JP2001043845A - Explosion-proof mechanism for rectangular battery - Google Patents

Explosion-proof mechanism for rectangular battery

Info

Publication number
JP2001043845A
JP2001043845A JP11213512A JP21351299A JP2001043845A JP 2001043845 A JP2001043845 A JP 2001043845A JP 11213512 A JP11213512 A JP 11213512A JP 21351299 A JP21351299 A JP 21351299A JP 2001043845 A JP2001043845 A JP 2001043845A
Authority
JP
Japan
Prior art keywords
cylindrical container
rectangular cylindrical
welding
sealing plate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11213512A
Other languages
Japanese (ja)
Inventor
Hideaki Nagura
秀哲 名倉
Shigetaka Goto
成孝 後藤
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11213512A priority Critical patent/JP2001043845A/en
Publication of JP2001043845A publication Critical patent/JP2001043845A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an explosion-proof mechanism provided on a rectangular battery without taking cost too much. SOLUTION: At a longitudinal direction center part of a long side welding part 11 joining long side end parts each other of an opening part 4a and a sealing plate 6 of a rectangular cylindrical container 4 of a rectangular battery 2, a fragile welding part 10 which is set weaker than other welding parts such as a short side welding part 12 joining short side parts each other of the opening part 4a and the sealing plate 6 of the rectangular cylindrical container 4 in welding strength is provided. The welding strength and length L are set so that the fragile welding part 10 may be broken when internal pressure of the rectangular cylindrical container 4 reaches prescribed pressure. When the fragile welding part 10 is broken, a gap is generated between an opening end part and the sealing plate 6 and gas at the inside of the container 4 is discharged to the outside through the gap.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断面略扁平矩形状
または断面略長円形状に成形された角形電池に設けられ
る防爆機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an explosion-proof mechanism provided in a rectangular battery having a substantially rectangular cross section or a substantially elliptical cross section.

【0002】[0002]

【従来の技術】一般的な角形電池を図5および図6に示
す。この角形電池2は、断面略扁平矩形状に成形された
角形筒状容器4を有し、この角形筒状容器4の内部に、
正極や負極、セパレータなどの発電要素8が収装されて
いるとともに電解液が充填されている。角形筒状容器4
の開口部には、角形筒状容器4の開口部4aと同じ略扁
平矩形状に成形された封口板6が配設されている。角形
筒状容器4の開口部4aと封口板6との間にはその境界
に沿って溶接処理が施されて、封口板6が角形筒状容器
4に一体化され、角形筒状容器4の内部を密閉してい
る。この他、角形筒状容器4が断面略長円形状に成形さ
れた角形電池もある。
2. Description of the Related Art A general prismatic battery is shown in FIGS. The prismatic battery 2 has a prismatic cylindrical container 4 formed in a substantially flat rectangular shape in cross section, and inside the prismatic cylindrical container 4,
A power generating element 8 such as a positive electrode, a negative electrode, and a separator is housed therein and is filled with an electrolytic solution. Square cylindrical container 4
A sealing plate 6 formed in the same substantially flat rectangular shape as the opening 4a of the rectangular cylindrical container 4 is provided in the opening of the rectangular cylindrical container 4. A welding process is performed along the boundary between the opening 4a of the rectangular cylindrical container 4 and the sealing plate 6, and the sealing plate 6 is integrated with the rectangular cylindrical container 4, The inside is sealed. In addition, there is also a prismatic battery in which the prismatic cylindrical container 4 is formed into a substantially elliptical cross section.

【0003】[0003]

【発明が解決しようとする課題】ところで、角形電池を
はじめとする一般的な電池には、ユーザーによる誤使用
などにより発電要素から大量のガスが発生し、内圧が急
激に高まり破裂する危険を生じる虞のあるものがある。
そこで、従来から、このような電池では、一般に危険状
態を回避すべく防爆機構が設けられている。この防爆機
構は、電池の内部と外部を仕切る封口板などの隔壁部に
例えばV字状またはC字状の溝部や薄肉部などとして設
けられる。これら溝部や薄肉部は、電池内部でガスが発
生し内圧が所定の圧力にまで達したときにその圧力に耐
えきれず破断されて、隔壁部に前記溝部に沿った開口部
を形成する。この開口部を通じて電池内部のガスが外部
へと放出され、電池の破裂等が未然に防止する。
In general batteries such as prismatic batteries, a large amount of gas is generated from a power generating element due to misuse by a user or the like, and there is a danger that the internal pressure will rapidly increase and burst. There is a possibility.
Therefore, conventionally, such a battery is generally provided with an explosion-proof mechanism in order to avoid a dangerous state. This explosion-proof mechanism is provided, for example, as a V-shaped or C-shaped groove or a thin-walled portion on a partition wall such as a sealing plate that separates the inside and the outside of the battery. When a gas is generated inside the battery and the internal pressure reaches a predetermined pressure, the groove and the thin-walled portion cannot withstand the pressure and are broken to form an opening in the partition along the groove. The gas inside the battery is released to the outside through the opening, thereby preventing the battery from being ruptured.

【0004】しかしながら、角形電池では、断面が略扁
平矩形状または略長円形状に形成されているため、大き
な防爆機構を形成するのが難しく、小さな防爆機構を設
けるしかなかった。このため、溝部や薄肉部の形成にあ
たり精度の高い加工が要求され、高価な加工装置や相当
な手間または労力を必要とし、非常にコストがかかって
いた。
However, since a rectangular battery has a cross section formed in a substantially flat rectangular shape or a substantially elliptical shape, it is difficult to form a large explosion-proof mechanism, and only a small explosion-proof mechanism has to be provided. For this reason, high-precision processing is required in forming the groove and the thin-walled part, which requires an expensive processing apparatus, considerable labor and labor, and is extremely costly.

【0005】本発明は、前記事情に鑑みてなされたもの
であって、その目的は、あまり高価な設備や手間などを
必要とせず、比較的低コストで設けることができるよう
な角形電池の防爆機構を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an explosion-proof battery for a rectangular battery which can be provided at relatively low cost without requiring expensive equipment and labor. It is to provide a mechanism.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる角形電池の防爆機構にあっては、断面
略扁平矩形状または断面略長円形状に成形された角形筒
状容器の内部に正極や負極などの発電要素を収装し、前
記角形筒状容器の開口部にこの開口部と同じ略扁平矩形
状または略長円形状に成形された封口板を配設し、前記
角形筒状容器の開口部と前記封口板の周縁部との境界に
沿って溶接処理を施して前記角形筒状容器と前記封口板
とを一体化し、前記角形筒状容器の内部を密閉してなる
角形電池において、前記角形筒状容器の開口部と前記封
口板の長辺側端部どうしを接合する溶接部の長さ方向中
心部に所定の長さにわたって、前記角形筒状容器の開口
部と前記封口板の短辺側端部どうしを接合する溶接部な
ど他の溶接部よりも溶接強度が弱く設定された脆弱溶接
部を設け、前記角形筒状容器の内圧が所定の圧力に達し
たときに前記脆弱溶接部が破断されるようにしたことを
特徴とする。
In order to achieve the above object, an explosion-proof mechanism for a rectangular battery according to the present invention comprises a rectangular cylindrical container having a substantially flat rectangular cross section or a substantially elliptical cross section. A power generating element such as a positive electrode or a negative electrode is housed therein, and a sealing plate formed in the same substantially flat rectangular shape or substantially elliptical shape as the opening is disposed in the opening of the rectangular cylindrical container. A welding process is performed along the boundary between the opening of the cylindrical container and the peripheral portion of the sealing plate to integrate the rectangular cylindrical container and the sealing plate, thereby sealing the inside of the rectangular cylindrical container. In the prismatic battery, the opening of the prismatic cylindrical container extends over a predetermined length to the center in the longitudinal direction of the welded portion that joins the long side ends of the sealing plate with the opening of the prismatic cylindrical container. From other welds such as welds joining the short side ends of the sealing plate The weak weld welding strength is set weakly provided, the weak weld is characterized in that so as to be broken when the internal pressure of the rectangular tube-shaped container reaches a predetermined pressure.

【0007】また、前記防爆機構において、前記脆弱溶
接部が、前記角形筒状容器の開口部と前記封口板の長辺
部どうしを接合する2つの平行な溶接部にそれぞれ設け
られていることを特徴とする。
In the explosion-proof mechanism, the fragile welds are provided at two parallel welds joining an opening of the rectangular cylindrical container and a long side of the sealing plate. Features.

【0008】また、前記防爆機構において、前記脆弱溶
接部が、その溶接長さと、ビード幅と、溶け込み深さを
関数として設定してなることを特徴とする。
Further, in the explosion-proof mechanism, the fragile welding portion is characterized in that its welding length, bead width, and penetration depth are set as functions.

【0009】[0009]

【発明の実施の形態】角形電池を上から見たときの一実
施形態を図1に示す。ここで角形電池は、従来技術で説
明した一般的な角形電池とほぼ同じ構成および同じ構造
を有しているので、重複する部分についての詳しい説明
は省くこととする。この角形電池が従来と異なる点は、
角形筒状容器4の開口部4aと封口板6の長辺側端部ど
うしの間に沿って形成された長辺側溶接部11の一部
に、角形筒状容器4の開口部4aと封口板6の短辺側端
部どうしを接合する短辺側溶接部12など他の部分より
も接合強度が弱い脆弱な溶接部10(図1において太い
実線で示す)が設けられている点である。
FIG. 1 shows an embodiment of a prismatic battery when viewed from above. Here, the prismatic battery has substantially the same configuration and the same structure as the general prismatic battery described in the related art, so that the detailed description of the overlapping portions will be omitted. The difference between this prismatic battery and the conventional one is that
An opening 4a of the rectangular cylindrical container 4 and a seal are formed at a part of the long side welded portion 11 formed between the opening 4a of the rectangular cylindrical container 4 and the long side end of the sealing plate 6. A weak welding portion 10 (shown by a thick solid line in FIG. 1) having a weaker joining strength than other portions, such as a short side welding portion 12 for joining short end portions of the plate 6 to each other, is provided. .

【0010】この脆弱溶接部10は、短辺側溶接部12
を設ける場合に比べて、ビード幅を狭くしたり溶け込み
深さを浅くしたりするなどして形成する。例えばレーザ
溶接の場合には、レーザ光線の照射出力を弱くしたり照
射時間を短くしたりする。
The fragile weld 10 has a short side weld 12
It is formed by narrowing the bead width or reducing the penetration depth, as compared with the case of providing. For example, in the case of laser welding, the irradiation output of the laser beam is reduced or the irradiation time is shortened.

【0011】脆弱溶接部10は、封口板6を間に挟んで
その上下両側に2つ平行に並んで一対設けられている。
各脆弱溶接部10は、前記長辺側溶接部の長さ方向中央
部にほぼ同じ長さで形成されている。これら2つの脆弱
溶接部10は、これら2つの脆弱溶接部10以外の例え
ば短辺側溶接部12などの溶接部に比べて溶接強度が弱
くなっているから、角形筒状容器4の内圧が高まったと
きに他の部分よりも先に破断する。これによって、角形
筒状容器4の内部と外部とが連通されて、容器4内部の
蓄積ガスを外部に放出することができ、脆弱溶接部10
を防爆機構として機能させることができる。
A pair of fragile welds 10 are provided in parallel on both upper and lower sides of the sealing plate 6 with the sealing plate 6 interposed therebetween.
Each fragile weld 10 is formed at substantially the same length at the center in the length direction of the long side weld. Since these two weak welds 10 have a lower welding strength than welds other than the two weak welds 10, for example, the short side weld 12, the internal pressure of the rectangular cylindrical container 4 increases. When it breaks, it breaks before other parts. As a result, the inside and outside of the rectangular cylindrical container 4 are communicated with each other, and the accumulated gas inside the container 4 can be released to the outside.
Can function as an explosion-proof mechanism.

【0012】ここで、この脆弱溶接部10が角形筒状容
器4の開口部4aまたは封口板6の長辺側端部間に設け
られるのは、角形筒状容器4の内圧が高まったときに最
も大きな力が加えられるのが角形筒状容器4の幅広な長
辺側壁部4bであり、最も破断し易い部分だからであ
る。特に、この長辺側壁部4bの中央部に力が最も集中
するから、脆弱溶接部10が長辺側溶接部11の長さ方
向中央部に設けられていることで、この力を最も集中的
に受けることができる。これによって、角形筒状容器4
の内圧が上昇したときに確実に動作させることができ
る。また、脆弱溶接部10が一対設けられているのは、
少なくともどちらか一方が破断されればよいという意味
で、安全性を二重に確保するためである。
Here, the weak weld 10 is provided between the opening 4a of the rectangular cylindrical container 4 or the long side end of the sealing plate 6 when the internal pressure of the rectangular cylindrical container 4 increases. This is because the largest force is applied to the wide long side wall portion 4b of the rectangular cylindrical container 4, which is the most fragile portion. In particular, since the force is most concentrated on the central portion of the long side wall portion 4b, the fragile welded portion 10 is provided at the central portion in the longitudinal direction of the long side welded portion 11, so that this force is most concentrated. Can be received. Thereby, the rectangular cylindrical container 4
Can be reliably operated when the internal pressure increases. Also, the reason why the weak welding portion 10 is provided as a pair is as follows.
This is to ensure safety twice in the sense that at least one of them should be broken.

【0013】脆弱溶接部10が破断されるときの角形筒
状容器4の内圧は、脆弱溶接部10の溶接長さLと、脆
弱溶接部10の溶接強度との2つの要素によって決定さ
れる。すなわち、脆弱溶接部10の溶接長さLが長くな
ればなるほど、角形筒状容器4の内圧が低い状態でも、
脆弱溶接部10を破断させることができる。また、脆弱
溶接部10の溶接強度をより弱く設定することで、角形
筒状容器4の内圧が低い状態でも脆弱溶接部10を破断
させることができる。これら脆弱溶接部10の溶接長さ
Lや、脆弱溶接部10のビード幅、溶け込み深さをバラ
ンスよく設定することで、脆弱溶接部10を所望の圧力
で破断させることができる。
The internal pressure of the rectangular cylindrical container 4 when the fragile weld 10 is broken is determined by two factors, the welding length L of the fragile weld 10 and the welding strength of the fragile weld 10. That is, the longer the welding length L of the fragile welding portion 10 is, the lower the internal pressure of the rectangular cylindrical container 4 is,
The fragile weld 10 can be broken. In addition, by setting the welding strength of the weakly welded portion 10 to be weaker, the weakly welded portion 10 can be broken even when the internal pressure of the rectangular cylindrical container 4 is low. By setting the welding length L of the fragile weld 10 and the bead width and penetration depth of the fragile weld 10 in a well-balanced manner, the fragile weld 10 can be broken at a desired pressure.

【0014】ここで、脆弱溶接部10の溶接強度または
溶接長さLと、脆弱溶接部10が破断されるときの角形
筒状容器の内圧との関係を調べるために行った試験につ
いて説明する。この試験では、高さ34mm、幅25m
m、奥行き6mmで板厚が0.3mmの角形筒状容器を
使用し、この容器の開口部に封口板を溶接して一体化
し、それらの長辺部どうしの間の溶接部に前述した脆弱
溶接部を長さ約10mmほど設けた。この角形筒状容器
の底部から内部に差し込んだパイプを通じて外部から圧
縮空気を送り込み、その脆弱溶接部が破断したときの容
器内部の圧力を測定した。当該脆弱溶接部の溶接状態が
それぞれ異なる容器を用意し、各容器についてどのくら
いの圧力で脆弱溶接部が破断するのか調べた。溶接状態
については、図2に示すように、ビード幅をA(m
m)、溶接部の溶け込み深さをB(mm)、角形筒状容
器の肉厚をC(mm)、封口板の肉厚をC’(mm)と
して、CまたはC’のうち小さい方をcとしてA/2c
を求め、横軸にA/2cの値を、縦軸に溶け込み深さB
(mm)の値をとり、以下の表1にまとめた。なお、脆
弱溶接部以外の他の溶接部については、A/2cが0.
7ぐらい、また、溶け込み深さBが0.3ぐらいに設定
され、100kg/cmほどで破断するように形成さ
れている。
Here, a test performed to examine the relationship between the welding strength or welding length L of the fragile weld 10 and the internal pressure of the rectangular cylindrical container when the fragile weld 10 is broken will be described. In this test, height 34mm, width 25m
m, a rectangular cylindrical container having a depth of 6 mm and a thickness of 0.3 mm is used, and a sealing plate is welded to the opening of the container to be integrated, and the above-mentioned fragile portion is welded to the weld between the long sides thereof. A weld was provided about 10 mm in length. Compressed air was sent from outside through a pipe inserted into the inside of the rectangular cylindrical container from the bottom, and the pressure inside the container when the fragile weld was broken was measured. Containers having different welding states of the fragile welds were prepared, and the amount of pressure at which the fragile welds fractured was examined for each container. Regarding the welding state, as shown in FIG.
m), the penetration depth of the welded portion is B (mm), the thickness of the rectangular cylindrical container is C (mm), the thickness of the sealing plate is C '(mm), and the smaller one of C and C' A / 2c as c
And the horizontal axis represents the value of A / 2c, and the vertical axis represents the penetration depth B.
(Mm) are shown in Table 1 below. In addition, A / 2c is set to 0.
The penetration depth B is set to about 7 and the penetration depth B is set to about 0.3, and it is formed to break at about 100 kg / cm 2 .

【0015】[0015]

【表1】 [Table 1]

【0016】この結果から、ビード幅Aが広ければ広い
ほど、また溶け込み深さBが深ければ深いほど、より高
い圧力で脆弱溶接部が破断されるようになることがわか
った。ここで、このような形状の角形筒状容器におい
て、例えば、内圧が31kg/cmのときに脆弱溶接
部を破断させたい場合には、A/2cの値を0.83ぐ
らいでかつ溶け込み深さBを0.1ぐらいに設定した
り、またはA/2cの値を0.16〜0.33ぐらいで
かつ溶け込み深さBを0.3ぐらいに設定したりする。
この他、内圧が31kg/cmのときに破断するよう
に、ビード幅Aと溶け込み深さBとをバランスよく調節
された値にそれぞれ設定する。
From these results, it was found that the wider the bead width A and the deeper the penetration depth B, the higher the pressure at which the fragile weld is broken. Here, in the rectangular cylindrical container having such a shape, for example, when it is desired to break the fragile welded portion when the internal pressure is 31 kg / cm 2 , the value of A / 2c is set to about 0.83 and the penetration depth is set to about 0.83. The depth B is set to about 0.1, or the value of A / 2c is set to about 0.16 to 0.33, and the penetration depth B is set to about 0.3.
In addition, the bead width A and the penetration depth B are set to values that are well-balanced so as to break when the internal pressure is 31 kg / cm 2 .

【0017】また、高さ60mm、幅40mm、奥行き
10mmで板厚0.4mmの角形筒状容器についても同
じように約10mm程の脆弱溶接部を設け、同様な試験
を行った。その試験結果を以下の表2に示す。なお、こ
こでは、脆弱溶接部以外の他の溶接部については、A/
2cが0.80ぐらい、溶け込み深さBが0.35ぐら
いに設定され、135kg/cmで破断するように形
成されている。
A similar test was also performed on a rectangular cylindrical container having a height of 60 mm, a width of 40 mm, a depth of 10 mm and a plate thickness of 0.4 mm in the same manner as above, with a weakly welded portion of about 10 mm. The test results are shown in Table 2 below. In addition, here, A /
2c is set to about 0.80, the penetration depth B is set to about 0.35, and it is formed to break at 135 kg / cm 2 .

【0018】[0018]

【表2】 [Table 2]

【0019】この結果からも、ビード幅が広ければ広い
ほど、また溶接溶け込み深さが深ければ深いほど、より
高い圧力で脆弱溶接部が破断されるようになることが確
認できた。また、このような形状の角形筒状容器におい
て、例えば、この容器の内圧が40kg/cmのとき
に脆弱溶接部を破断させたい場合には、A/2cの値を
0.88ぐらいでかつ溶け込み深さBを0.1に設定し
たり、またはA/2cの値を0.25〜0.38ぐらい
でかつ溶け込み深さBを0.3ぐらいに設定したりす
る。この他、内圧が40kg/cmのときに破断する
ように、ビード幅Aと溶け込み深さBとをバランスよく
調節された値にそれぞれ設定する。
From these results, it was also confirmed that the wider the bead width and the deeper the penetration depth of the weld, the more the fragile weld is broken at a higher pressure. Further, in a rectangular cylindrical container having such a shape, for example, when it is desired to break the fragile welded portion when the internal pressure of the container is 40 kg / cm 2 , the value of A / 2c should be about 0.88 and The penetration depth B is set to 0.1, or the value of A / 2c is set to about 0.25 to 0.38 and the penetration depth B is set to about 0.3. In addition, the bead width A and the penetration depth B are set to values that are well-balanced so as to break when the internal pressure is 40 kg / cm 2 .

【0020】次に、脆弱溶接部10の溶接長さLと、脆
弱溶接部10が破断されるときの角形筒状容器4の内圧
との関係を調べる試験について説明する。この試験で
は、前述と同様、高さ34mm、幅25mm、奥行き6
mmで板厚0.3mmの角形筒状容器を使用し、この容
器と封口板との長辺部間の溶接部に設けられる脆弱溶接
部の長さと、この溶接部が破断する容器の内圧との関係
を次の表3にまとめた。なお、脆弱溶接部の溶接長さL
以外の他の条件については、A/2cの値を0.67ぐ
らい、溶け込み深さを0.25ぐらいに設定した。ま
た、脆弱溶接部以外の他の溶接部については、A/2c
が0.7ぐらい、溶け込み深さBが0.3ぐらいに設定
され、100kg/cmで破断するように形成されて
いる。
Next, a test for examining the relationship between the welding length L of the fragile weld 10 and the internal pressure of the rectangular cylindrical container 4 when the fragile weld 10 is broken will be described. In this test, the height was 34 mm, the width was 25 mm, and the depth was 6 as described above.
Use a rectangular cylindrical container with a thickness of 0.3 mm and a thickness of 0.3 mm, the length of the weak weld provided at the weld between the container and the long side of the sealing plate, and the internal pressure of the container at which this weld breaks. Is summarized in Table 3 below. In addition, the welding length L of the fragile welding portion
For other conditions other than the above, the value of A / 2c was set to about 0.67, and the penetration depth was set to about 0.25. For other welds other than the weak welds, A / 2c
Is set to about 0.7, the penetration depth B is set to about 0.3, and it is formed to break at 100 kg / cm 2 .

【0021】[0021]

【表3】 [Table 3]

【0022】この結果から、脆弱溶接部の長さが長けれ
ば長いほど、角形筒状容器の内圧が低い状態でも破断す
ることが確認できた。また、このようなタイプの角形筒
状容器を備える電池で、防爆機構の作動内圧を30kg
/cmに設定したいときには、脆弱溶接部の長さを5
mm程度に設定すればよいことがわかる。
From these results, it was confirmed that the longer the length of the brittle welding portion, the more the breakage occurred even when the internal pressure of the rectangular cylindrical container was low. In addition, with a battery provided with a rectangular cylindrical container of this type, the operating internal pressure of the explosion-proof mechanism is 30 kg.
/ Cm 2 , set the length of the fragile weld to 5
It can be seen that the distance may be set to about mm.

【0023】また、高さ60mm、幅40mm、奥行き
10mmで板厚0.4mmの角形筒状容器についても同
様の試験を行い、その結果を次の表4にまとめた。な
お、脆弱溶接部の溶接長さL以外の他の条件について
は、A/2cの値を0.67ぐらい、溶け込み深さを
0.25ぐらいに設定した。また、ここでは、脆弱溶接
部以外の他の溶接部については、A/2cを0.80、
溶け込み深さBを0.35に設定され、135kg/c
で破断するように形成されている。
The same test was conducted on a rectangular cylindrical container having a height of 60 mm, a width of 40 mm, a depth of 10 mm and a thickness of 0.4 mm, and the results are summarized in Table 4 below. In addition, about conditions other than the welding length L of a weak welding part, the value of A / 2c was set to about 0.67, and the penetration depth was set to about 0.25. In addition, here, A / 2c is set to 0.80 for the welds other than the weak welds.
Penetration depth B is set to 0.35 and 135kg / c
It is formed so as to break in m 2.

【0024】[0024]

【表4】 [Table 4]

【0025】この結果からも、脆弱溶接部の長さが長け
れば長いほど、角形筒状容器の内圧が低い状態でも破断
することがわかる。また、このようなサイズの角形筒状
容器を有する電池で、内圧40kg/cmで作動する
防爆機構を得たいときには、脆弱溶接部の長さを5mm
程度に設定すべきことがわかった。
From this result, it can be seen that the longer the length of the fragile welded portion, the more the rupture occurs even when the internal pressure of the rectangular cylindrical container is low. In addition, when it is desired to obtain an explosion-proof mechanism that operates at an internal pressure of 40 kg / cm 2 in a battery having a rectangular cylindrical container of such a size, the length of the fragile welded portion is 5 mm.
It turns out that it should be set to a degree.

【0026】以上のことから、脆弱溶接部10の溶接長
さLと、脆弱溶接部10の溶接強度、即ち溶接部のビー
ド幅や溶け込み深さの状態を所望の内圧で破断するよう
にバランスよく適度な設定することで、角形筒状電池の
内圧が所定の圧力のときに脆弱溶接部10を破断させる
ことができる。特に、脆弱溶接部10の溶接長さLと、
脆弱溶接部10のビード幅と、その溶け込み深さと、脆
弱溶接部の破断圧力との関係から関数を求めておき、こ
れに従い脆弱溶接部10の溶接長さLやビード幅、溶け
込み深さなどを算出すれば、これらの設定を簡単に行う
ことができる。
From the above, the welding length L of the fragile welded portion 10 and the welding strength of the fragile welded portion 10, that is, the bead width and penetration depth of the welded portion, are well balanced so as to be broken at a desired internal pressure. By setting the pressure appropriately, the fragile welded portion 10 can be broken when the internal pressure of the prismatic cylindrical battery is a predetermined pressure. In particular, the welding length L of the fragile welding portion 10;
A function is determined in advance from the relationship between the bead width of the fragile weld 10, its penetration depth, and the breaking pressure of the fragile weld, and the welding length L, bead width, penetration depth, and the like of the fragile weld 10 are accordingly determined. Once calculated, these settings can be made easily.

【0027】ここでさらに、脆弱溶接部10が破断され
たときに形成される破断部の大きさについても考慮した
い場合には次のようにして設定する。すなわち、破断部
の大きさを大きめにしたいときには、脆弱溶接部10の
溶接長さLを長めに取り、脆弱溶接部10の溶接強度を
若干高めにするように設定を行う。また、破断部の大き
さを小さめにしたいときには、脆弱溶接部10の溶接長
さLを短めに取り、脆弱溶接部10の溶接強度を若干低
めにするように設定を行う。
Here, when the size of the fractured portion formed when the fragile welded portion 10 is fractured is also to be considered, the size is set as follows. That is, when it is desired to increase the size of the fractured portion, the welding length L of the fragile welding portion 10 is set to be longer, and the welding strength of the fragile welding portion 10 is set to be slightly higher. When the size of the fractured portion is to be reduced, the welding length L of the fragile welding portion 10 is set to be short, and the welding strength of the fragile welding portion 10 is set to be slightly lower.

【0028】角形筒状容器4の内圧が高まり脆弱溶接部
10が破断したときの様子を図3に示す。角形筒状容器
4の開口部の長辺部中央部分が外側へ膨出変形され、角
形筒状容器4の開口部4aと封口板6との間に隙間14
が生じる。この隙間14を通じて角形筒状容器4の内部
と外部とが連通され、容器4内部の蓄積ガスが外部へと
速やかに排出される。
FIG. 3 shows a state in which the internal pressure of the rectangular cylindrical container 4 is increased and the fragile welded portion 10 is broken. The central part of the long side of the opening of the rectangular cylindrical container 4 is swelled and deformed outward, and a gap 14 is formed between the opening 4 a of the rectangular cylindrical container 4 and the sealing plate 6.
Occurs. The inside and the outside of the rectangular cylindrical container 4 are communicated through the gap 14, and the accumulated gas inside the container 4 is quickly discharged to the outside.

【0029】===他の実施の形態=== (1)角形筒状容器4と封口板6との接合構造について
は、前記実施の形態で示したように角形筒状容器4の内
側に封口板6が嵌め込まれる構成の他に、角形筒状容器
4の開口部上方に封口板6が配設される構成であっても
かまわない。
=== Other Embodiments === (1) As for the joint structure between the rectangular cylindrical container 4 and the sealing plate 6, as shown in the above-described embodiment, the inside of the rectangular cylindrical container 4 In addition to the configuration in which the sealing plate 6 is fitted, a configuration in which the sealing plate 6 is disposed above the opening of the rectangular cylindrical container 4 may be used.

【0030】(2)角形筒状容器4は、短辺側壁部が外
側に曲面を描いて半円弧状に弯曲した断面略長円形状の
ものであってもよい。
(2) The rectangular cylindrical container 4 may have a substantially elliptical cross section in which a short side wall portion is curved outward and curved in a semicircular shape.

【0031】(3)本発明にかかる脆弱溶接部10の溶
接強度については、長さ方向に沿って必ずしも均一に設
定されている必要はなく、脆弱溶接部10が所望の圧力
で破断されれば若干の強弱差が生じていてもかまわな
い。
(3) The welding strength of the fragile welding portion 10 according to the present invention does not necessarily need to be set uniformly along the length direction, as long as the fragile welding portion 10 is broken at a desired pressure. There may be slight differences in strength.

【0032】(4)脆弱溶接部10にもっと大きな破断
力を集中させるために、図4に示すように角形筒状容器
4の長辺壁部4aの開口端部に縦方向のリブ20を形成
したり、またリブ20を形成する代わりにこの部分の肉
厚を厚くしたりするとよい。
(4) In order to concentrate a larger breaking force on the fragile welding portion 10, a longitudinal rib 20 is formed at the opening end of the long side wall portion 4a of the rectangular cylindrical container 4 as shown in FIG. It is preferable to increase the thickness of this portion instead of forming the rib 20.

【0033】[0033]

【発明の効果】本発明にかかる角形電池の防爆機構によ
れば、角形筒状容器の開口部とこれを封鎖する封口板と
を接合する溶接部に設けられる脆弱溶接部は、他の溶接
部よりも単に溶接強度を弱くした極めて単純な構造であ
るため、薄肉部や溝部などかなる防爆機構に比べて非常
に簡単に設けることができる。このため、角形電池に対
して、あまり手間や労力をかけることなく、また高価な
精密加工装置を使用することなく、防爆機構を設けるこ
とができる。従って、角形電池において、作業性コスト
や設備費用の面で低減化を図ることができる。
According to the explosion-proof mechanism for a rectangular battery according to the present invention, the fragile welding portion provided at the welding portion for joining the opening of the rectangular cylindrical container and the sealing plate for closing the opening is different from the other welding portions. Since it has a very simple structure in which the welding strength is simply weakened, it can be provided very easily as compared with an explosion-proof mechanism having a thin portion or a groove. For this reason, an explosion-proof mechanism can be provided for the prismatic battery without much labor and effort and without using expensive precision processing equipment. Therefore, in the prismatic battery, reduction in workability cost and equipment cost can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる角形電池を上から見たときの様
子を示した図である。
FIG. 1 is a diagram showing a state when a prismatic battery according to the present invention is viewed from above.

【図2】本発明にかかる角形筒状容器と封口板との溶接
部の溶接状態を数値で表わすときの各寸法取得位置を示
した断面図である。
FIG. 2 is a cross-sectional view showing each dimension acquisition position when a welding state of a welded portion between a rectangular cylindrical container and a sealing plate according to the present invention is represented by a numerical value.

【図3】本発明にかかる角形電池の防爆機構が作動した
ときの様子を示した斜視図である。
FIG. 3 is a perspective view showing a state when an explosion-proof mechanism for a rectangular battery according to the present invention is operated.

【図4】本発明にかかる角形電池の他の実施形態を示し
た斜視図である。
FIG. 4 is a perspective view showing another embodiment of the prismatic battery according to the present invention.

【図5】一般的な角形電池の外観を示した斜視図であ
る。
FIG. 5 is a perspective view showing the appearance of a general prismatic battery.

【図6】一般的な角形電池の内部構造を示した縦断面図
である。
FIG. 6 is a longitudinal sectional view showing the internal structure of a general prismatic battery.

【符号の説明】[Explanation of symbols]

2 角形電池 4 角形筒状容器 4a 開口部 6 封口板 8 発電要素 10 脆弱溶接部 11 長辺側溶接部 12 短辺側溶接部 14 隙間 2 prismatic battery 4 prismatic cylindrical container 4a opening 6 sealing plate 8 power generating element 10 fragile welded part 11 long side welded part 12 short side welded part 14 gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 5H011 AA13 BB03 DD13 FF03 5H012 AA07 BB02 CC01 EE04 FF01 5H022 BB11 CC03 CC08 KK01 KK03 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshiro Harada 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. F-term (reference) 5H011 AA13 BB03 DD13 FF03 5H012 AA07 BB02 CC01 EE04 FF01 5H022 BB11 CC03 CC08 KK01 KK03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 断面略扁平矩形状または断面略長円形状
に成形された角形筒状容器の内部に正極や負極などの発
電要素を収装し、前記角形筒状容器の開口部にこの開口
部と同じ略扁平矩形状または略長円形状に成形された封
口板を配設し、前記角形筒状容器の開口部と前記封口板
の周縁部との境界に沿って溶接処理を施して前記角形筒
状容器と前記封口板とを一体化し、前記角形筒状容器の
内部を密閉してなる角形電池において、 前記角形筒状容器の開口部と前記封口板の長辺側端部ど
うしを接合する溶接部の長さ方向中央部に所定の長さに
わたり、前記角形筒状容器の開口部と前記封口板の短辺
側端部どうしを接合する溶接部など他の溶接部よりも溶
接強度が弱く設定された脆弱溶接部を設け、前記角形筒
状容器の内圧が所定の圧力に達したときに前記脆弱溶接
部が破断されるようにしたことを特徴とする角形電池の
防爆機構。
1. A power generating element such as a positive electrode or a negative electrode is housed inside a rectangular cylindrical container formed into a substantially flat rectangular shape or a substantially elliptical cross section, and the opening is formed in an opening of the rectangular cylindrical container. A sealing plate formed in the same substantially flat rectangular shape or substantially elliptical shape as the portion is provided, and welding processing is performed along a boundary between an opening of the rectangular cylindrical container and a peripheral portion of the sealing plate. In a prismatic battery formed by integrating a rectangular cylindrical container and the sealing plate and sealing the inside of the rectangular cylindrical container, an opening of the rectangular cylindrical container and a long side end of the sealing plate are joined to each other. Over a predetermined length at the center in the length direction of the welded portion to be welded, the welding strength is higher than other welded portions such as a welded portion that joins the opening of the rectangular cylindrical container and the short side end portion of the sealing plate. A weakly set weakly welded portion is provided, and the internal pressure of the rectangular cylindrical container reaches a predetermined pressure. Explosion-proof mechanism of the prismatic battery wherein weak weld is characterized in that so as to be broken when.
【請求項2】 前記脆弱溶接部が、前記角形筒状容器の
開口部の相対向する長辺部をそれぞれ前記封口板の長辺
部と溶接することにより形成されていることを特徴とす
る請求項1に記載の角形電池の防爆機構。
2. The method according to claim 1, wherein the weak welds are formed by welding opposing long sides of the opening of the rectangular cylindrical container to long sides of the sealing plate. Item 7. An explosion-proof mechanism for a prismatic battery according to Item 1.
【請求項3】 前記脆弱溶接部が、その溶接長さと、ビ
ード幅と、溶け込み深さとを関数として設定してなるこ
とを特徴とする請求項1または2に記載の角形電池の防
爆機構。
3. The explosion-proof mechanism for a prismatic battery according to claim 1, wherein the fragile welding portion has its welding length, bead width, and penetration depth set as functions.
JP11213512A 1999-07-28 1999-07-28 Explosion-proof mechanism for rectangular battery Pending JP2001043845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11213512A JP2001043845A (en) 1999-07-28 1999-07-28 Explosion-proof mechanism for rectangular battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11213512A JP2001043845A (en) 1999-07-28 1999-07-28 Explosion-proof mechanism for rectangular battery

Publications (1)

Publication Number Publication Date
JP2001043845A true JP2001043845A (en) 2001-02-16

Family

ID=16640428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11213512A Pending JP2001043845A (en) 1999-07-28 1999-07-28 Explosion-proof mechanism for rectangular battery

Country Status (1)

Country Link
JP (1) JP2001043845A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416095B1 (en) * 2001-10-13 2004-01-24 삼성에스디아이 주식회사 Rectangular-type secondary battery
WO2005124894A1 (en) * 2004-06-08 2005-12-29 The Gillette Company Alkaline cell with flat housing
JP2006324160A (en) * 2005-05-20 2006-11-30 Mitsubishi Heavy Ind Ltd Sealing structure of battery cabinet and battery with the structure
US7459232B2 (en) 2003-06-19 2008-12-02 Samsung Sdi Co., Ltd. Secondary battery having safety valve and method of manufacturing same
KR100885941B1 (en) * 2003-11-21 2009-02-26 히다치 막셀 가부시키가이샤 Sealed and square type battery
US7700230B2 (en) 2004-02-17 2010-04-20 Panasonic Corporation Generally oval battery
WO2013061707A1 (en) * 2011-10-28 2013-05-02 株式会社神戸製鋼所 Aluminum can for secondary battery, and method for producing same
WO2014002560A1 (en) * 2012-06-28 2014-01-03 トヨタ自動車株式会社 Battery and fabrication method thereof
JP2014203812A (en) * 2013-04-10 2014-10-27 株式会社Gsユアサ Power storage element
JP2015111573A (en) * 2014-12-22 2015-06-18 トヨタ自動車株式会社 Battery and manufacturing method thereof
WO2016093100A1 (en) * 2014-12-11 2016-06-16 株式会社 豊田自動織機 Electric power storage device
WO2018011049A1 (en) * 2016-07-14 2018-01-18 Lithium Energy and Power GmbH & Co. KG Energy storage device and method of manufacturing such energy storage device
CN112054134A (en) * 2020-09-09 2020-12-08 江西安驰新能源科技有限公司 Lithium battery cover plate and lithium battery welding process containing same
WO2023071710A1 (en) * 2021-11-01 2023-05-04 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2023216253A1 (en) * 2022-05-13 2023-11-16 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416095B1 (en) * 2001-10-13 2004-01-24 삼성에스디아이 주식회사 Rectangular-type secondary battery
US7459232B2 (en) 2003-06-19 2008-12-02 Samsung Sdi Co., Ltd. Secondary battery having safety valve and method of manufacturing same
CN100452483C (en) * 2003-06-19 2009-01-14 三星Sdi株式会社 Secondary battery having safety valve and method of manufacturing same
KR100885941B1 (en) * 2003-11-21 2009-02-26 히다치 막셀 가부시키가이샤 Sealed and square type battery
US7553581B2 (en) 2003-11-21 2009-06-30 Hitachi Maxell, Ltd. Sealed prismatic battery
US7700230B2 (en) 2004-02-17 2010-04-20 Panasonic Corporation Generally oval battery
WO2005124894A1 (en) * 2004-06-08 2005-12-29 The Gillette Company Alkaline cell with flat housing
JP2006324160A (en) * 2005-05-20 2006-11-30 Mitsubishi Heavy Ind Ltd Sealing structure of battery cabinet and battery with the structure
KR20140077940A (en) * 2011-10-28 2014-06-24 가부시키가이샤 고베 세이코쇼 Aluminum can for secondary battery, and method for producing same
KR101697410B1 (en) 2011-10-28 2017-01-17 가부시키가이샤 고베 세이코쇼 Aluminum can for secondary battery, and method for producing same
WO2013061707A1 (en) * 2011-10-28 2013-05-02 株式会社神戸製鋼所 Aluminum can for secondary battery, and method for producing same
JP2013097900A (en) * 2011-10-28 2013-05-20 Kobe Steel Ltd Aluminum can body for secondary battery and manufacturing method thereof
WO2014002560A1 (en) * 2012-06-28 2014-01-03 トヨタ自動車株式会社 Battery and fabrication method thereof
JP2014010937A (en) * 2012-06-28 2014-01-20 Toyota Motor Corp Battery and manufacturing method for the same
JP2014203812A (en) * 2013-04-10 2014-10-27 株式会社Gsユアサ Power storage element
JPWO2016093100A1 (en) * 2014-12-11 2017-09-07 株式会社豊田自動織機 Power storage device
WO2016093100A1 (en) * 2014-12-11 2016-06-16 株式会社 豊田自動織機 Electric power storage device
US10096815B2 (en) 2014-12-11 2018-10-09 Kabushiki Kaisha Toyota Jidoshokki Electric power storage device
JP2015111573A (en) * 2014-12-22 2015-06-18 トヨタ自動車株式会社 Battery and manufacturing method thereof
WO2018011049A1 (en) * 2016-07-14 2018-01-18 Lithium Energy and Power GmbH & Co. KG Energy storage device and method of manufacturing such energy storage device
CN109475979B (en) * 2016-07-14 2020-12-04 株式会社杰士汤浅国际 Energy storage device and method for producing such an energy storage device
US11407064B2 (en) 2016-07-14 2022-08-09 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
CN112054134A (en) * 2020-09-09 2020-12-08 江西安驰新能源科技有限公司 Lithium battery cover plate and lithium battery welding process containing same
WO2023071710A1 (en) * 2021-11-01 2023-05-04 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device
WO2023070683A1 (en) * 2021-11-01 2023-05-04 宁德时代新能源科技股份有限公司 Battery cell, battery, and method and apparatus for manufacturing battery cell
WO2023216253A1 (en) * 2022-05-13 2023-11-16 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device

Similar Documents

Publication Publication Date Title
JP2001043845A (en) Explosion-proof mechanism for rectangular battery
JP3973164B2 (en) Sealed prismatic battery
JP3634908B2 (en) Cleavage-type safety valve for sealed battery containers
US7700230B2 (en) Generally oval battery
JP2011204396A (en) Sealed battery and method for manufacturing the same
JP2009146645A (en) Welded structure manufacturing method and battery manufacturing method
WO1997016859A1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
JP2011129266A (en) Manufacturing method of square shape sealed battery
JP2006324160A (en) Sealing structure of battery cabinet and battery with the structure
WO2014001878A1 (en) Rectangular battery and method of manufacturing rectangular battery
US10103363B2 (en) Sealed battery and a method for manufacturing the same
CN104821387A (en) Secondary battery and method for producing secondary battery
JPH09129195A (en) Explosion-proof sealing plate
JPH09259841A (en) Seared battery
JPH04349347A (en) Sealed battery
JP3346675B2 (en) Explosion-proof sealing plate for sealed batteries
KR20050062424A (en) Device for fluid-tight sealing of a pipe section
JP3118690B2 (en) Outer can for lithium secondary battery
JPH01231262A (en) Sheathed can and battery using it
WO2021181893A1 (en) Gas discharge valve of battery and battery
JPH09139197A (en) Sealed type battery
KR970072523A (en) Manufacturing method of a square-type closed-type capacitor
JPH0935703A (en) Safety mechanism of battery
JP2870067B2 (en) Sealed battery
JP2000223103A (en) Sealed battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040917