JP2001043959A - POROUS SiC HEATING ELEMENT - Google Patents

POROUS SiC HEATING ELEMENT

Info

Publication number
JP2001043959A
JP2001043959A JP11213882A JP21388299A JP2001043959A JP 2001043959 A JP2001043959 A JP 2001043959A JP 11213882 A JP11213882 A JP 11213882A JP 21388299 A JP21388299 A JP 21388299A JP 2001043959 A JP2001043959 A JP 2001043959A
Authority
JP
Japan
Prior art keywords
layer
porous sic
heating element
porous
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11213882A
Other languages
Japanese (ja)
Other versions
JP3165416B2 (en
Inventor
Hisashi Kinugasa
比佐志 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP21388299A priority Critical patent/JP3165416B2/en
Publication of JP2001043959A publication Critical patent/JP2001043959A/en
Application granted granted Critical
Publication of JP3165416B2 publication Critical patent/JP3165416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating element having a heat resistant electrode part and a filtering function by forming an electrode part having a first layer of Ag formed by a spattering method or the like and a second layer formed on the first layer by Ag plating or the like, on a surface of a porous SiC as a sintered body having the porosity and average pore diameter respectively in specific ranges. SOLUTION: Porous SiC is a sintered body having a porosity of 30-60%, and an average pore diameter of 5-15 μm. As a first layer 1a is formed by a spattering method or the like, a metallic thin film can be formed on a surface layer, which prevents the impairing of a filtering function. As a second layer 2a composed of Ag or including Ag is formed on the first layer 1a by an Ag pasting method or the like, the adhesive force with SiC can be ensured, and further as Ag has oxidation resistance, the resistance is hardly changed even under an environment of high temperature. The metallic thin film formed on only the surface of the porous SiC sintered body 2 by the spattering or the like, of the conductive metal, can be effective as the backing surface preparation of an Ag pasting method or an Ag plating method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ディーゼルエン
ジンの排ガス中の煤除去フィルターや、焼却炉の煤煙除
去フィルター等に用いる多孔質SiC発熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous SiC heating element used for a filter for removing soot from exhaust gas from a diesel engine, a filter for removing soot from an incinerator, and the like.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】ディーゼ
ルエンジンの排ガスや、焼却炉の排ガスに混在する煤を
除去するための従来装置は、煙道中に設けたフィルタと
ヒータとから構成されている。すなわち、排ガス中に混
在する煤はフィルタによって捕捉され、フィルタの回り
に設けたヒータによって加熱されることにより、燃焼ガ
スとして処理されて、大気中に排出されている。
2. Description of the Related Art A conventional apparatus for removing soot mixed in exhaust gas from a diesel engine or exhaust gas from an incinerator is composed of a filter and a heater provided in a flue. . That is, the soot mixed in the exhaust gas is captured by the filter, heated by the heater provided around the filter, processed as a combustion gas, and discharged into the atmosphere.

【0003】しかしながら、従来装置では、煙道内にフ
ィルタを加熱するためのヒータを設けるスペースが必要
であるため、排ガスの通路が狭くなる問題がある。そこ
で、フィルタ機能とヒータ機能を併せ持つ多孔質SiC
発熱体を適用することにより、排ガス通路を十分に確保
することが考えられるが、そのためには、この多孔質S
iC発熱体に通電するための電極部が750℃以上の高
温下で使用できる耐熱性を有している必要がある。とこ
ろが、従来の多孔質SiC発熱体の電極部は、多孔質S
iCの表面にAgをろう付けしたりAgペーストを焼き
付けたりしたものであり、前者のAgろう処理した電極
部では、Agろう中に含有されるCuが酸化するため
に、SiCとの間の電気抵抗が増加し、かつ接着力が低
下するという問題がある。また、後者のAgペーストを
焼き付けた電極部の場合にも、ガラス成分が分離するこ
とにより、同じくSiCとの間の電気抵抗の増加と、接
着力の低下とをきたすという問題がある。さらに、Ag
メッキにより電極部を構成することも考えられるが、S
iCが多孔質であるために活性化処理剤が内部にしみ込
み、フィルタ機能が低下するという問題がある。
However, the conventional apparatus requires a space for providing a heater for heating the filter in the flue, so that there is a problem that the passage of the exhaust gas becomes narrow. Therefore, porous SiC having both a filter function and a heater function
It is conceivable to secure a sufficient exhaust gas passage by applying a heating element.
It is necessary that an electrode portion for supplying electricity to the iC heating element has heat resistance that can be used at a high temperature of 750 ° C. or more. However, the electrode part of the conventional porous SiC heating element is porous SC.
Ag is brazed or Ag paste is baked on the surface of iC. In the former electrode part treated with Ag brazing, since Cu contained in Ag brazing is oxidized, the electric current between SiC and SiC is reduced. There is a problem that the resistance increases and the adhesive strength decreases. Also, in the case of the latter electrode portion in which the Ag paste is baked, there is also a problem that separation of the glass component causes an increase in electric resistance with SiC and a decrease in adhesive strength. Furthermore, Ag
Although it is conceivable that the electrode portion is formed by plating,
Since iC is porous, there is a problem that the activating agent permeates into the inside and the filter function is deteriorated.

【0004】上記のような従来の問題点に鑑み、この発
明は、耐熱性を有する電極部が表面に形成された、フィ
ルタ機能を具備する多孔質SiC発熱体を提供すること
を目的とする。
[0004] In view of the above-mentioned conventional problems, an object of the present invention is to provide a porous SiC heating element having a filter function and having a heat-resistant electrode formed on the surface.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
のこの発明の多孔質SiC発熱体は、両端部に電極を形
成した多孔質SiC発熱体において、上記電極部が、多
孔質SiCの表面に、スパッタリング法もしくはイオン
プレーティング法により形成された導電性の金属からな
る第1層と、上記第1層の上に、AgメッキもしくはA
gペースト法により形成された第2層とを有することを
特徴とするものである。
According to a first aspect of the present invention, there is provided a porous SiC heating element having electrodes formed on both ends thereof, wherein the electrode portion is formed on a surface of the porous SiC. A first layer made of a conductive metal formed by a sputtering method or an ion plating method, and Ag plating or A on the first layer.
and a second layer formed by a g paste method.

【0006】上記構成の多孔質SiC発熱体は、電極の
第1層をスパッタリング法もしくはイオンプレーティン
グ法により形成するので、極く表層に限定して金属薄膜
を形成できる。このため、多孔質SiC発熱体のフィル
タ機能を損なうことがない。また、上記第1層の上にA
gペースト法やAgメッキ処理法でAgもしくはAgを
含む第2層を形成するので、SiCとの間の接着力が確
保され、かつAgが耐酸化性を有しているので、高温環
境下においても抵抗が変化し難いものとなる。すなわ
ち、この発明は、スパッタリング法もしくはイオンプレ
ーティング法を用いることによって、導電性の金属を多
孔質SiC発熱体の表層にのみ薄膜として形成すること
ができ、この金属薄膜が、Agペースト法やAgメッキ
法の下地処理として有効であることを見出し、かかる知
見に基づいて完成されたものである。
In the porous SiC heating element having the above structure, the first layer of the electrode is formed by a sputtering method or an ion plating method, so that a metal thin film can be formed only on the surface layer. Therefore, the filter function of the porous SiC heating element is not impaired. Further, A is formed on the first layer.
Since the second layer containing Ag or Ag is formed by the g paste method or the Ag plating method, the adhesive force with SiC is secured, and since Ag has oxidation resistance, it can be used in a high-temperature environment. Also, the resistance hardly changes. That is, according to the present invention, a conductive metal can be formed as a thin film only on the surface layer of a porous SiC heating element by using a sputtering method or an ion plating method. It has been found that it is effective as a base treatment of a plating method, and has been completed based on such knowledge.

【0007】上記多孔質SiC発熱体の第1層を構成す
る導電性の金属としては、Ag、Cu、Zn、Ni、S
n等の種々の金属を用いることができるが、特にAgで
あるのが好ましく(請求項2)、この場合には、耐酸化
性に優れ、電気抵抗が極めて小さい下地層を安価に得る
ことができる。上記多孔質SiCは、密度が1.5〜
2.2g/cmであり、気孔率が30〜60%であ
り、平均気孔径が5〜15μmである燒結体が好ましい
(請求項3)。これは、多孔質SiCの密度が2.2g
/cmを超えると、フィルタとして有効に機能しなく
なり、1.5g/cm未満では強度不足を来たすから
であり、また、気孔率が30〜60%、平均気孔径が5
〜15μmの範囲を外れる場合にも、フィルタとして有
効に機能しなくなるからである。
As the conductive metal constituting the first layer of the porous SiC heating element, Ag, Cu, Zn, Ni, S
Various metals such as n can be used, but Ag is particularly preferable (claim 2). In this case, an underlayer having excellent oxidation resistance and extremely low electric resistance can be obtained at low cost. it can. The porous SiC has a density of 1.5 to
A sintered body having 2.2 g / cm 3 , a porosity of 30 to 60%, and an average pore diameter of 5 to 15 μm is preferable (claim 3). This is because the density of the porous SiC is 2.2 g.
Exceeds / cm 3, no longer function effectively as a filter, is because cause insufficient strength is less than 1.5 g / cm 3, The porosity is 30% to 60%, an average pore diameter of 5
This is because even if the thickness is out of the range of 15 μm, the filter does not function effectively.

【0008】[0008]

【実施例】以下この発明の実施例について詳述する。こ
の実施例の多孔質SiC発熱体は下記の製法を用いて製
造した。ただし、この発明は、この実施例のみに限定さ
れるものではない。
Embodiments of the present invention will be described below in detail. The porous SiC heating element of this example was manufactured using the following manufacturing method. However, the present invention is not limited to only this embodiment.

【0009】すなわち、純度が97%以上の高純度のS
iC粉末(GC8000)84重量%に、第1成分とし
てのNiO粉末(試薬1級)を8重量%、第2成分とし
てCr粉末(試薬1級)を8重量%、それぞれ添
加し、さらに、成形助材としてポリエチレングリコール
#4000(3部)およびメタノール溶剤としてステア
リン酸(1部)を添加し、ボールミルで混合した後、ス
プレードライヤーで乾燥造粒する。このようにして得ら
れた造粒粉を金型にとり、1000〜2000kg/c
の面圧を加えて、所定形状の板状体に成形した後、
これを真空焼成炉にセットし、1500℃までは10
−1〜10−2Torr下で焼成し、つづいて、アルゴ
ンガス(大気圧)下で2000℃まで昇温し、1時間保
持して焼成を完了した。
That is, high-purity S having a purity of 97% or more
To 84% by weight of iC powder (GC8000), 8% by weight of NiO powder (reagent first grade) as a first component and 8% by weight of Cr 2 O 3 powder (reagent first grade) as a second component were added. Further, polyethylene glycol # 4000 (3 parts) as a molding aid and stearic acid (1 part) as a methanol solvent are added, mixed by a ball mill, and dried and granulated by a spray drier. The granulated powder thus obtained is put into a mold, and 1000 to 2000 kg / c.
In addition the surface pressure of the m 2, was formed into a plate-like body of a predetermined shape,
This is set in a vacuum firing furnace, and up to 1500 ° C.
Firing was performed under -1 to 10 -2 Torr, and subsequently, the temperature was raised to 2000 ° C under an argon gas (atmospheric pressure), and the temperature was maintained for 1 hour to complete the firing.

【0010】上記の製法を用いて得られた多孔質SiC
燒結体は、板状体(10×5×60mm)で、密度が
1.8g/cm、気孔率が50%、平均的気孔径が9
μmであり、曲げ強度が7kg/mmである。次に、
図1に示すように、上記多孔質SiC燒結体2の両端部
の表面に、第1層1aおよび第2層1bからなる5mm
巾の電極部1を形成して、多孔質SiC発熱体を得た。
上記電極部1の第1層1a(下地層)は、スパッタリン
グ装置を用いて、純度99.99%のAgを約1μmの
厚さコートした。
[0010] Porous SiC obtained using the above-mentioned manufacturing method
The sintered body was a plate-like body (10 × 5 × 60 mm 3 ) having a density of 1.8 g / cm 3 , a porosity of 50%, and an average pore diameter of 9
μm, and the bending strength is 7 kg / mm 2 . next,
As shown in FIG. 1, 5 mm of a first layer 1a and a second layer 1b are formed on the surfaces of both ends of the porous SiC sintered body 2.
An electrode portion 1 having a width was formed to obtain a porous SiC heating element.
The first layer 1a (base layer) of the electrode section 1 was coated with Ag having a purity of 99.99% to a thickness of about 1 μm using a sputtering apparatus.

【0011】上記電極部1の第2層1bは、第1層1a
の上にAgペースト処理もしくはAgメッキ処理を行っ
て形成したものであり、Agペースト処理を行った実施
例1の場合は、Agペーストを塗布した後、850℃で
焼き付けて約100μmのAg膜とし、Agメッキ処理
を行った実施例2の場合は、Agメッキ浴を用いた電気
メッキ法により、約10μmのAg膜とした。表1は、
上記の実施例1,2の、熱処理前と750℃で200時
間加熱後の電気抵抗の変化を測定した結果を示すもので
ある。なお、表1中の比較例1は、電極部をスパッタリ
ングによるAg薄膜(厚み約1μm)のみで構成した場
合であり、比較例2は、Agろうを真空中で900℃に
てSiC焼結体に下地処理を行うことなく直接焼き付け
て電極部を構成したものであり、比較例3は、実施例1
と同一のAgペースト処理を施して電極部を構成したも
のである。
The second layer 1b of the electrode section 1 is composed of a first layer 1a
Is formed by performing an Ag paste process or an Ag plating process on the substrate. In the case of the embodiment 1 in which the Ag paste process is performed, the Ag paste is applied and then baked at 850 ° C. to form an Ag film of about 100 μm. In the case of Example 2 in which Ag plating was performed, an Ag film of about 10 μm was formed by an electroplating method using an Ag plating bath. Table 1
It is a result of measuring a change in electric resistance before heat treatment and after heating at 750 ° C. for 200 hours in Examples 1 and 2 described above. Comparative Example 1 in Table 1 is a case where the electrode portion was composed of only an Ag thin film (thickness of about 1 μm) by sputtering, and Comparative Example 2 was a SiC sintered body at 900 ° C. in a vacuum. The electrode portion was directly baked without performing a base treatment on the electrode portion.
An electrode portion was formed by performing the same Ag paste processing as described above.

【0012】[0012]

【表1】 [Table 1]

【0013】表1から明らかなように、Ag薄膜からな
る第1層1aを形成した実施例1、2は、熱処理前後で
電気抵抗がほとんど変化していないのに対して、比較例
1〜3は、何れも熱処理前後で電気抵抗の変化が大き
い。したがって、実施例1、2は750℃の環境下にお
いても良好な耐熱性を有することが分かる。また、実施
例1の結果と比較例3の結果とを比較すると、第1層1
aのAg薄膜が熱処理後の第2層1bの変質を防止し
て、スパッタリング法によるAgの薄膜がガラス成分の
分離を抑制する効果を有していることが明らかである。
As is clear from Table 1, in Examples 1 and 2 in which the first layer 1a made of an Ag thin film was formed, the electric resistance hardly changed before and after the heat treatment, whereas in Comparative Examples 1 to 3. All have large changes in electrical resistance before and after heat treatment. Therefore, it can be seen that Examples 1 and 2 have good heat resistance even in an environment of 750 ° C. In addition, comparing the result of Example 1 with the result of Comparative Example 3, it was found that the first layer 1
It is clear that the Ag thin film a prevents the second layer 1b from being altered after the heat treatment, and the Ag thin film formed by the sputtering method has an effect of suppressing the separation of glass components.

【0014】また、上記実施例1,2に係る多孔質Si
C発熱体は、第1層1aが多孔質SiCの表層にのみ形
成されており、多孔質SiC燒結体2の長手方向におけ
る通気性(フィルター機能)を損なう虞れがないことが
確認された。また、多孔質SiC発熱体に、イオンプレ
ーティング法によって第一層を形成した場合も、スパッ
タリング法で第一層を形成した場合と同様の効果が確認
された。
The porous Si according to Examples 1 and 2
In the C heating element, the first layer 1a was formed only on the surface layer of porous SiC, and it was confirmed that there was no risk of impairing the permeability (filter function) in the longitudinal direction of the porous SiC sintered body 2. Also, when the first layer was formed on the porous SiC heating element by the ion plating method, the same effect as when the first layer was formed by the sputtering method was confirmed.

【0015】[0015]

【発明の効果】以上のように、請求項1に係る多孔質S
iC発熱体によれば、電極部の抵抗が、高温環境下にお
いても変化することなく、表層の金属薄膜が多孔質Si
C燒結体の通気性を阻害しないので、高温環境下で用い
る煤除去用のフィルタとして特に好適なものとなる。
As described above, the porous S according to claim 1
According to the iC heating element, the resistance of the electrode section does not change even in a high temperature environment, and the surface metal thin film is made of porous Si.
Since the permeability of the C sintered body is not impaired, it becomes particularly suitable as a soot removal filter used in a high temperature environment.

【0016】請求項2に係る多孔質SiC発熱体によれ
ば、第1層がAg薄膜で構成されるので、耐酸化性に優
れ、電気抵抗が極めて小さい下地層を安価に得ることが
できる。
According to the porous SiC heating element of the second aspect, since the first layer is made of an Ag thin film, an underlayer having excellent oxidation resistance and extremely low electric resistance can be obtained at low cost.

【0017】請求項3に係る多孔質SiC発熱体によれ
ば、フィルタ機能を有効に発揮できるので、高温環境下
で用いる煤除去用のフィルタとしてより好適なものとな
る。
According to the porous SiC heating element according to the third aspect, since the filter function can be effectively exhibited, it becomes more suitable as a soot removal filter used in a high temperature environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多孔質SiC発熱体の一部欠截斜視図である。FIG. 1 is a partially cutaway perspective view of a porous SiC heating element.

【符号の説明】[Explanation of symbols]

1 電極部 1a 第1層 2a 第2層 2 多孔質SiC燒結体 DESCRIPTION OF SYMBOLS 1 Electrode part 1a 1st layer 2a 2nd layer 2 Porous SiC sintered body

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年7月14日(2000.7.1
4)
[Submission date] July 14, 2000 (2007.1.
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
のこの発明の多孔質SiC発熱体は、両端部に電極を形
成した多孔質SiC発熱体において、上記多孔質SiC
は、気孔率が30〜60%であり、平均気孔径が5〜1
5μmの燒結体であり、上記電極部が、多孔質SiCの
表面に、スパッタリング法もしくはイオンプレーティン
グ法により形成されたAgからなる第1層と、上記第1
層の上に、AgメッキもしくはAgペースト法により形
成された第2層とを有することを特徴とするものであ
る。
SUMMARY OF THE INVENTION The porous SiC heating element of the present invention for achieving the above object, in the porous SiC heating element having electrodes formed on both end portions, the porous SiC
Has a porosity of 30 to 60% and an average pore diameter of 5-1.
A sintered body having a thickness of 5 μm, wherein the electrode portion has a first layer made of Ag formed on a surface of porous SiC by a sputtering method or an ion plating method;
A second layer formed by Ag plating or an Ag paste method is provided on the layer.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】また、上記多孔質SiC発熱体の第1層を
構成する導電性の金属が、Agであるので、耐酸化性に
優れ、電気抵抗が極めて小さい下地層を安価に得ること
ができる。上記多孔質SiCは、気孔率が30〜60%
であり、平均気孔径が5〜15μmであるが、これは気
孔率が30〜60%、平均気孔径が5〜15μmの範囲
を外れる場合に、フィルタとして有効に機能しなくな
るからである。さらに、上記多孔質SiCの密度は1.
5〜2.2g/cmであるのが好ましい(請求項
2)。これは、多孔質SiCの密度が2.2g/cm
を超えると、フィルタとして有効に機能しなくなり、
1.5g/cm未満では強度不足を来たすからであ
る。
[0007] The conductive metal constituting the first layer of the porous SiC heating element, since it is Ag, excellent oxidation resistance, electrical resistance can be obtained at low cost a very small base layer. The porous SiC is, the gas porosity is 30% to 60%
, And the an average pore diameter of 5 to 15 [mu] m, which porosity 30% to 60%, when the average pore diameter is out of the range of 5 to 15 [mu] m is because not function effectively as a filter. Further, the density of the porous SiC is 1.
It is preferably from 5 to 2.2 g / cm 3.
2). This is because the density of the porous SiC is 2.2 g / cm 3.
, It will no longer function effectively as a filter,
If it is less than 1.5 g / cm 3 , the strength will be insufficient.
You.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】特に、第1層がAg薄膜で構成されるの
で、耐酸化性に優れ、電気抵抗が極めて小さい下地層を
安価に得ることができる。
In particular, since the first layer is made of an Ag thin film, an underlayer having excellent oxidation resistance and extremely low electric resistance can be obtained at low cost.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】請求項に係る多孔質SiC発熱体によれ
ば、フィルタ機能を有効に発揮できるので、高温環境下
で用いる煤除去用のフィルタとしてより好適なものとな
る。
According to the porous SiC heating element according to claim 2, since it effectively exhibit a filter function, a more suitable as a filter for soot removal using a high temperature environment.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K092 PP15 PP20 QA05 QB09 QB32 QC07 QC25 QC53 QC58 VV09 VV28 4G001 BA01 BA12 BA22 BA71 BB01 BB12 BB22 BC17 BC41 BC54 BC55 BC57 BC72 BD01 BD14 BD22 BE33 BE34 4K029 AA04 BA04 BB02 BB03 BC03 BD00 CA00 CA03 CA05 GA00 GA03  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 3K092 PP15 PP20 QA05 QB09 QB32 QC07 QC25 QC53 QC58 VV09 VV28 4G001 BA01 BA12 BA22 BA71 BB01 BB12 BB22 BC17 BC41 BC54 BC55 BC57 BC72 BD01 BD14 BD22 BE33 BE34 4K0429 AA04 BA03 CA00 CA03 CA05 GA00 GA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】両端部に電極を形成した多孔質SiC発熱
体において、 上記電極部が、 多孔質SiCの表面に、スパッタリング法もしくはイオ
ンプレーティング法により形成された導電性の金属から
なる第1層と、 上記第1層の上に、AgメッキもしくはAgペースト法
により形成された第2層とを有することを特徴とする多
孔質SiC発熱体。
1. A porous SiC heating element having electrodes formed at both ends, wherein the electrode portion is made of a conductive metal formed on a surface of porous SiC by a sputtering method or an ion plating method. A porous SiC heating element comprising: a first layer; and a second layer formed on the first layer by Ag plating or an Ag paste method.
【請求項2】上記導電性の金属がAgである請求項1記
載の多孔質SiC発熱体。
2. The porous SiC heating element according to claim 1, wherein said conductive metal is Ag.
【請求項3】上記多孔質SiCが、 密度が1.5〜2.2g/cmであり、 気孔率が30〜60%であり、 平均気孔径が5〜15μmの燒結体である請求項1記載
の多孔質SiC発熱体。
3. The sintered body according to claim 1, wherein the porous SiC has a density of 1.5 to 2.2 g / cm 3 , a porosity of 30 to 60%, and an average pore diameter of 5 to 15 μm. 2. The porous SiC heating element according to 1.
JP21388299A 1999-07-28 1999-07-28 Porous SiC heating element Expired - Fee Related JP3165416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21388299A JP3165416B2 (en) 1999-07-28 1999-07-28 Porous SiC heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21388299A JP3165416B2 (en) 1999-07-28 1999-07-28 Porous SiC heating element

Publications (2)

Publication Number Publication Date
JP2001043959A true JP2001043959A (en) 2001-02-16
JP3165416B2 JP3165416B2 (en) 2001-05-14

Family

ID=16646590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21388299A Expired - Fee Related JP3165416B2 (en) 1999-07-28 1999-07-28 Porous SiC heating element

Country Status (1)

Country Link
JP (1) JP3165416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191318A1 (en) * 2012-06-21 2013-12-27 주식회사 알란텀 Metal foam heating body for catalytic converter and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142664B1 (en) 2017-11-09 2020-08-07 현대자동차주식회사 Call buzzer switch for bus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191318A1 (en) * 2012-06-21 2013-12-27 주식회사 알란텀 Metal foam heating body for catalytic converter and method for manufacturing same

Also Published As

Publication number Publication date
JP3165416B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
EP0006810B1 (en) Method of producing an integrated hybrid circuit
JP2020527461A (en) Soldering material for active soldering and active soldering method
US5922275A (en) Aluminum-chromium alloy, method for its production and its applications
KR20020014693A (en) Process for producing a coating on a refractory structural member
JP3165416B2 (en) Porous SiC heating element
JP2007066671A (en) Chip type fuse element and its manufacturing method
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
JP5657981B2 (en) Method for producing ceramic-metal joined body, and ceramic-metal joined body
JP4769136B2 (en) Manufacturing method of ceramic joined body and ceramic heater
JP2001118424A (en) Copper alloy powder for conductive paste
JP3531794B2 (en) Method for forming terminal electrodes of ceramic electronic components
JPS59137379A (en) Composite sintered ceramics and metal adhesion
JP3001857B1 (en) Heat generation material mainly composed of MoSi2 having an electrode part excellent in low-temperature oxidation resistance
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JPH07335477A (en) Manufacture of ceramic electronic component
JPH0810643B2 (en) Manufacturing method of positive temperature coefficient thermistor
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method
JP2931444B2 (en) Powder composition for forming conductive patterns for ceramic circuit boards
JPH0521918A (en) Powder composition for forming conductive pattern for ceramic circuit board
JPH11117001A (en) Composite powder with heat resistance and electric conductivity, and its use
JPS5948955B2 (en) Iron, chromium, aluminum alloy with reticulated alumina coating and method for producing the same
JPH08316095A (en) External electrode of electronic component and conductive paste
JP2021516653A (en) Ceramic parts and manufacturing method of ceramic parts
JPH1025532A (en) Aluminum-chromium alloy, its production, and its use
JP3322027B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees