JP2001043528A - Method for reforming surface of aluminum substrate - Google Patents

Method for reforming surface of aluminum substrate

Info

Publication number
JP2001043528A
JP2001043528A JP11218237A JP21823799A JP2001043528A JP 2001043528 A JP2001043528 A JP 2001043528A JP 11218237 A JP11218237 A JP 11218237A JP 21823799 A JP21823799 A JP 21823799A JP 2001043528 A JP2001043528 A JP 2001043528A
Authority
JP
Japan
Prior art keywords
aluminum substrate
functional water
water
substrate
orp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11218237A
Other languages
Japanese (ja)
Inventor
Furumitsu Kato
降光 加藤
Mitsugi Maekawa
貢 前川
Yuichi Momotsuka
雄一 百束
Tadao Tokushima
忠夫 徳島
Masaaki Kato
昌明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEDIA KENKYUSHO KK
De Nora Permelec Ltd
Original Assignee
MEDIA KENKYUSHO KK
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEDIA KENKYUSHO KK, Permelec Electrode Ltd filed Critical MEDIA KENKYUSHO KK
Priority to JP11218237A priority Critical patent/JP2001043528A/en
Priority to US09/588,225 priority patent/US6531047B1/en
Publication of JP2001043528A publication Critical patent/JP2001043528A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove an alkaline residual liquid contained in the defective part of an Ni-P aluminum substrate and to prevent the corrosion of a work-affected layer by polishing by immersing the Ni-P aluminum substrate passing through a final polishing step in a functional water having a positive or negative oxidation-reduction potential(ORP) for a prescribed period, then washing the resultant substrate with pure water and drying it. SOLUTION: First an Ni-P aluminum substrate having a prescribed surface roughness through a final polishing process is, in a struck substance removing step, immersed in a functional water having a negative ORP and pH >=8, and washed with ultrasonic wave, if necessary to remove stuck substances such as abrasive grains or organic materials. Then the Ni-P aluminum substrate free from stuck substances is, in a surface reforming process, immersed in the functional water having a positive ORP and acidity for a prescribed period, is washed with pure water and then dried. Therefore, surface hardness of the Ni-P substrate can be improved and corrosion resistance of the substrate can be enhanced, thereby obtaing a desired smoothness small in the number of projections.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてコンピュ
ータの記憶媒体であるハードディスク等に使用される、
Ni−P(ニッケル燐)メッキを施したアルミニウム基
板(アルミニウム合金基板を含む。本明細書において同
じ。)の表面改質方法、さらに詳しくは、基板の耐食性
能を向上させ、GMRヘッド等の低浮上に適合するよう
に表面を改質する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly used for a hard disk or the like which is a storage medium of a computer.
A method for modifying the surface of an aluminum substrate (including an aluminum alloy substrate, which is the same in the present specification) plated with Ni-P (nickel-phosphorus), more specifically, improving the corrosion resistance of the substrate and reducing the surface roughness of a GMR head or the like. The present invention relates to a method for modifying a surface so as to be suitable for flying.

【0002】[0002]

【従来の技術】従来より、磁気ディスク基板として、表
面にNi−Pメッキを施したアルミニウム基板(以下、
Ni−Pアルミ基板という。)が広く用いられてきた
が、最近のHDDの高密度化に対応して、磁気ヘッドの
低浮上化、媒体の低ノイズ化が要求されるに連れて、基
板表面の平滑性、研磨による基板表面の変質層の改良が
より強く要求されるようになってきた。
2. Description of the Related Art Conventionally, as a magnetic disk substrate, an aluminum substrate (hereinafter, referred to as a Ni-P plated surface) has been used.
It is called a Ni-P aluminum substrate. ) Has been widely used, but with the recent demand for higher density HDDs, as the magnetic head has been required to have a lower flying height and a lower noise in the medium, the substrate surface has been smoothed and the substrate has been polished. There has been a growing demand for improved surface alteration layers.

【0003】HDDドライブにおいて、従来のMRヘッ
ドでは、浮上量400〜600オングストローム(以
下、“A”と表す。)範囲で使用されてきたが、GMR
ヘッドでは、高密度記録のため浮上量300“A”以下
で使用されるようになってきた。磁気記録において、ヘ
ッド・媒体間のスペーシングは、記録再生特性に大きな
影響を与える。スペーシングの10%以上の変動は、記
録再生時においてエラーを生じる可能性が大きくなる。
このため、浮上量300“A”のHDDでは、媒体面の
最大突起高さは50“A”以下に押さえる必要が生じて
きた。
[0003] In the HDD drive, a conventional MR head has been used in a flying height range of 400 to 600 angstroms (hereinafter referred to as "A").
Heads have come to be used at a flying height of 300 A or less for high-density recording. In magnetic recording, the spacing between the head and the medium has a great effect on the recording / reproducing characteristics. Fluctuations of 10% or more in spacing increase the possibility of causing an error during recording and reproduction.
For this reason, in a HDD having a flying height of 300 “A”, it has become necessary to keep the maximum projection height of the medium surface at 50 “A” or less.

【0004】また、HDD高密度化に対応するため、基
板表面の平均粗度及び最大突起高さは、Ra10〜5
“A”、Rt100“A”からRa5“A”、Rt50
“A”以下のスーパーフィニッシュ基板が広く使用され
るようになってきた。
In order to cope with high density HDD, the average roughness of the substrate surface and the maximum height of the protrusions are Ra10 to Ra5.
“A”, Rt100 “A” to Ra5 “A”, Rt50
Super finish substrates of “A” or less have been widely used.

【0005】[0005]

【発明が解決しようとする課題】磁気記録媒体用のアル
ミニウム基板は、その表面硬度を増すために、通常、表
面にNi−Pメッキが10μm程度コートされて使用さ
れている。製造工程として、メッキは無電解法で12μ
m程度なされ、必要な表面精度を得るため2μm研磨さ
れ、研磨砥粒等の除去のため界面活性材、超音波洗浄等
の洗浄工程を経て、アルミニウム基板の全数が検査され
て出荷される。したがって、検査時の性能が磁性膜スパ
ッタ時まで維持されれば、磁気記録媒体としての製造歩
留まりには問題が生じない。
An aluminum substrate for a magnetic recording medium is usually used with its surface coated with Ni-P plating of about 10 μm in order to increase its surface hardness. As a manufacturing process, plating is 12μ by electroless method.
m, polished to 2 μm in order to obtain the required surface accuracy, subjected to a cleaning process such as a surfactant, ultrasonic cleaning or the like to remove abrasive grains and the like, and all the aluminum substrates are inspected and shipped. Therefore, if the performance at the time of inspection is maintained until the time of sputtering the magnetic film, there is no problem in the production yield as a magnetic recording medium.

【0006】アルミニウム基板へのNi−Pメッキは、
通常、次のプロセスを経て行われる。すなわち、Ni−
Pはアルミニウム基板には直接メッキできないため、ア
ルミニウム基板は所定の形状に加工され、歪み取り、焼
鈍を行って、脱脂等の洗浄後、無電解メッキの核となる
ジンケート処理が施される。これは、アルミニウム基板
の上にZnを付着させるものである。Znはアルミニウ
ム基板上に島状に離散して付着し、この上にNi−Pが
局部電池の作用で析出してくる。したがって、Ni−P
成長初期は膜になっておらず、1〜5μm成長して初め
て緻密な被膜となる。このことは、成長初期には無電解
メッキ液が成長欠陥部に取込まれる可能性を示唆する。
無電解メッキ液は、還元剤として次亜リン酸ナトリウ
ム、緩衝剤としてクエン酸ナトリウム等、ナトリウムを
含む塩が使用されるため、メッキ被膜中にこれらの液が
残留すると、腐食の原因となる。工業製品では、100
%完全無欠ということは有り得ないため、腐食が発生す
る。このため、Ni−Pアルミ基板は、製造後の使用有
効期限を設けて対応してきた。GMR低浮上ヘッドにな
ると、媒体のSN比及びヘッド走行安定性のため、最大
突起長が50“A”くらいに制限され、新たな対策が要
求されるようになってきた。本発明はこれに応えるもの
である。
[0006] Ni-P plating on an aluminum substrate
Usually, this is performed through the following process. That is, Ni-
Since P cannot be plated directly on an aluminum substrate, the aluminum substrate is processed into a predetermined shape, subjected to strain removal, annealing, and cleaning such as degreasing, and then subjected to a zincate treatment as a core of electroless plating. This is to deposit Zn on an aluminum substrate. Zn is discretely attached to the aluminum substrate in an island shape, and Ni-P is deposited on the aluminum substrate by the action of a local battery. Therefore, Ni-P
In the initial stage of growth, the film is not formed, but becomes a dense film only after growth of 1 to 5 μm. This suggests that the electroless plating solution may be taken into the growth defect at the beginning of growth.
As the electroless plating solution, a salt containing sodium such as sodium hypophosphite is used as a reducing agent and sodium citrate is used as a buffering agent. If these solutions remain in the plating film, they cause corrosion. For industrial products, 100
Since completeness is not possible, corrosion occurs. For this reason, Ni-P aluminum substrates have been provided with expiration dates after manufacture. In the case of the GMR low flying head, the maximum protrusion length is limited to about 50 “A” due to the S / N ratio of the medium and the running stability of the medium, and a new measure has been required. The present invention addresses this.

【0007】材料の表面を機械加工すると、加工の際に
作用する力、発生する熱、研磨液等の作用によって材料
の表面は何らかの作用を受け、仕上げ面の表層には最外
表面よりある深さまで、下層生地とは性質の異なる加工
変質層を生じる(日経技術図書 S59 『表面研磨仕
上技術集成』)。Ni−Pアルミ基板の場合は、図1に
示されるように、この加工変質層の厚さがほぼ1μmで
ある。加工変質層は、微細なクラック、研磨液との作用
でゲル化しており、非常に柔らかい。なお、図1は、N
i−Pアルミ基板に対して、本発明方法の機能水による
処理を行わない場合と、行った場合の表面の深さと硬度
との関係を示す特性図である。
When the surface of a material is machined, the surface of the material is subjected to some action by the action of the working force, the generated heat, the action of the polishing liquid, etc., and the surface layer of the finished surface has a certain depth from the outermost surface By the way, a deteriorated layer having a different property from that of the lower fabric is generated (Nikkei Technical Book S59 “Surface polishing finishing technology”). In the case of a Ni-P aluminum substrate, as shown in FIG. 1, the thickness of the affected layer is approximately 1 μm. The affected layer is gelled by the action of fine cracks and polishing liquid, and is very soft. Note that FIG.
FIG. 4 is a characteristic diagram showing a relationship between the surface depth and the hardness when an i-P aluminum substrate is not treated with the functional water of the method of the present invention and when it is performed.

【0008】被膜中の欠陥部へのメッキ液の残留及び研
磨時の加工変質層のため、Ni−Pアルミ基板は、通常
の洗浄処理では、製造後の時間経過とともに表面にコロ
ージョンの突起が生じてくる。磁性膜をスパッタした後
は、スパッタ時の加熱真空により残留液が除去され、ス
パッタ磁性膜が表面を覆うため、空気中の水分ガス等と
反応することはなく、スパッタされにくい周辺部を除い
てコロージョンの発生は考慮する必要はない。
[0008] Due to the residual plating solution on the defective portion of the coating and the deteriorated layer during polishing, the Ni-P aluminum substrate has corrosion projections on the surface thereof with the lapse of time after production in a normal cleaning process. Come. After the magnetic film is sputtered, residual liquid is removed by heating vacuum during sputtering, and the sputtered magnetic film covers the surface, so it does not react with moisture gas in the air, etc. It is not necessary to consider the occurrence of corrosion.

【0009】このため、基板メーカは、基板の使用期間
に制限を設けて対応してきたが、浮上量の低下、SN比
の向上の要求を満たすため、使用期間がより一層短縮さ
れ、工業上の対策が求められてきた。
For this reason, substrate manufacturers have responded by limiting the period of use of the substrate. However, in order to satisfy the demands for lowering the flying height and improving the S / N ratio, the period of use has been further shortened, and Measures have been required.

【0010】本発明は、以上の事情を背景としてなされ
たものであり、その課題は、Ni−Pアルミ基板の欠陥
部に含まれるアルカリ残留液及び加工変質層に基づく腐
食の発生を制御して、低浮上GMRヘッドに対応する磁
気記録媒体用アルミニウム基板の安定生産を可能にす
る、Ni−Pアルミ基板の表面改質方法を提供すること
にある。
The present invention has been made in view of the above circumstances, and an object thereof is to control the occurrence of corrosion based on an alkali residual liquid and a work-affected layer contained in a defective portion of a Ni-P aluminum substrate. Another object of the present invention is to provide a method for modifying the surface of a Ni-P aluminum substrate, which enables stable production of an aluminum substrate for a magnetic recording medium corresponding to a low flying GMR head.

【0011】[0011]

【課題を解決するための手段】従来、半導体の洗浄、液
晶ガラスの洗浄等には、イオン水、酸素ガス又は水素ガ
ス導入水等の機能水が使用されてきている。しかし、そ
の大部分は、酸化還元電位(ORP)がマイナスのアル
カリ側で付着微粒子の除去等を行う洗浄を目的としてお
り、機能水が表面改質を行う目的で使用された例は少な
い。本発明は、ORPがプラス又はマイナスの機能水を
用いることを特徴としている。このような機能水を用い
ることにより、従来のNi−Pアルミ基板で問題になっ
てきていた有効期間(期限)の延長、加工変質層の改良
による製造歩留まりの改善の効果が得られることを確認
した。
Conventionally, functional water such as ionized water, oxygen gas or hydrogen gas introduced water has been used for cleaning semiconductors, cleaning liquid crystal glass, and the like. However, most of them are intended for cleaning to remove adhered fine particles on the alkali side where the oxidation-reduction potential (ORP) is negative, and there are few examples in which functional water is used for surface modification. The present invention is characterized in that ORP uses positive or negative functional water. It has been confirmed that by using such functional water, the effects of extending the effective period (expiration date) and improving the production yield by improving the work-affected layer, which have been problems with the conventional Ni-P aluminum substrate, can be obtained. did.

【0012】ORPがプラスの機能水としては、ORP
200〜1300mV、好ましくは300〜700m
V、pH2〜7、好ましくは4〜7の酸性機能水を用い
る。この機能水に、最終研磨工程を経たNi−Pアルミ
基板を所定時間浸漬処理し、これを純水により洗浄した
後、乾燥すると、Ni−Pアルミ基板の表面が改質され
る。すなわち、Ni−Pアルミ基板の欠陥部に含まれる
アルカリ残留液が除去され、また、研磨による変質層の
腐食が防止される。
[0012] ORP is a positive functional water, ORP
200-1300 mV, preferably 300-700 m
V. Use acidic functional water having a pH of 2 to 7, preferably 4 to 7. The Ni-P aluminum substrate that has undergone the final polishing step is immersed in this functional water for a predetermined period of time, washed with pure water, and dried to modify the surface of the Ni-P aluminum substrate. That is, the alkaline residual liquid contained in the defective portion of the Ni-P aluminum substrate is removed, and corrosion of the altered layer due to polishing is prevented.

【0013】処理しようとするNi−Pアルミ基板に研
磨砥粒、その他のゴミ等の付着物がある場合は、従来の
機能水による洗浄、すなわち、ORPがマイナスのアル
カリ性機能水で付着物を除去した後に、本発明のORP
がプラスの酸性機能水で処理してもよい。また、処理条
件は、使用される無電解メッキ液の組成、研磨砥粒の種
類と粒径、研磨液の種類等の加工条件により適宜選択さ
れる。
[0013] If the Ni-P aluminum substrate to be treated has an attached substance such as abrasive grains or other dust, the conventional washing with functional water, that is, the attached substance is removed with an ORP-negative alkaline functional water. ORP of the present invention
May be treated with positive acidic functional water. The processing conditions are appropriately selected depending on the processing conditions such as the composition of the electroless plating solution used, the type and particle size of the abrasive grains, and the type of the polishing solution.

【0014】[0014]

【発明の実施の形態】本発明によるNi−Pアルミ基板
の表面改質は、最終研磨工程を経て所定の平面粗度にな
った基板に対して最終洗浄工程を行う際に、次の工程を
通ることにより達成される。以下は、ORPがプラスの
機能水を用いる場合の例である。 (1)付着物除去工程 ORPがマイナスで、pH8以上のアルカリ機能水にN
i−Pアルミ基板を浸漬し、必要に応じて超音波を付加
し、洗浄して、Ni−Pアルミ基板に付着している研磨
砥粒、その他の有機物などの付着物を除去する。 (2)表面改質工程 (1)の工程により付着物を除去したNi−Pアルミ基
板を、ORPがプラスの酸性機能水に所定時間浸漬し、
純水で洗浄した後、乾燥する。機能水は、基板と付着物
を同電位にして電気的反発力により洗浄能力を発揮す
る。これはアノード側、カソード側のどちらも同じ作用
をするため、付着汚染物の種類によっては(1)の工程
は必要でない。
BEST MODE FOR CARRYING OUT THE INVENTION The surface modification of a Ni-P aluminum substrate according to the present invention includes the following steps when a final cleaning step is performed on a substrate having a predetermined surface roughness after a final polishing step. Achieved by passing through. The following is an example of a case where ORP uses functional water with a positive value. (1) Adhered matter removal step ORP is negative, and N
The i-P aluminum substrate is immersed, ultrasonic waves are applied if necessary, and the substrate is washed to remove extraneous matter such as abrasive grains and other organic substances adhered to the Ni-P aluminum substrate. (2) Surface modification step The Ni-P aluminum substrate from which deposits have been removed in the step (1) is immersed in ORP-plus acidic functional water for a predetermined time,
After washing with pure water, it is dried. The functional water makes the substrate and the attached matter have the same potential, and exerts a cleaning ability by electric repulsion. Since the same operation is performed on both the anode side and the cathode side, the step (1) is not necessary depending on the type of the contaminants.

【0015】本発明で使用される機能水のORPの有効
範囲は、200〜1300mV、好適範囲は400〜7
00mV、pHの有効範囲は2〜7、好適範囲は4〜7
である。ORPが200mV未満では表面改質の能力が
弱く、処理に時間がかかるし、また、1300mVを超
えると表面が酸化される。pH2未満では、基板がエッ
チングされ、7を超えると、改質の効果が弱まる。
The effective range of the ORP of the functional water used in the present invention is 200-1300 mV, and the preferred range is 400-7.
00mV, the effective range of pH is 2 to 7, and the preferable range is 4 to 7.
It is. When the ORP is less than 200 mV, the surface modification ability is weak, and the treatment takes a long time. When the ORP exceeds 1300 mV, the surface is oxidized. When the pH is lower than 2, the substrate is etched, and when the pH is higher than 7, the effect of the modification is weakened.

【0016】[0016]

【実施例】アルミニウム6063合金の上に、下記条件
で無電解研磨液を使用してNi−Pを12μmメッキ
し、コロイダルシリカ研磨砥粒で2μm研磨し、Ra4
“A”の基板を作成し、界面活性剤を含む超音波洗浄装
置で洗浄し、スピン乾燥をした。AFMを含む検査の結
果、表面には腐食による突起は見られなかった。 メッキ液:無電解研磨液(酸性浴) pH:5 液温:40度 液組成:(単位はg/1リットル水) 硫酸ニッケル 30 次亜燐酸ナトリウム 20 酢酸ナトリウム 14 クエン酸ナトリウム 24 塩化アンモニウム 5 乳酸 0.5 研磨材:(単位はg/1リットル水) 二酸化珪素 30 酸化ナトリウム 0.6 pH 10 粒子径 0.01μm以下
EXAMPLE Ni-P was plated to 12 μm on an aluminum 6063 alloy using an electroless polishing solution under the following conditions, and polished to 2 μm with colloidal silica abrasive grains.
The substrate “A” was prepared, washed with an ultrasonic cleaner containing a surfactant, and spin-dried. As a result of the inspection including the AFM, no protrusion due to corrosion was found on the surface. Plating solution: Electroless polishing solution (acid bath) pH: 5 Solution temperature: 40 degrees Liquid composition: (unit: g / 1 liter water) Nickel sulfate 30 Sodium hypophosphite 20 Sodium acetate 14 Sodium citrate 24 Ammonium chloride 5 Lactic acid 0.5 abrasive: (unit: g / 1 liter water) silicon dioxide 30 sodium oxide 0.6 pH 10 particle size 0.01 μm or less

【0017】この材料を基準サンプルとし、無処理、す
なわち、機能水による洗浄処理をしないものをサンプル
No.19とした。上記サンプルのうち、無処理のもの
(サンプルNo.19)はそのままとし、残りのサンプ
ルは下記条件で機能水を用いて洗浄処理をした。処理条
件を表1に示す。
This material was used as a reference sample, and no sample, that is, a sample not subjected to a cleaning treatment with functional water, was used as a sample. 19 was set. Of the above samples, the untreated sample (Sample No. 19) was left as it was, and the remaining samples were washed with functional water under the following conditions. Table 1 shows the processing conditions.

【表1】 [Table 1]

【0018】表1中の機能水(洗浄水)のpH、ORP
は次の通りである。 カソード水 無添加 pH 7.8 ORP −580mV 〃 NH3添加 pH 10 ORP −800mV オゾン水 1ppm pH 6.7 ORP 1200mV 〃 10ppm pH 6.7 ORP 1200mV アノード水 無添加 pH 6 ORP 550mV 〃 HCL添加 pH 2 ORP 1150mV
PH and ORP of functional water (wash water) in Table 1
Is as follows. Cathode water not added pH 7.8 ORP -580 mV NH NH3 added pH 10 ORP -800 mV Ozone water 1 ppm pH 6.7 ORP 1200 mV 〃 10 ppm pH 6.7 ORP 1200 mV Anode water added pH 6 ORP 550 mV 〃 HCL added pH 2 ORP 1150mV

【0019】Ni−Pアルミ基板を表1に定める条件の
pH、ORP、浸漬時間で処理した後、純水中で3分間
リンス後、スピン乾燥した。上記テストにより得られた
サンプルNo.1〜18のサンプルをクリーンルームに
20日間放置した後、AFMにて20×20μm領域を
観察し、突起の数及び突起の最大高さを測定した。測定
結果は、表2に示す通りである。
The Ni-P aluminum substrate was treated under the conditions of pH, ORP and immersion time set forth in Table 1, rinsed in pure water for 3 minutes, and then spin-dried. Sample No. obtained by the above test After leaving 1 to 18 samples in a clean room for 20 days, the area of 20 × 20 μm was observed by AFM, and the number of protrusions and the maximum height of the protrusions were measured. The measurement results are as shown in Table 2.

【表2】 [Table 2]

【0020】Ni−Pアルミ基板に対して、無処理の場
合と、アノード水、カソード水、オゾン水でそれぞれ処
理した場合の代表的なアルミニウム基板の金属表面組織
を、図2ないし図8の図面代用AFM写真により示す。
図2は表1のサンプルNo.19に、図3〜図8は、表
1のサンプルNo.3,6,9,12,15,18にそ
れぞれ対応する。
FIGS. 2 to 8 show the metal surface structures of a typical aluminum substrate in the case where the Ni—P aluminum substrate is not treated and when it is treated with anode water, cathode water and ozone water, respectively. This is shown by a substitute AFM photograph.
FIG. 3 to 8 show the sample Nos. 3, 6, 9, 12, 15, and 18, respectively.

【0021】表2から明らかなように、サンプルNo.
10,13,14,15は、突起数が0、最大突起高さ
が50“A”以下であり、極めて良好な結果を示してい
る。サンプルNo.1〜6も、従来方法に比し、平滑性
において格段に優れている。以上の実施例により、本発
明方法は、ORP400〜700mV、pH4〜7が好
適範囲であることがわかる。
As is clear from Table 2, the sample No.
10, 13, 14 and 15 have 0 projections and a maximum projection height of 50 "A" or less, showing extremely good results. Sample No. Nos. 1 to 6 are much more excellent in smoothness than the conventional method. From the above examples, it can be understood that the ORP of 400 to 700 mV and the pH of 4 to 7 are preferable ranges in the method of the present invention.

【0022】以上の実施例は、ある条件の下になされた
もので、無電解メッキ条件及び研磨条件が変われば、機
能水の最適処理条件は変化する。無電解メッキをアルカ
リ浴で行い、研磨を酸性浴で行えば、最適機能水の処理
条件は、ORP,pHとも反対になる。ORPがマイナ
スの機能水を用いる場合は、ORPが−500〜−80
0mV、pHが7〜10が有効範囲である。
The above embodiment is performed under a certain condition. If the electroless plating condition and the polishing condition change, the optimum treatment condition of the functional water changes. If the electroless plating is performed in an alkaline bath and the polishing is performed in an acidic bath, the optimum functional water treatment conditions are opposite to the ORP and pH. When the ORP uses negative functional water, the ORP is -500 to -80.
0 mV and a pH of 7 to 10 are effective ranges.

【0023】アノード、カソード電解機能水は、一般に
分子サイズが小さくなるため、Ni−Pアルミ基板の微
細クラックにも容易に浸透し、クラック中のアルカリ成
分その他の有害イオンを置換効果で除去する。アノー
ド、カソード電解水等による表面改質後は、特別な薬品
を使用しないため、通常の界面活性剤を使用した場合に
必要とされる特別な排水処理が不要となり、経済的であ
る。
Since the anode and cathode functional water generally has a small molecular size, it easily penetrates into fine cracks in the Ni—P aluminum substrate, and removes alkali components and other harmful ions in the cracks by a substitution effect. After the surface modification with the anode, cathode electrolyzed water, etc., no special chemicals are used, so that a special wastewater treatment required when a normal surfactant is used is not required, which is economical.

【0024】[0024]

【発明の効果】以上のように、本発明の表面改質方法に
よれば、Ni−Pアルミ基板の表面の硬度が改善され、
かつ、耐食性能が向上されるほか、表面の突起数が非常
に少なく、最大突起高さが50“A”以下の平滑性が得
られて、低浮上GMRヘッドに好適なフルミニウム基板
の安定生産が可能である。
As described above, according to the surface modification method of the present invention, the hardness of the surface of the Ni-P aluminum substrate is improved,
In addition to the improved corrosion resistance, the number of projections on the surface is very small, and the smoothness with a maximum projection height of 50 "A" or less is obtained, and stable production of a fluorinium substrate suitable for a low-flying GMR head can be achieved. It is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ni−Pアルミ基板の機能水処理をしない場合
と、した場合の表面からの深さと硬度との関係を示す特
性図。
FIG. 1 is a characteristic diagram showing a relationship between a depth from a surface and a hardness when a functional water treatment is not performed on a Ni—P aluminum substrate and when a functional water treatment is performed.

【図2】Ni−Pアルミ基板の無処理状態の表面金属組
織を示すAFM写真。
FIG. 2 is an AFM photograph showing a surface metal structure of an untreated state of a Ni—P aluminum substrate.

【図3】Ni−Pアルミ基板のカソード水・無添加処理
後の表面金属組織を示すAFM写真。
FIG. 3 is an AFM photograph showing the surface metal structure of a Ni—P aluminum substrate after a cathode water / no addition treatment.

【図4】Ni−Pアルミ基板のカソード水・NH3添加
処理後の表面金属組織を示すAFM写真。
FIG. 4 is an AFM photograph showing a surface metal structure of a Ni—P aluminum substrate after a cathode water / NH 3 addition treatment.

【図5】Ni−Pアルミ基板の1ppmオゾン水処理後
の表面金属組織を示すAFM写真。
FIG. 5 is an AFM photograph showing the surface metallographic structure of a Ni—P aluminum substrate after 1 ppm ozone water treatment.

【図6】Ni−Pアルミ基板の10ppmオゾン水処理
後の表面金属組織を示すAFM写真。
FIG. 6 is an AFM photograph showing a surface metal structure of a Ni—P aluminum substrate after a 10 ppm ozone water treatment.

【図7】Ni−Pアルミ基板のアノード水・無添加処理
後の表面金属組織を示すAFM写真。
FIG. 7 is an AFM photograph showing a surface metal structure of a Ni—P aluminum substrate after an anode water / no addition treatment.

【図8】Ni−Pアルミ基板のアノード水・HCL添加
処理後の表面金属組織を示すAFM写真。
FIG. 8 is an AFM photograph showing a surface metal structure of a Ni—P aluminum substrate after an anode water / HCL addition treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 貢 東京都港区西新橋2−19−4 株式会社メ ディア研究所内 (72)発明者 百束 雄一 東京都港区西新橋2−19−4 株式会社メ ディア研究所内 (72)発明者 徳島 忠夫 神奈川県横浜市港北区太尾町2021−3 (72)発明者 加藤 昌明 神奈川県横浜市旭区二俣川1−79−8 M Aハイツ201 Fターム(参考) 4K053 PA07 PA10 QA06 QA07 RA07 SA06 SA18 YA01 5D112 AA02 AA24 BA06 GA08 GA09 GA28 GA30  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuru Maekawa 2-19-4 Nishi-Shimbashi, Minato-ku, Tokyo Inside Media Research Laboratories (72) Inventor Yuichi Hyakuzuka 2-19-4 Nishi-Shimbashi, Minato-ku, Tokyo (72) Inventor Tadao Tokushima 2021-3 Taocho, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Masaaki Kato 1-79-8 Futamagawa, Asahi-ku, Yokohama-shi, Kanagawa MA Heights 201 F term (reference) 4K053 PA07 PA10 QA06 QA07 RA07 SA06 SA18 YA01 5D112 AA02 AA24 BA06 GA08 GA09 GA28 GA30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ni−Pメッキを施したアルミニウム基
板の研摩工程を経た後の洗浄工程において、酸化還元電
位がプラス又はマイナスの機能水により所要時間処理す
ることを特徴とするアルミニウム基板の表面改質方法。
In a washing step after a polishing step of an Ni-P-plated aluminum substrate, the surface of the aluminum substrate is treated with functional water having a redox potential of plus or minus for a required time. Quality way.
【請求項2】 機能水として、pHが酸性であるアノー
ド電解水又はオゾン水を使用することを特徴とする請求
項1に記載されたアルミニウム基板の表面改質方法。
2. The method for modifying the surface of an aluminum substrate according to claim 1, wherein anode water or ozone water having an acidic pH is used as the functional water.
【請求項3】 機能水は、水の直接電気分解により生成
された機能水又は電気分解により発生した酸素ガスを酸
素透過膜により水中に拡散させて生成された機能水であ
ることを特徴とする請求項1に記載されたアルミニウム
基板の表面改質方法。
3. The functional water is a functional water generated by direct electrolysis of water or a functional water generated by diffusing oxygen gas generated by electrolysis into water by an oxygen permeable membrane. A method for modifying the surface of an aluminum substrate according to claim 1.
【請求項4】 酸化還元電位が200〜1300mV、
好ましくは300〜700mVの機能水を使用すること
を特徴とする請求項1,2又は3に記載されたアルミニ
ウム基板の表面改質方法。
4. An oxidation-reduction potential of 200 to 1300 mV,
The method for modifying the surface of an aluminum substrate according to claim 1, 2, or 3, wherein functional water of preferably 300 to 700 mV is used.
【請求項5】 pHが2〜7好ましくは4〜7の機能水
を用いることを特徴とする請求項1,2,3又は4に記
載されたアルミニウム基板の表面改質方法。
5. The method for modifying the surface of an aluminum substrate according to claim 1, wherein functional water having a pH of 2 to 7, preferably 4 to 7 is used.
【請求項6】 機能水として、pHがアルカリ性である
カソード電解水を用いることを特徴とする請求項1に記
載されたアルミニウム基板の表面改質方法。
6. The method for modifying the surface of an aluminum substrate according to claim 1, wherein cathodic electrolyzed water having an alkaline pH is used as the functional water.
【請求項7】酸化還元電位が−500〜−800mVの
機能水を使用することを特徴とする請求項6に記載され
たアルミニウム基板の表面改質方法。
7. The method for modifying the surface of an aluminum substrate according to claim 6, wherein functional water having an oxidation-reduction potential of -500 to -800 mV is used.
【請求項8】 機能水への浸漬時間を1〜20分、好ま
しくは1〜5分とすることを特徴とする請求項1〜7の
いずれか一つに記載されたアルミニウム基板の表面改質
方法。
8. The surface modification of an aluminum substrate according to claim 1, wherein the immersion time in the functional water is 1 to 20 minutes, preferably 1 to 5 minutes. Method.
JP11218237A 1999-07-30 1999-07-30 Method for reforming surface of aluminum substrate Withdrawn JP2001043528A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11218237A JP2001043528A (en) 1999-07-30 1999-07-30 Method for reforming surface of aluminum substrate
US09/588,225 US6531047B1 (en) 1999-07-30 2000-06-06 Surface modification method for an aluminum substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11218237A JP2001043528A (en) 1999-07-30 1999-07-30 Method for reforming surface of aluminum substrate

Publications (1)

Publication Number Publication Date
JP2001043528A true JP2001043528A (en) 2001-02-16

Family

ID=16716754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11218237A Withdrawn JP2001043528A (en) 1999-07-30 1999-07-30 Method for reforming surface of aluminum substrate

Country Status (1)

Country Link
JP (1) JP2001043528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845818B2 (en) * 2003-04-29 2005-01-25 Shell Oil Company Method of freeing stuck drill pipe
WO2013161959A1 (en) * 2012-04-27 2013-10-31 独立行政法人科学技術振興機構 Method for etching metal or metal oxide by ozone water, method for smoothing surface of metal or metal oxide by ozone water, and patterning method using ozone water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845818B2 (en) * 2003-04-29 2005-01-25 Shell Oil Company Method of freeing stuck drill pipe
WO2013161959A1 (en) * 2012-04-27 2013-10-31 独立行政法人科学技術振興機構 Method for etching metal or metal oxide by ozone water, method for smoothing surface of metal or metal oxide by ozone water, and patterning method using ozone water
US9797046B2 (en) 2012-04-27 2017-10-24 Japan Science And Technology Agency Method for etching metal or metal oxide by ozone water, method for smoothing surface of metal or metal oxide by ozone water, and patterning method using ozone water

Similar Documents

Publication Publication Date Title
JP4479528B2 (en) Method of plating on glass substrate, method of manufacturing disk substrate for magnetic recording medium using the plating method, and method of manufacturing perpendicular magnetic recording medium
JP2006089363A (en) Process for manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium obtained by the process, and magnetic recording medium obtained using the substrate
JP2006291270A (en) Plating method for glass substrate, method for manufacturing disk substrate for perpendicular magnetic recording medium, disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP5153405B2 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
US20040038082A1 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
JP2005350747A (en) Electroless plating method, magnetic recording medium, and magnetic recording device
JP4479493B2 (en) Method of plating on glass substrate and method of manufacturing magnetic recording medium using the same
JP2001043528A (en) Method for reforming surface of aluminum substrate
US20020015863A1 (en) Method for cleaning a glass substrate for a magnetic recording medium, a glass substrate cleaned by such a method, and a magnetic recording medium using such a substrate
US6531047B1 (en) Surface modification method for an aluminum substrate
JP5071784B2 (en) Method of cleaning substrate for magnetic recording medium and method of manufacturing magnetic recording medium
JP2001295060A (en) Surface reforming method for aluminum substrate
US6461445B1 (en) Method of finishing glass substrate
TWI534799B (en) A method for manufacturing a hard disk substrate, and a substrate for a hard disk
JP3377500B2 (en) Method of manufacturing glass substrate for magnetic recording medium
JP3310563B2 (en) Magnetic recording medium and method of manufacturing the same
JP4285222B2 (en) Pretreatment method for electroless plating, method for producing substrate for magnetic recording medium including the method, and substrate for magnetic recording medium produced by the production method
JP2005206866A (en) Pretreatment method for electroless plating, method for manufacturing substrate for magnetic recording media including the pretreatment method, and substrate for magnetic recording media manufactured by the manufacturing method
JP2016115378A (en) Glass substrate for magnetic recording media, and magnetic recording medium
JP4228902B2 (en) Magnetic recording medium and method for manufacturing the same
JPS5837616B2 (en) Manufacturing method for magnetic recording media
JP3164212B2 (en) Cleaning method of glass substrate for magnetic disk
JP2000173050A (en) Magnetic recording medium and its fabricating method
JP4352398B2 (en) Magnetic recording medium substrate and method for manufacturing the same
JPH05314471A (en) Substrate for magnetic recording medium and manufacture of the same and magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003