabilizing enzyme of the present invention, but is an element that connects the structural unit 1 and the enzyme 2, and transmits the above-mentioned structural stability of the structural unit 1 to the enzyme 2, In addition to suppressing the inactivation due to a large change in the three-dimensional structure of 2, the relatively small change in the structure of the active site required for the interaction with the substrate 4 gives an acceptable degree of freedom.
【0027】安定化酵素の構造の他の一例を図2に概念
化して示すと、酵素2と構造ユニット1とは上記のよう
なアンカーユニットを介することなく van der Waals力
等により結合している。個々の構造ユニット1には1個
又は少数個の酵素2が収容されており、構造ユニット1
の内径はこれらの1個又は少数個の酵素2の立体形状に
ほぼ合致していることが好ましい。FIG. 2 conceptually shows another example of the structure of the stabilized enzyme. As shown in FIG. 2, the enzyme 2 and the structural unit 1 are bound by van der Waals force or the like without the above-mentioned anchor unit. . Each structural unit 1 contains one or a small number of enzymes 2, and the structural unit 1
Preferably approximately matches the three-dimensional shape of one or a few of these enzymes 2.
【0028】上記図1又は図2に示す構造ユニット1
は、無機材料から構成されても良く、ポリマー等の有機
材料から構成されても良い。有機材料からなる構造ユニ
ット1においては、酵素の周りを、場合によってはアン
カーユニットを介して、被覆するためのポリマー形成反
応が必要である。上記モノマーやポリマーの種類は、発
明の目的を阻害しない限りにおいて特段に限定されな
い。The structural unit 1 shown in FIG. 1 or FIG.
May be composed of an inorganic material or an organic material such as a polymer. In the structural unit 1 made of an organic material, a polymer forming reaction is required to coat around the enzyme and possibly via an anchor unit. The type of the monomer or polymer is not particularly limited as long as the object of the invention is not hindered.
【0029】無機材料からなる構造ユニットとしては、
例えばケイ酸(SiO2)やアルミナ等の各種金属酸化
物、SiO2−MO2/n(MはAl等の金属)で表される
複合酸化物等によって構成することができる。例えば、
ケイ酸からなる構造ユニットの形成方法として、カネマ
イトのような層状シリケート,Si(OR)4(Rはア
ルキル基),シリカゲル,水ガラス,ケイ酸ソーダ等を
好ましく用いることができる。As the structural unit made of an inorganic material,
For example, it can be composed of various metal oxides such as silicic acid (SiO 2 ) and alumina, and a composite oxide represented by SiO 2 -MO 2 / n (M is a metal such as Al). For example,
As a method for forming a structural unit composed of silicic acid, layered silicate such as kanemite, Si (OR) 4 (R is an alkyl group), silica gel, water glass, sodium silicate, or the like can be preferably used.
【0030】無機材料から構造ユニットを作製するに
は、無機材料を界面活性剤(テンプレート物質)と混合
反応させ、界面活性剤のミセルのまわりに無機の骨格が
形成された界面活性剤/無機複合体を形成させた後、例
えば400°C〜600°Cでの焼成や、有機溶剤抽出
等により界面活性剤を除去して、界面活性剤のミセルと
同じ形状のメソポア細孔を無機骨格中に形成することが
できる(メソポーラスシリカ多孔体)。In order to form a structural unit from an inorganic material, the inorganic material is mixed and reacted with a surfactant (template substance), and a surfactant / inorganic composite in which an inorganic skeleton is formed around micelles of the surfactant. After the body is formed, for example, baking at 400 ° C. to 600 ° C., or removing the surfactant by extracting with an organic solvent, the mesopore pores having the same shape as the micelle of the surfactant are formed in the inorganic skeleton. It can be formed (porous mesoporous silica).
【0031】上記構造ユニットの作製方法において、ケ
イ素含有化合物例えばケイ酸を出発材料とする場合に
は、カネマイトの如き層状シリケートをまず形成し、こ
の層間にミセルを挿入し、ミセルが存在しない層間をシ
リケート分子で繋ぎ、その後ミセルを除去して細孔を形
成することができる。又、水ガラスのようなケイ素含有
物質を出発材料とし、ミセルの周囲にシリケートモノマ
ーを集合させて重合させることによりシリカを形成し、
次いでミセル分子を取り除いて細孔を形成することもで
きる。この場合、ミセルは通常柱状となり、その結果柱
状の細孔が形成される。In the above method for producing a structural unit, when a silicon-containing compound such as silicic acid is used as a starting material, a layered silicate such as kanemite is first formed, micelles are inserted between the layers, and a layer having no micelles is formed. The pores can be formed by connecting with silicate molecules and then removing the micelles. In addition, a silicon-containing substance such as water glass is used as a starting material, silica is formed by assembling and polymerizing silicate monomers around micelles,
The micelle molecules can then be removed to form pores. In this case, the micelles are usually columnar, resulting in columnar pores.
【0032】カネマイトの如き層状シリケートの形成を
介して構造ユニットを形成する方法においては、細孔表
面は疎水性であり、かつアニオン性を有する。疎水性表
面は水和していない酵素の安定な固定化のために好まし
く、アニオン性表面は表面にカチオンを有する酵素の固
定化のために好ましい。In the method of forming a structural unit through the formation of a layered silicate such as kanemite, the surface of the pores is hydrophobic and anionic. Hydrophobic surfaces are preferred for stable immobilization of unhydrated enzymes, and anionic surfaces are preferred for immobilization of enzymes having cations on the surface.
【0033】上記ミセルは、適当な媒体中に各種の界面
活性剤、例えばアルキルトリメチルアンモニウムのよう
な陽イオン界面活性剤や、例えばアルキルスルホン酸塩
のような陰イオン界面活性剤や、例えばポリエチレング
リコール系等の非イオン界面活性剤、を分散させること
により形成される。ミセル形状としては、球状,シリン
ダー状,層状等があり、又、それらが規則的に配列して
ヘキサゴナル,キュービック構造を持つ、液晶構造が形
成される。The micelles may contain various surfactants, such as cationic surfactants such as alkyltrimethylammonium, anionic surfactants such as alkylsulfonate, polyethylene glycol in a suitable medium. It is formed by dispersing a nonionic surfactant such as a system. The micelle shape includes a spherical shape, a cylindrical shape, a layered shape, and the like, and these are regularly arranged to form a liquid crystal structure having a hexagonal and cubic structure.
【0034】界面活性剤のアルキル鎖の長さを変えるこ
とによりミセルの径を変化させ、形成される細孔の径を
制御することができる。又、界面活性剤と併せ、トリメ
チルベンゼン,トリプロピルベンゼン等の比較的疎水性
の分子を添加することにより、ミセルを膨潤させ、結果
的に更に大きな細孔を形成することもできる。構造ユニ
ットの形態としては粉末状,顆粒状,シート状,バルク
状,膜状等がある。構造ユニットを構成する多孔性細孔
の細孔径(直径)は、その中に固定される酵素の直径を
ほぼ同等であることが好ましい。この直径は通常1nm
より大きく、好ましくは2nmより大きい。孔径は一般
に30nmより小さく、通常は10nmより小さい。By changing the length of the alkyl chain of the surfactant, the diameter of the micelle can be changed, and the diameter of the formed pores can be controlled. Further, by adding relatively hydrophobic molecules such as trimethylbenzene and tripropylbenzene together with the surfactant, the micelles can be swelled and consequently larger pores can be formed. The form of the structural unit includes powder, granule, sheet, bulk, and film. The pore diameter (diameter) of the porous pores constituting the structural unit is preferably substantially equal to the diameter of the enzyme immobilized therein. This diameter is usually 1 nm
Larger, preferably larger than 2 nm. The pore size is generally smaller than 30 nm, usually smaller than 10 nm.
【0035】前記アンカーユニットを構成する分子とし
ては構造ユニットと基本的には同じ構造が望ましく、特
に酵素が活性ユニットである場合に、これに結合するた
めに、水酸基,アミド基,アミノ基,ピリジン基,ウレ
ア基,ウレタン基,カルボン酸基,フェノール基,アゾ
基,ヒドロキシル基,シラン誘導体,アミノアルキレン
基等の官能基が結合していることが必要である。The molecule constituting the anchor unit desirably has basically the same structure as the structural unit. In particular, when the enzyme is an active unit, a hydroxyl group, an amide group, an amino group, a pyridine It is necessary that functional groups such as a group, a urea group, a urethane group, a carboxylic acid group, a phenol group, an azo group, a hydroxyl group, a silane derivative, and an aminoalkylene group are bonded.
【0036】本発明の安定化酵素を組み立てるに当た
り、まず酵素に直接連結させる分子を介してポリマー反
応を行い、酵素を収容した状態で構造ユニットを形成し
ても良く、又、構造ユニットを先に形成しておき、これ
に、場合によっては酵素自身が有するリジンのアミノ基
等を介して、酵素を導入しても良い。酵素と構造ユニッ
トとの結合は、前記 van der Waals力による結合や共有
結合のみならず、イオン結合,水素結合,疎水結合等で
あっても良い。In assembling the stabilized enzyme of the present invention, first, a polymer reaction may be carried out via a molecule directly linked to the enzyme to form a structural unit in a state containing the enzyme. It may be formed, and the enzyme may be introduced into this via a lysine amino group or the like of the enzyme itself. The bond between the enzyme and the structural unit may be not only a bond or a covalent bond by the van der Waals force, but also an ionic bond, a hydrogen bond, a hydrophobic bond, or the like.
【0037】[0037]
【実施例】〔実施例1〕メソポーラスシリカ多孔体の合成 100mlのビーカーに5.0g(0.028mol)のδ−N
a2Si2O5及び50mlのイオン交換水を入れ、約2
5°Cで3時間攪拌してカチオン交換し、次いで水溶液
を濾過してδ−Na1.6H0.4Si2O5沈殿物を得た。こ
の沈殿物に50mlのイオン交換水を加え、均一な分散
液になるまで攪拌してA液とした。EXAMPLES Example 1 Synthesis of Porous Mesoporous Silica 5.0 g (0.028 mol) of δ-N was placed in a 100 ml beaker.
a 2 Si 2 O 5 and 50 ml of ion-exchanged water are added.
The mixture was stirred at 5 ° C. for 3 hours for cation exchange, and then the aqueous solution was filtered to obtain a δ-Na 1.6 H 0.4 Si 2 O 5 precipitate. 50 ml of ion-exchanged water was added to the precipitate, and the mixture was stirred until a uniform dispersion was obtained to obtain a liquid A.
【0038】100mlの三角フラスコに3.0g(0.
0082 mol)のヘキサデシルトリメチルアンモニウムブロ
マイド(HDTMA−Br)及び50mlのイオン交換
水を入れて攪拌し、完全透明液になってから、5.0g
(0.025mol)のトリイソプロピルベンゼン(TIPB)
を添加して激しく10分間攪拌した。この溶液をB液と
した。In a 100 ml Erlenmeyer flask, 3.0 g (0.
0082 mol) of hexadecyltrimethylammonium bromide (HDTMA-Br) and 50 ml of ion-exchanged water and stirred.
(0.025 mol) of triisopropylbenzene (TIPB)
Was added and stirred vigorously for 10 minutes. This solution was used as solution B.
【0039】上記A液を250ml容の三口丸形フラス
コに移して激しく攪拌しながら、それにB液を徐々に添
加し80°Cまで昇温させ、続けて同温度で3時間恒温
反応させた。次に2N塩酸を用いて反応液のpHを8.
5±0.1まで調整し、続けて3時間攪拌した。反応終
了後すぐに濾過し、イオン交換水で200mlずつ5回
洗浄濾過した。The above solution A was transferred to a 250 ml three-necked round flask, and while vigorously stirring, solution B was gradually added to the solution and the temperature was raised to 80 ° C., followed by a constant temperature reaction at the same temperature for 3 hours. Next, the pH of the reaction solution was adjusted to 8 using 2N hydrochloric acid.
The mixture was adjusted to 5 ± 0.1 and continuously stirred for 3 hours. Immediately after the completion of the reaction, the mixture was filtered, washed and filtered five times with 200 ml of ion-exchanged water.
【0040】生成物を45°Cで24時間風乾させ、次
いで550°Cの電気炉で6時間焼成することによりテ
ンプレート物質を除いて、白色粉末を約3.5g得た。
この白色粉末の構造をX線回折装置(理学RAD−B)
で確認し、又、その細孔径や表面積及び細孔総容積をN
2 吸着装置(Autosorb)で測定した結果、白色
粉末が前記した構造ユニットを備えるメソポーラスシリ
カ多孔体の粉末であることを確認した。The product was air-dried at 45 ° C. for 24 hours, and then calcined in an electric furnace at 550 ° C. for 6 hours to remove the template substance to obtain about 3.5 g of a white powder.
An X-ray diffractometer (Rigaku RAD-B)
And the pore diameter, surface area, and total pore volume are determined by N
2 As a result of measurement with an adsorption device (Autosorb), it was confirmed that the white powder was a powder of a porous mesoporous silica having the structural unit described above.
【0041】安定化酵素の作製 西洋ワサビ由来のペルオキシダーゼ(シグマ社製)をp
H5の50mM酢酸ナトリウム緩衝液によって5mg/
mlに調製した。そして上記で合成したメソポーラスシ
リカ多孔体の粉末200mgに酵素溶液5mlを加え、
4°Cでゆるやかに16時間以上混和した。Preparation of Stabilizing Enzyme Peroxidase derived from horseradish (manufactured by Sigma) was added to p.
5 mg / H5 in 50 mM sodium acetate buffer
ml. Then, 5 ml of the enzyme solution was added to 200 mg of the mesoporous silica powder synthesized above,
The mixture was gently mixed at 4 ° C for 16 hours or more.
【0042】安定化酵素の作用 トルエン,ガソリン,軽油を各10ml準備し、それぞ
れに対し20mMとなるように1,2−ジアミノベンゼ
ンを溶解し、これらの溶液に、0.05Mになるように
t−ブチルヒドロキシペルオキサイドをデカン溶液に溶
解したものを2ml加え、かつ上記安定化酵素(ペルオ
キシダーゼを固定したメソポーラスシリカ多孔体)を酵
素換算で0.5mg相当分加えて、38°Cで酵素反応
(酸化反応)させた。 Action of Stabilizing Enzyme Toluene, gasoline, and light oil were each prepared in an amount of 10 ml, and 1,2-diaminobenzene was dissolved in each to a concentration of 20 mM. 2 ml of a solution of -butylhydroxyperoxide dissolved in a decane solution are added, and the above stabilizing enzyme (porous mesoporous silica on which peroxidase is immobilized) is added in an amount equivalent to 0.5 mg in terms of enzyme, and the enzyme reaction is carried out at 38 ° C. Oxidation reaction).
【0043】そして各反応時間(反応開始1〜3時間
後)において酸化反応により生じた1,2−ジニトロベ
ンゼンの470nmにおける吸光度(Absorbance)を測
定した。その結果を図3に示すが、トルエン,ガソリ
ン,軽油のいずれの溶媒中においてもペルオキシダーゼ
活性が有効に発揮されていること、トルエン中における
よりもガソリン,軽油中における場合の方が酵素活性が
高いことが分かった。At each reaction time (1 to 3 hours after the start of the reaction), the absorbance (absorbance) at 470 nm of 1,2-dinitrobenzene generated by the oxidation reaction was measured. The results are shown in FIG. 3, which shows that the peroxidase activity is effectively exhibited in any solvent of toluene, gasoline, and light oil, and that the enzyme activity is higher in gasoline and light oil than in toluene. I understood that.
【0044】〔実施例2〕各10ml容のフラスコに、
上記の安定化酵素10mgと、前記シグマ社製のペルオ
キシダーゼ1mgをそれぞれ入れ、ジベンゾチオフェン
又は2,8−ジメチルジベンゾチオフェンを溶解したn
−テトラデカン液(硫黄濃度約100ppm)2mlを
加えて、30°Cにて18時間往復振盪することにより
脱硫反応を試みた。 Example 2 Into each 10 ml flask,
10 mg of the above-mentioned stabilizing enzyme and 1 mg of the above-mentioned peroxidase manufactured by Sigma were added, and n was obtained by dissolving dibenzothiophene or 2,8-dimethyldibenzothiophene.
A desulfurization reaction was attempted by adding 2 ml of tetradecane solution (sulfur concentration: about 100 ppm) and shaking reciprocally at 30 ° C. for 18 hours.
【0045】これらの各反応液を12000rpm,1
0分間で遠心分離し、上澄の全硫黄分をパイロ蛍光法
(アンテック製硫黄計モデル7000)にて測定した。
測定結果から算出された相対脱硫率(%)は、安定化酵
素使用例においてジベンゾチオフェンに対し100%、
2,8−ジメチルジベンゾチオフェンに対し83.4%
であったが、酵素をそのまま使用した例においてジベン
ゾチオフェンに対し12.3%、2,8−ジメチルジベ
ンゾチオフェンに対し3.1%であり、顕著な差異が見
られた。Each of these reaction solutions was prepared at 12000 rpm, 1
The mixture was centrifuged for 0 minutes, and the total sulfur content of the supernatant was measured by a pyrofluorescence method (Antech sulfur meter model 7000).
The relative desulfurization rate (%) calculated from the measurement results is 100% relative to dibenzothiophene in the example of using the stabilized enzyme.
83.4% based on 2,8-dimethyldibenzothiophene
However, in the case where the enzyme was used as it was, it was 12.3% with respect to dibenzothiophene and 3.1% with respect to 2,8-dimethyldibenzothiophene, indicating a remarkable difference.
【図1】本発明に係る安定化酵素の構造例を示す図であ
る。FIG. 1 is a diagram showing a structural example of a stabilizing enzyme according to the present invention.
【図2】本発明に係る安定化酵素の構造例を示す図であ
る。FIG. 2 is a diagram showing a structural example of a stabilizing enzyme according to the present invention.
【図3】実施例に係る安定化酵素の作用を示すグラフ図
である。FIG. 3 is a graph showing the action of a stabilizing enzyme according to an example.
1 構造ユニット 2 酵素 3 アンカーユニット 4 基質 1 Structural unit 2 Enzyme 3 Anchor unit 4 Substrate
Claims (3)
ノオキシゲナーゼ,ジオキシゲナーゼ,イソメラーゼか
ら選ばれる少なくとも1種の酵素を、該酵素とほぼ合致
した大きさで構造安定性を有する構造ユニット中に固定
したものであって、燃料の改質に用いられることを特徴
とする燃料改質用安定化酵素。1. An enzyme comprising at least one enzyme selected from the group consisting of peroxidase, sulfinase, monooxygenase, dioxygenase, and isomerase, which is immobilized in a structural unit having a size substantially matching the enzyme and having structural stability. A stabilized enzyme for fuel reforming, which is used for fuel reforming.
カ多孔体における前記酵素を収容可能な細孔として構成
されていることを特徴とする請求項1に記載の燃料改質
用安定化酵素。2. The stabilized enzyme for fuel reforming according to claim 1, wherein the structural unit is configured as a pore in the mesoporous silica porous body capable of containing the enzyme.
の燃料改質用安定化酵素を、燃料中に投入し、その酵素
作用により所定の燃料改質を行うことを特徴とする燃料
改質方法。3. A fuel characterized in that the stabilized enzyme for fuel reforming according to claim 1 or 2 is introduced into fuel, and a predetermined fuel reforming is carried out by the action of the enzyme. Reforming method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11222905A JP2001046100A (en) | 1999-08-05 | 1999-08-05 | Stabilizing enzyme for fuel reforming and fuel reforming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11222905A JP2001046100A (en) | 1999-08-05 | 1999-08-05 | Stabilizing enzyme for fuel reforming and fuel reforming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001046100A true JP2001046100A (en) | 2001-02-20 |
Family
ID=16789712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11222905A Pending JP2001046100A (en) | 1999-08-05 | 1999-08-05 | Stabilizing enzyme for fuel reforming and fuel reforming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001046100A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7919263B2 (en) | 2003-08-19 | 2011-04-05 | Canon Kabushiki Kaisha | Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor |
-
1999
- 1999-08-05 JP JP11222905A patent/JP2001046100A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7919263B2 (en) | 2003-08-19 | 2011-04-05 | Canon Kabushiki Kaisha | Organic material-immobiling structure and method for production of the same, and peptide and DNA therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yiu et al. | Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces | |
Hwang et al. | Enzyme stabilization by nano/microsized hybrid materials | |
Hudson et al. | Methodology for the immobilization of enzymes onto mesoporous materials | |
Wu et al. | Active biocatalysts based on Candida rugosa lipase immobilized in vesicular silica | |
Tran et al. | Perspective of recent progress in immobilization of enzymes | |
Burattin et al. | Molecular approach to the mechanism of deposition− precipitation of the Ni (II) phase on silica | |
Thangaraj et al. | Immobilization of lipases–a review. Part II: carrier materials | |
Bolivar et al. | Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica | |
Yiu et al. | Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid | |
TWI494429B (en) | Carrier for protein immobilization, immobilized protein and their production methods | |
Erigoni et al. | Porous silica-based organic-inorganic hybrid catalysts: A review | |
Qiao et al. | Synthesis and bio-adsorptive properties of large-pore periodic mesoporous organosilica rods | |
Liu et al. | Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption | |
Zhang et al. | Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation | |
Zou et al. | Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase | |
Schröder et al. | Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine) | |
Smith et al. | Sol− Gel Encapsulated Horseradish Peroxidase: A Catalytic Material for Peroxidation | |
CN1980862A (en) | Mesostructured zeolitic materials, and methods of making and using the same | |
GB2451863A (en) | Core-shell catalysts and absorbents | |
Shang et al. | Immobilization of Candida rugosa lipase on ZnO nanowires/macroporous silica composites for biocatalytic synthesis of phytosterol esters | |
Jin et al. | Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly | |
He et al. | Hierarchically nanoporous bioactive glasses for high efficiency immobilization of enzymes | |
He et al. | Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase | |
Montiel et al. | Immobilization of chloroperoxidase on silica-based materials for 4, 6-dimethyl dibenzothiophene oxidation | |
Song et al. | Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization |