JP2001041952A - Method for evaluating cleanliness of metallic material - Google Patents

Method for evaluating cleanliness of metallic material

Info

Publication number
JP2001041952A
JP2001041952A JP11214859A JP21485999A JP2001041952A JP 2001041952 A JP2001041952 A JP 2001041952A JP 11214859 A JP11214859 A JP 11214859A JP 21485999 A JP21485999 A JP 21485999A JP 2001041952 A JP2001041952 A JP 2001041952A
Authority
JP
Japan
Prior art keywords
inclusions
maximum diameter
analyzed
metal material
cleanliness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214859A
Other languages
Japanese (ja)
Inventor
Yoshio Nuri
嘉夫 塗
Tomoko Ise
知子 伊勢
Yoshiyuki Kato
恵之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP11214859A priority Critical patent/JP2001041952A/en
Publication of JP2001041952A publication Critical patent/JP2001041952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly, highly accurately and highly reliably evaluate cleanliness by obtaining the maximum diameter of an intervening substance from requirement time for reduction of the interposed substance and a calibration curve, and calculating the estimated maximum diameter according a specific formula. SOLUTION: An interposed substance, in each of (n) sample pieces collected from a metallic material to be analyzed, is reduced. A maximum diameter aj(j=1 or n) of the intervening substance is calculated for each sample piece from a calibration curve, in which reduction requirement times TE and maximum diameters of intervening substances are made corresponding to each other. Calibration curve is formed through acid dissolving and extracting the intervening substance in the metallic material, observing the substance, under a microscope to obtain the size of the substance. A recursion time T is obtained by T=(V+V0)/V0, where V0 is an inspection reference volume of one sample piece and V is an estimate volume. Moreover, a standardization variable ymax is obtained with ymax=-1n[-1n (T-1)/T}], where (n) is the number of inspection times. An estimate maximum diameter amax of the intervening substance is calculated from amax=t×ymax+u, where (t) is regression coefficient and (u) is a constant from linear regression expression of a maximum diameter aj and the standardization variable yj of the intervening substance, and cleanliness of the metallic material to be analyzed is evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料の清浄度
を評価する方法に関するものである。より詳しくは、金
属材料中の酸化物系介在物を還元するために要する時間
と酸化物系介在物の最大径との関係から、大量の金属材
料について信頼性の高い清浄度評価を行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the cleanliness of a metal material. More specifically, the present invention relates to a method for performing a highly reliable cleanness evaluation on a large amount of metal materials from the relationship between the time required to reduce oxide-based inclusions in the metal material and the maximum diameter of the oxide-based inclusions. .

【0002】[0002]

【従来の技術】最近の冶金技術の向上から、鋼などの金
属材料の清浄度が大幅に改善され、20ミクロンを越え
る中型から大型の金属材料中の非金属介在物は一段と少
なくなり、かつ、大きさも小さくなっている。このよう
な中で、偶発的に、あるいは極めて低い確率で発生する
大型介在物の検出は、非常に困難になっている。しか
し、例えばAl23、MgO・Al23、(Ca,M
g)O・Al23などの介在物は軸受鋼などにおいて疲
労破壊の原因となりやすく、依然として問題となってい
る。
2. Description of the Related Art With the recent improvement in metallurgical technology, the cleanliness of metallic materials such as steel has been greatly improved, and non-metallic inclusions in medium to large metallic materials exceeding 20 microns have been further reduced. The size is also smaller. Under such circumstances, it is extremely difficult to detect large inclusions that occur accidentally or with extremely low probability. However, for example, Al 2 O 3 , MgO · Al 2 O 3 , (Ca, M
g) Inclusions such as O.Al 2 O 3 tend to cause fatigue fracture in bearing steel and the like, and are still a problem.

【0003】現在、金属材料の清浄度を見る検査方法と
しては、光学顕微鏡による方法が標準である。しかし、
この方法では被検面積が約1000mm2と小さく、上
述のような高清浄度の金属材料の清浄度を評価する方法
としては実用上到底利用することができない(JIS G 05
55, ASTM E45, ASTMA295, DIN50602, ISO4967 など)。
At present, as a standard inspection method for checking the cleanliness of a metal material, a method using an optical microscope is standard. But,
In this method, the area to be inspected is as small as about 1000 mm 2, and it cannot be practically used as a method for evaluating the cleanliness of a metal material having high cleanliness as described above (JIS G 05
55, ASTM E45, ASTMA295, DIN50602, ISO4967, etc.).

【0004】また、金属材料から酸溶解により介在物を
抽出しその介在物の粒径を顕微鏡で評価する方法やEB
溶解法により金属材料を溶解し浮上した介在物を顕微鏡
により観察する方法が提案されているが(特開平9−1
25199号、特開平9−125200号)、介在物が
酸に溶解したり、介在物自身が融解、凝集したりする場
合があり、さらに、酸溶解に時間がかかるなど、処理の
迅速性に劣り、製品の量産工程に対応することも困難で
あった。
Further, a method of extracting inclusions from a metal material by acid dissolution and evaluating the particle size of the inclusions with a microscope has been proposed.
A method has been proposed in which a metal material is melted by a melting method and inclusions that have floated are observed with a microscope (Japanese Patent Application Laid-Open No. 9-1 / 1991).
25199, JP-A-9-125200), the inclusions may be dissolved in the acid, or the inclusions themselves may be melted or agglomerated, and the dissolution of the acid may take a long time, resulting in poor processing speed. Also, it was difficult to cope with the mass production process of products.

【0005】しかして、このような状況の下、実際に金
属材料の清浄度を評価し、保証できる、新たな技術の開
発が望まれていた。
[0005] Under such circumstances, it has been desired to develop a new technology capable of actually evaluating and guaranteeing the cleanliness of a metal material.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、最
近の冶金技術の向上に対応し、鋼などの金属材料の清浄
度の大幅な改善に対応した、信頼性の高い金属材料の清
浄度の評価方法を提供せんとするものである。また、こ
のような金属材料の量産工程にも対応した、迅速な金属
材料の清浄度の評価方法を提供しようとするものであ
る。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a highly reliable metal material having a high degree of cleanliness in response to recent improvements in metallurgical technology and a great improvement in the cleanliness of metal materials such as steel. It does not provide an evaluation method for It is another object of the present invention to provide a method for quickly evaluating the cleanliness of a metal material that is compatible with such a metal material mass-production process.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決することを目的に、検鏡面積を基準検査面積S 0
=100mm2とし、試料数n=30〜60個採取し、
それぞれの試料において現れた最大介在物径からの極値
統計法の手順により被分析対象金属材料中の介在物の最
大径を予測する方法を検討してきたが、それでも前記の
大型介在物の予測には信頼性が低かった。そのため、顕
微鏡を用いた方法では金属材料の清浄度の評価としては
満足のいくものに至らなかった。
Means for Solving the Problems The present inventor has set forth the above object.
For the purpose of solving 0
= 100mmTwoAnd the number of samples n = 30 to 60 are collected,
Extreme value from the maximum inclusion diameter that appeared in each sample
Statistical procedures are used to determine the presence of inclusions in the metallic material being analyzed.
We have been studying a method to predict the large diameter.
The reliability of predicting large inclusions was low. Therefore,
In the method using a microscope, the evaluation of cleanliness of metal materials
It was not satisfactory.

【0008】本発明者らはさらに研究を進め、金属中の
酸素量を分析する方法において、一酸化炭素ガスの抽出
波形と金属中の酸化物系介在物の粒径について研究を重
ねた。その結果、酸化物系介在物を還元するために要す
る時間と酸化物系介在物の最大粒径とに相関があること
を見いだし、本発明を完成するに至ったものである。
The present inventors have further studied and, in a method for analyzing the amount of oxygen in a metal, have repeatedly studied the extraction waveform of carbon monoxide gas and the particle size of oxide-based inclusions in the metal. As a result, they have found that there is a correlation between the time required to reduce the oxide-based inclusions and the maximum particle size of the oxide-based inclusions, and have completed the present invention.

【0009】本発明は上述の問題点を解消した手段を提
供するものであり、その要旨は特許請求の範囲に記載の
通りである。
The present invention provides means for solving the above-mentioned problems, the gist of which is as set forth in the appended claims.

【0010】すなわち、本発明は、酸化物系介在物の最
大径を求めて金属材料の清浄度を評価する方法であっ
て、被分析対象金属材料からn個の試料片を採取し、各
試料片中の前記介在物を還元し、還元に要する時間TE
を各試料片についてそれぞれ測定し、TEと前記介在物
の最大径とが対応する検量線から、n個の各試料片につ
いての前記介在物の最大径aj(j=1,n)を算出
し、下記式(1)および(1’)により被分析対象金属
材料中の前記介在物の推定最大径amaxを算出して被分
析対象金属材料の清浄度を評価することを特徴とする金
属材料の清浄度評価方法である。 [式1] 酸化物系の介在物の最大径aj (j=1,
n)と基準化変数yj (j=1,n)の一次回帰式 a=ty+u ・・・・・・・・・・・(1) ただし、 n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式1’]被分析対象金属中の酸化物系介在物の推定最
大径amax の算出式(回帰式) amax=t×ymax +u・・・・・・・・・・(1’) ただし、 Vo=検査基準体積(mm3 ) V=予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax(基準化変数)=−ln[ −ln{(T−1)/ T] ]
That is, the present invention is a method for evaluating the cleanliness of a metal material by obtaining the maximum diameter of an oxide-based inclusion, wherein n sample pieces are sampled from a metal material to be analyzed and each sample is sampled. The time T E required for reducing the inclusions in the piece and reducing
They were respectively measured for each sample piece, a calibration curve and the maximum diameter of the inclusions T E corresponding, maximum diameter a j of n the inclusions for each specimen of the (j = 1, n) And calculating the estimated maximum diameter a max of the inclusions in the metal material to be analyzed by the following equations (1) and (1 ′) to evaluate the cleanliness of the metal material to be analyzed. This is a method for evaluating the cleanliness of metal materials. [Equation 1] The maximum diameter a j (j = 1, 2) of oxide-based inclusions
n) and a linear regression equation of the standardization variable y j (j = 1, n) a = ty + u (1) where n = the number of inspections Standardization variable y j = −ln [−ln {j / (n + 1)]] (j = 1,
n) t = regression coefficient u = constant [Formula 1 '] Formula for calculating the estimated maximum diameter a max of oxide-based inclusions in the metal to be analyzed (regression formula) a max = t × y max + u... (1 ′) where V o = inspection reference volume (mm 3 ) V = volume to perform prediction (mm 3 ) T (recursion period) = (V + V o ) / V o y max (normalization Variable) =-ln [-ln {(T-1) / T]]

【0011】また、本発明は、酸化物系介在物の最大径
を求めて金属の清浄度を評価する方法であって、被分析
対象金属材料からn個の試料片を採取し、各試料片中の
前記介在物を還元し、還元に要する時間TEを各試料片
についてそれぞれ測定しTEj(j=1,n)を求め、下
記式(2)および(2’)により推定最大TEmaxを算出
し、TEと前記介在物の最大径とが対応する検量線か
ら、被分析対象金属材料中の前記介在物の推定最大径a
maxを算出して被分析対象金属材料の清浄度を評価する
ことを特徴とする金属材料の清浄度評価方法である。 [式2] 酸化物系介在物の還元に要する時間TEj(j
=1,n)と基準化変数yj (j=1,n)の一次回帰
式 TE=ty+u ・・・・・・・・・・・(1) ただし、 n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式2’]被分析対象金属中の酸化物系介在物の推定最
大TEmax の算出式(回帰式) TEmax=t×ymax +u・・・・・・・・・・(1’) ただし、 Vo=検査基準体積(mm3 ) V=予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax(基準化変数)=−ln[ −ln{(T−1)/ T] ]
The present invention also relates to a method for evaluating the cleanliness of a metal by determining the maximum diameter of an oxide-based inclusion, wherein n pieces of a sample are collected from a metal material to be analyzed, and reducing the inclusions in, seek time T E necessary for the reduction were measured for each sample piece T Ej (j = 1, n ), the estimated maximum T Emax by the following formula (2) and (2 ') calculates, from the calibration curve and the maximum diameter of the inclusions T E corresponding, estimated maximum diameter a of the inclusions of the analyzed metal material
This is a method for evaluating the cleanliness of a metal material, wherein max is calculated to evaluate the cleanliness of the metal material to be analyzed. [Equation 2] Time T Ej (j required for reduction of oxide-based inclusions
= 1, n) and the reference variables y j (j = 1, n ) of the linear regression equation T E = ty + u ··········· ( 1) However, n = number of tests standard variables y j = −ln [−ln {j / (n + 1)]] (j = 1,
n) t = regression coefficient u = constant [Equation 2 '] Calculation equation (regression equation) of estimated maximum TEmax of oxide-based inclusions in the metal to be analyzed TEEmax = t * ymax + u ... (1 ′) where V o = inspection reference volume (mm 3 ) V = predicted volume (mm 3 ) T (recursion period) = (V + V o ) / V o y max (standardization variable ) = − Ln [−ln {(T−1) / T]]

【0012】また、本発明は、試料片を不活性ガス雰囲
気下で加熱溶融し炭素源と反応させて一酸化炭素ガスを
発生させ、一酸化炭素ガスの発生から終了までの時間を
各試料片ごとに測定して、当該測定値を各試料片のTE
とすることを特徴とする、前記金属材料の清浄度評価方
法である。
The present invention also provides a method for heating and melting a sample under an inert gas atmosphere and reacting the sample with a carbon source to generate a carbon monoxide gas. measured every, the measurements of each sample piece T E
And a method for evaluating the cleanliness of said metal material.

【0013】[0013]

【発明の実施の形態】まず本発明者は、種々の研究の結
果、20ミクロンを越える金属材料中非金属介在物が一
段と少なくなり、かつ、大きさも小さくなっている状況
下で偶発的に、あるいは極めて低い確率で発生する大型
介在物を検出することは、顕微鏡観察による方法では到
底困難であるとの結論に至った。このような大型介在物
は被検面に現れるとは限らず、むしろ隠れて観察されな
い場合が多いものと考えられた。
BEST MODE FOR CARRYING OUT THE INVENTION First, as a result of various studies, the present inventor accidentally, under a situation where non-metallic inclusions in a metal material exceeding 20 microns are further reduced and the size is reduced, Alternatively, it has been concluded that it is extremely difficult to detect large inclusions that occur with a very low probability by a method based on microscopic observation. It was considered that such large inclusions did not always appear on the test surface, but rather were often hidden and not observed.

【0014】このため、顕微鏡観察による方法を利用し
ての金属材料の清浄度の評価・品質保証は、実際上不可
能と考えられた。
For this reason, it has been considered that it is practically impossible to evaluate and assure the quality of the cleanliness of the metal material using a method based on microscopic observation.

【0015】そこで、本発明者らは種々の検討の結果、
金属材料の酸素分析法で得られるガス抽出波形を利用で
きることを見いだしたのである。
Therefore, the present inventors have made various studies and found that
They found that the gas extraction waveform obtained by oxygen analysis of metallic materials could be used.

【0016】本発明者らは、この酸素分析法を応用する
ことにより、介在物の最大径について従来の1000倍
から数万倍の検査ができる効果を達成することに成功し
たものである。以下本発明の実施形態について具体的に
説明する。
By applying this oxygen analysis method, the present inventors have succeeded in achieving the effect that the maximum diameter of inclusions can be inspected 1,000 to tens of thousands times larger than the conventional one. Hereinafter, embodiments of the present invention will be specifically described.

【0017】本発明では、被分析対象金属材料から酸素
分析に供するn個の試料片を採取する。n個の試料片
は、被分析対象金属材料のいずれかの部位から採取して
くればよいが、評価の目的などに応じ被分析対象金属材
料について適切に評価できるように所定の検査部位を設
定し、その検査部位から採取してくることが好ましい。
検査部位の設定は、例えば、連続鋳造鋼片を被分析対象
とするのであれば、図2に示すように連続鋳造鋼片のト
ップ、ミドル、ボトムに設定するなど、被分析対象の性
質に合わせて大型非金属介在物の発生しやすい部位に設
定することができる。また、設定した検査部位からは同
じ形状の試料片を複数個(例えば、3個)採取すること
が好ましい。例えば、このようにすれば被分析対象金属
材料の全部位を平均的に検査することができる。また、
連続鋳造鋼片を被分析対象金属材料とする場合であれ
ば、トップ、ミドル、ボトムの全部位に検査部位を設定
し試料を採取すれば、鋳造の初期、中期、末期に対応す
る部位を検査することにもなる。
In the present invention, n sample pieces to be subjected to oxygen analysis are collected from the metal material to be analyzed. The n pieces may be collected from any part of the metal material to be analyzed, but a predetermined inspection part is set so that the metal material to be analyzed can be appropriately evaluated according to the purpose of the evaluation. However, it is preferable to collect from the inspection site.
For example, if a continuously cast steel slab is to be analyzed, the inspection site is set at the top, middle, and bottom of the continuously cast steel slab as shown in FIG. Thus, it can be set at a site where large non-metallic inclusions are likely to occur. Further, it is preferable to collect a plurality (for example, three) of sample pieces having the same shape from the set inspection site. For example, in this manner, all parts of the metal material to be analyzed can be inspected on average. Also,
In the case of using a continuously cast steel billet as the analysis target metal material, set the inspection site at all the top, middle, and bottom sites and collect samples to inspect the sites corresponding to the initial, middle, and end stages of casting. It will also be.

【0018】試料片の数nは、統計的には大きいほど信
頼性が向上することになるが、実用上好ましくは20〜
60個、特に好ましくは、30〜40個である。この範
囲であれば、作業上の負担もそれほど大きくなく迅速に
試験を行うことができ、統計的にも信頼できる介在物の
最大径の推測データを得ることができる。
[0018] As the number n of the sample pieces increases statistically, the reliability is improved.
The number is 60, particularly preferably 30 to 40. Within this range, the test can be performed quickly without a great burden on the work, and statistically reliable estimation data of the maximum diameter of the inclusion can be obtained.

【0019】被分析対象金属から採取し酸素分析法によ
り分析する試料片の重量は、酸素分析を行う分析機器な
どの条件にもよるが、好ましくは0.5〜3グラム、特
に好ましくは0.8〜1グラムとする。この範囲であれ
ば、信頼性あるデータが得られるとともに、試験を迅速
に行いやすいなどの点で好適である。
The weight of a sample piece collected from a metal to be analyzed and analyzed by an oxygen analysis method depends on the conditions of an analytical instrument for performing oxygen analysis, but is preferably 0.5 to 3 g, particularly preferably 0.1 to 3 g. 8 to 1 gram. This range is preferable in that reliable data can be obtained and the test can be performed quickly.

【0020】ここで、本発明の方法による分析重量を光
学顕微鏡法の測定視野数と比較するために、重量の測定
視野換算を行うと以下のようになる。
Here, in order to compare the analytical weight according to the method of the present invention with the number of visual fields measured by optical microscopy, the weight is converted into the visual field as follows.

【0021】高清浄鋼の介在物の数は少ない。このた
め、顕微鏡観察にて介在物の粒径を正確に測定するに
は、一般的には、400倍程度の倍率で観察する必要が
あり、測定視野数は1視野当たりの観察面積を0.03
61mm2とすると100視野程度が必要である。より
具体的には、例えば、5×5×5mm3(約0.98グ
ラム)の金属試料片の表面5×5mm2を400倍でく
まなく観察して、観察し終わると10ミクロン研磨して
また同様に観察していくことを繰り返したとすると、1
つの試料片を観察し終わるに必要な視野数は(5×5×
5)/(0.01×0.0361)=3.5×105
なる。したがって、酸素分析法で得られる情報量は、従
来の顕微鏡法(100視野)と比較すると3.5×10
3倍である。試料片数n=30〜60個とすると、チャ
ージあたり、従来の顕微鏡法より、1〜2×105倍の
情報量を得たことになる。したがって、従来の光学顕微
鏡に比べて十万倍の検査を実施したことになるのであ
る。
The number of inclusions of high clean steel is small. For this reason, in order to accurately measure the particle size of inclusions by microscopic observation, it is generally necessary to observe at a magnification of about 400 times. 03
If it is 61 mm 2 , about 100 visual fields are required. More specifically, for example, the surface of a 5 × 5 × 5 mm 3 (approximately 0.98 gram) metal sample piece is observed at a magnification of 400 × 5 × 5 mm 2 , and when observation is completed, 10 μm is polished. If the observation was repeated in the same manner, 1
The number of fields required to finish observing one specimen is (5 × 5 ×
5) / (0.01 × 0.0361) = 3.5 × 10 5 Therefore, the amount of information obtained by the oxygen analysis method is 3.5 × 10 5 in comparison with the conventional microscopy (100 visual fields).
3 times. Assuming that the number of sample pieces is n = 30 to 60, the amount of information per charge is 1-2 × 10 5 times larger than that of the conventional microscopy. Therefore, the inspection was performed 100,000 times as compared with the conventional optical microscope.

【0022】本発明の評価方法では、被分析対象金属材
料から採取した試料片中の酸化物系介在物を還元し、還
元に要する時間TEを求める。具体的には、例えば、試
料片を不活性ガス雰囲気下で加熱溶融し炭素源と反応さ
せて一酸化炭素ガス(以下「COガス」と表記すること
がある)を発生させ、COガスの発生から終了までの時
間を各試料片ごとに測定して、当該測定値を各試料片の
Eとすることにより、還元に要する時間TEを求めるこ
とができる。すなわち、COガスの抽出量から酸素量を
求める酸素分析法と同じ手法を用いることができ、より
具体的には、例えばいわゆる不活性ガス搬送融解−赤外
線吸収法(特開平11−30613号公報など)などが
挙げられる。
[0022] In the evaluation method of the present invention is to reduce the oxide-based inclusions of the sample piece which had been collected from a analyte metallic material, determining the time T E necessary for the reduction. Specifically, for example, a sample piece is heated and melted in an inert gas atmosphere and reacted with a carbon source to generate carbon monoxide gas (hereinafter sometimes referred to as “CO gas”), thereby generating CO gas. by measuring the time to the end for each specimen from the measured value by a T E of the specimen, it is possible to determine the time T E necessary for the reduction. That is, the same method as the oxygen analysis method for obtaining the amount of oxygen from the amount of extracted CO gas can be used. More specifically, for example, a so-called inert gas carrier melting / infrared absorption method (Japanese Patent Laid-Open No. 11-30613) ).

【0023】不活性ガス搬送融解−赤外線吸収法では、
不活性ガス雰囲気中の抽出炉内で、金属試料片を加熱溶
融し、抽出炉内の炭素源と反応させてCOガスを発生さ
せ、COガスを不活性ガスにより搬送して赤外線吸収法
によりCOガスを測定する。炭素源としては、例えば、
黒鉛坩堝、黒鉛粉末、黒鉛カプセルや、金属試料中に炭
素源が含まれる場合にはこれを利用することができる。
黒鉛粉末や黒鉛カプセルを用いる場合には、これらと試
料片と混合して加熱し、また黒鉛坩堝を用いる場合に
は、黒鉛坩堝中に試料片を投入して加熱溶融すればよ
い。
Inert gas transport melting-In the infrared absorption method,
In an extraction furnace in an inert gas atmosphere, a metal sample piece is heated and melted, and reacted with a carbon source in the extraction furnace to generate CO gas.The CO gas is transported by the inert gas and CO is absorbed by an infrared absorption method. Measure the gas. As a carbon source, for example,
When a carbon source is contained in a graphite crucible, a graphite powder, a graphite capsule, or a metal sample, it can be used.
When graphite powder or graphite capsules are used, they are mixed with a sample piece and heated. When a graphite crucible is used, the sample piece is put into a graphite crucible and heated and melted.

【0024】図1は不活性ガス雰囲気中で黒鉛坩堝中に
鋼試料を投下、加熱溶融し、その溶融浴からCOガスを
抽出したときの酸素の抽出曲線を例示したものである
(酸素量はCOガスの抽出量から換算して求められるも
のであるから、縦軸に直接COを表示するものでもよ
い。)黒鉛坩堝中の試料片が溶融すると、S点でガス発
生が始まり、その後、ガス発生量を増加させつつ、M点
に至り、やがて、ガス発生量が減少してE点に至る。
FIG. 1 illustrates an oxygen extraction curve when a steel sample is dropped into a graphite crucible in an inert gas atmosphere, heated and melted, and CO gas is extracted from the molten bath. Since it is obtained by converting from the extraction amount of CO gas, CO may be directly displayed on the vertical axis.) When the sample piece in the graphite crucible is melted, gas generation starts at the point S, and then the gas is generated. The amount of gas generated increases to point M, and then the amount of gas generated decreases to point E.

【0025】ここで、本発明者らは、S点からE点まで
の所要時間、すなわち試料片中の酸化物系介在物を還元
するに要する時間TEの決定要因について種々検討し
た。その結果、TEを決定する要因としては、分析用素
材要因と分析装置要因とがあることが明らかになった。
前者の分析用素材要因、すなわち酸化物系介在物要因と
しては、1)酸化物系介在物の粒径、2)酸化物系介在
物の量、3)酸化物系介在物の組成(種類)などが、ま
た後者の分析装置要因としては、1)昇温パターン、
2)ガス流量などがある。この中で、TEの決定におよ
ぼす要因について種々調査した結果、前記の要因中、酸
化物径介在物の粒径がTEと密接な関係にあることを新
たに見いだした。
[0025] Here, the present inventors have found that the time required from point S to point E, i.e. made various investigations about the determinants of time T E necessary for the reduction of oxide inclusions in the specimen in. As a result, factors that determine the T E, it has become clear that there is an analysis device factors and material factors for analysis.
The former analysis material factors, that is, oxide inclusions, include: 1) particle size of oxide inclusions, 2) amount of oxide inclusions, and 3) composition (type) of oxide inclusions. And the latter factors of the analyzer are 1) heating pattern,
2) There is a gas flow rate and the like. In this, as a result of various investigations for factors on determination of T E, in cause of the particle size of the oxide diameter inclusions found newly that is closely related to T E.

【0026】すなわち、図3のグラフに例示されるよう
に、TEが大きくなるほど酸化物径介在物の最大粒径が
大きくなる傾向を示す相関関係があることが判明した。
本発明はこの新しい知見を活用することにある。図3の
ようなグラフを検量線とし、酸素分析法により求められ
るTEから試料片中の酸化物系介在物の最大径を求める
ことができる。TEと介在物の最大径との検量線は、金
属材料中の介在物を酸溶解で抽出し、あるいは削り込ん
で、顕微鏡で観察して寸法を求めるなどして作成するこ
とができる。検量線は、金属材料の種類、分析装置の昇
温のパターン、ガス流量などの要因が異なるごとに作成
することが望ましい。
[0026] That is, as illustrated in the graph of FIG. 3, it was found that the maximum particle diameter of the oxide diameter inclusions as T E increases there is a correlation shown a tendency to increase.
The present invention resides in utilizing this new finding. The graph shown in FIG. 3 is a standard curve, it is a T E obtained by oxygen analysis to determine the maximum diameter of the oxide inclusions in the sample pieces in. Calibration curve between the maximum diameter of the T E and inclusions, the inclusions in the metal material is extracted with an acid dissolution, or by scraped, it can be prepared by, for example, obtaining the size was observed with a microscope. It is desirable to create a calibration curve every time a factor such as the type of metal material, the pattern of temperature rise of the analyzer, the gas flow rate, or the like is different.

【0027】n個の各試料片ごとにTEを測定し、あら
かじめ作成しておいたTEと介在物の最大径との検量線
からn個の試料片の介在物の最大径aj(j=1,n)
が求められる。
The measured T E every n each sample piece, maximum diameter a j of n inclusions sample piece from the calibration curve of the maximum diameter of the inclusions T E prepared in advance ( j = 1, n)
Is required.

【0028】次に、このようにして決定した試料片ごと
の介在物の最大径aj(j=1,n)から上記式(1)
および(1’)により被分析対象金属材料中の酸化物系
介在物の推定最大径amaxを算出する。式(1)は、先
に求めたaj(j=1,n)と、基準化変数yiから求め
られる一次回帰式である。被分析対象金属材料中の酸化
物系介在物の最大径amaxを求めるには、式(1’)を
用いる。すなわち、1つの試料片の体積(検査基準体
積)V0と予測を行う体積Vとから再帰期間Tを求め、
さらにymaxを求めて式(1’)からamaxを算出する。
このようにして算出されるamaxが、体積Vの被分析対
象金属材料中の酸化物系介在物の推定最大径である。
Next, from the maximum diameter a j (j = 1, n) of the inclusion for each sample piece thus determined, the above equation (1) is obtained.
The estimated maximum diameter a max of the oxide-based inclusions in the metal material to be analyzed is calculated according to (1 ′). Equation (1) is a linear regression equation obtained from aj (j = 1, n) previously obtained and the standardized variable yi . Equation (1 ′) is used to determine the maximum diameter a max of the oxide-based inclusions in the metal material to be analyzed. That is, the recursion period T is obtained from the volume (inspection reference volume) V 0 of one sample piece and the volume V for which prediction is performed,
Further, y max is obtained, and a max is calculated from Expression (1 ′).
The thus calculated a max is the estimated maximum diameter of the oxide-based inclusions in the volume V of the metal material to be analyzed.

【0029】本発明の別の実施の形態としては、先に推
定最大TEを求めた後、TEと介在物の最大径との検量線
によって推定最大TEから推定最大径amaxを換算して求
めることもできる。この場合式(2)および(2’)を
用いる。すなわち、各試料片についてのTEを求めた
後、式(2)および(2’)からTEの推定最大値T
Emaxを算出し、TEと介在物の最大径とが対応する検量
線から、介在物の推定最大径amaxを求めることができ
る。各試料片のTEの測定方法などその他の点は、先に
説明した形態と同様にして行うことができる。
[0029] Another embodiment of the present invention, after obtaining the previously estimated maximum T E, in terms of the estimated maximum size a max from the estimated maximum T E by a calibration curve of the maximum diameter of the inclusions T E You can also ask. In this case, equations (2) and (2 ') are used. That is, after obtaining the T E for each sample piece, the formula (2) and the estimated maximum value of T E from (2 ') T
Emax is calculated, and an estimated maximum diameter a max of the inclusion can be obtained from a calibration curve in which T E and the maximum diameter of the inclusion correspond. Other points such as the method of measuring T E of the specimen can be performed in the same manner as embodiment described above.

【0030】本発明の評価方法は、酸素分析法によって
測定して求められるTEと介在物の直径を対応させ、さ
らに統計的な手法を用いることにより、被分析対象金属
材料の一部のデータから被分析対象金属材料全体中の酸
化物系介在物の最大径amaxを極めて精度よく推定する
ことに成功したものである。
The evaluation method of the present invention, a T E obtained by measuring the oxygen analysis a diameter of the inclusions is associated, by using a more statistical method, part of the data of the analyzed metal material From this, the maximum diameter a max of the oxide-based inclusions in the entire metal material to be analyzed was successfully estimated with high accuracy.

【0031】本発明の評価方法は広く金属材料について
用いることができるが、本発明の評価方法を好適に用い
ることができるものとしては、好ましくはAl合金、F
e合金、Mg合金、Ti合金、Cr合金、Co合金、N
i合金、Cu合金、Zn合金、Ag合金、Sn合金、W
合金などが挙げられ、より好ましくはAl合金、Fe合
金などが挙げられ、特に好ましくは鋼材などが挙げられ
る。
Although the evaluation method of the present invention can be widely used for metal materials, preferably, the evaluation method of the present invention is preferably used for Al alloys and F alloys.
e alloy, Mg alloy, Ti alloy, Cr alloy, Co alloy, N
i alloy, Cu alloy, Zn alloy, Ag alloy, Sn alloy, W
Alloys and the like, more preferably Al alloys and Fe alloys, and particularly preferably steel materials.

【0032】また、本発明の評価方法は、例えば、連続
鋳造時の溶鋼を採取して、溶製チャージ内の清浄度評価
などにも好適に用いることができる。
The evaluation method of the present invention can be suitably used, for example, for collecting molten steel at the time of continuous casting and evaluating cleanliness in a smelting charge.

【0033】さらに、本発明の評価方法によれば金属材
料中の酸化物系介在物の最大径を推定することができる
が、特に、Al23、MgO・Al23、(Ca,M
g)O・Al23などの酸化物系介在物の最大径の推定
に好適である。
Further, according to the evaluation method of the present invention, it is possible to estimate the maximum diameter of the oxide-based inclusions in the metal material. In particular, Al 2 O 3 , MgO.Al 2 O 3 , (Ca, M
g) It is suitable for estimating the maximum diameter of oxide inclusions such as O.Al 2 O 3 .

【0034】[0034]

【実施例】以下、本発明の実施例を詳細に説明する。 (実施例1) 1.被分析対象金属材料およびその処理 被分析対象金属材料として、連続鋳造法により製造し
た、160tの高炭素Cr軸受鋼(棒管用)の図2に示
すような丸棒状の鋼片を用い、以下のように本発明の方
法によって清浄度の評価を行った。
Embodiments of the present invention will be described below in detail. (Example 1) 1. Analyte metal material and its treatment As a metal object to be analyzed, a round bar-shaped steel piece as shown in FIG. 2 of 160 t high carbon Cr bearing steel (for rod pipe) manufactured by a continuous casting method was used. As described above, the cleanliness was evaluated by the method of the present invention.

【0035】図2に示す前記丸棒状鋼片の〜の部分
に検査部位を設定し、各検査部位から5×5×5mmの
試験片を採取した。トップ部とミドル部からはそれぞれ
3個、ボトム部からはそれぞれ4個の合計30個の分析
用試験片を切り出した(すなわちn=30となる)。ボ
トム部は一般的に他の部位よりも鋼材の清浄度が劣る傾
向があるため、ボトム部からは他の部位よりも多く4個
の試料片を採取した。
Inspection sites were set at the portions of the round bar-shaped steel slabs shown in FIG. 2 and test specimens of 5 × 5 × 5 mm were collected from each inspection site. A total of 30 analysis test pieces were cut out from the top part and the middle part, and four pieces each from the bottom part (that is, n = 30). Since the bottom part generally has a lower degree of cleanliness of the steel material than other parts, four sample pieces were collected from the bottom part more than the other parts.

【0036】次に、各試験片を黒鉛坩堝中に投下、加熱
溶融し、その溶融浴からガスを抽出して分析する不活性
ガス搬送融解−赤外線吸収法によって分析した。1個目
試料片のTEをTE1として測定し、順次TE30まで測定し
た。
Next, each test piece was dropped into a graphite crucible, heated and melted, and a gas was extracted from the molten bath and analyzed by an inert gas carrier melting / infrared absorption method. The T E 1 th sample piece was measured as T E1, was measured sequentially until T E30.

【0037】次いで、顕微鏡観察に基づいて作成した検
量線(介在物の最大径とTEとの関係)により各試料片
ごとの介在物の最大径、すなわち酸化物系介在物の最大
径a j(j=1,n)を求めた。
Next, an inspection prepared based on microscopic observation was performed.
Quantitative curve (maximum diameter of inclusion and TEEach sample piece
Diameter of inclusions, ie, maximum of oxide inclusions
Diameter a j(J = 1, n) was determined.

【0038】2.被分析対象金属材料中の酸化物系介在
物の最大径の推定 上記のようにして求めた、30個の各試験片ごとの介在
物の最大径aj(j=1,n)から以下のようにして介
在物の推定最大径amaxを求めた。
2. Estimation of the maximum diameter of the oxide-based inclusions in the metal material to be analyzed From the maximum diameter a j (j = 1, n) of the inclusions for each of the 30 test pieces obtained as described above, Thus, the estimated maximum diameter a max of the inclusion was obtained.

【0039】まず、介在物の最大径aを最小値から並
べ、小さい順にa1,a2,・・・・a jと定義した。
First, the maximum diameter a of the inclusion is set in order from the minimum value.
A, in ascending order1, ATwo, ... a jDefined.

【0040】ここで試料片の順位を表す1、2、・・・
jを対数で2回計算したものが、[式1]但し書きにある
基準化変数yiである。このj、aj、yjをまとめたも
のが表1である。
Here, 1, 2,.
The value obtained by calculating j twice by logarithm is the normalized variable y i in the proviso to [Expression 1]. Table 1 summarizes j, a j , and y j .

【0041】[0041]

【表1】 [Table 1]

【0042】また、介在物径を横軸にとり、この基準化
変数を縦軸とし、介在物径の小さいもの(即ちa1)か
ら順にプロットしたものが図4の●印である。そしてこ
の●を一次回帰したものが右側の右上がりの直線である
(この直線を式で示したものが、本実施例における被分
析対象金属材料についての式(1)である)。
In FIG. 4, the inclusion diameter is plotted in order from the smallest inclusion diameter (ie, a 1 ) with the inclusion diameter on the abscissa and the normalized variable on the ordinate. A linear regression of the black circle is a straight line that rises to the right on the right side (the straight line is expressed by an equation, which is the equation (1) for the metal material to be analyzed in this example).

【0043】ここで、酸素分析試験は各試験片の重量
(または体積)が一定であるので縦軸の基準化変数は試
料の重量を表している。表1でいえば、yi=−1.2
337は試料片1個分の基準重量(または体積)である
ので(5×5×5)=125mm3(=V0)(約0.9
8g)を意味し、yi=−1.0082は試料片2個分
の基準体積で2V0に相当する。このようにある体積V
に対し、その体積内に含まれる最大径介在物amaxを予
測した場合にはその体積Vに相当する縦軸の値から逆算
すればよい。この換算式が式(1’)で、[式1’]但し
書きにあるT(再帰期間)で予測したいその体積Vに相
当する縦軸の値を求めればよい。
Here, in the oxygen analysis test, since the weight (or volume) of each test piece is constant, the standardized variable on the vertical axis represents the weight of the sample. In Table 1, y i = −1.2
Since 337 is the reference weight (or volume) of one sample piece, (5 × 5 × 5) = 125 mm 3 (= V 0 ) (approximately 0.9
8g), and y i = −1.0082 corresponds to 2V 0 in the reference volume for two sample pieces. Thus, the volume V
On the other hand, when the maximum diameter inclusion a max included in the volume is predicted, it is sufficient to perform an inverse calculation from the value on the vertical axis corresponding to the volume V. This conversion formula is Expression (1 ′), and the value of the vertical axis corresponding to the volume V to be predicted by T (recursion period) in the proviso of [Expression 1 ′] may be obtained.

【0044】図4の場合、予測を行う体積6.2万mm
3[式1’の但し書きT(再帰期間)=500)]に対
し、右側の右上がりの直線が示す最大介在物径は29.
2μmとなる。体積6.2万mm3は重量に換算すると
約500gになる。
In the case of FIG. 4, the volume to be predicted is 620,000 mm.
3 The maximum inclusion diameter indicated by the straight line rising to the right on the right side is 29.
2 μm. The volume of 620,000 mm 3 is approximately 500 g in terms of weight.

【0045】一方、顕微鏡法(従来法)では検査基準面
積S0=100mm2、予測を行う面積S=30000〜
50000mm2[式1’の但し書きT(再帰期間)=
300〜500]が一般的であり、ちなみにT=500
としたときに、出現する最大介在物径を図4から推定す
ると16.1μmとなった。
On the other hand, in the microscopic method (conventional method), the inspection reference area S 0 = 100 mm 2 , and the area S to be predicted S = 30000-
50,000 mm 2 [provided T of expression 1 ′ (recursion period) =
300 to 500], and T = 500.
When the maximum inclusion diameter that appeared was estimated from FIG. 4, it was 16.1 μm.

【0046】3.被分析対象金属材料の清浄度の評価被
分析対象金属材料の清浄度は、推定最大介在物径=a
max、検査基準体積V0mm3、予測を行う体積Vmm3
して与えることができる。上記の結果をまとめると次の
通りである。
3. Evaluation of cleanliness of metal material to be analyzed Cleanliness of metal material to be analyzed is estimated maximum inclusion diameter = a
max, inspection reference volume V 0 mm 3, can be given as the volume Vmm 3 to make predictions. The above results are summarized as follows.

【0047】本発明の方法によると、被分析対象金属材
料である丸棒状塊の清浄度の評価は、推定最大介在物径
max=29.2μm、検査基準体積V0=125m
3、予測を行う体積V=6.2×104mmとなった。
According to the method of the present invention, the evaluation of the cleanness of the round bar-shaped lump as the metal material to be analyzed is performed by estimating the maximum inclusion diameter a max = 29.2 μm and the inspection reference volume V 0 = 125 m.
m 3 , the volume V to be predicted was 6.2 × 10 4 mm.

【0048】これに対し、顕微鏡法による介在物調査結
果は、検査基準面積S0=100mm2、予測を行う面積
S=50000mm2に出現する最大介在物径は約1
6.1μmであった。
[0048] In contrast, the maximum inclusion diameter from about 1 inclusions findings by microscopy, the inspection reference area S 0 = 100 mm 2, it appears in the area S = 50,000 mm 2 make predictions
It was 6.1 μm.

【0049】これらの結果の評価精度を確認すべく、次
のような試験を行った。繰り返し応力を受け疲労強度が
求められる小型機械部品を、本実施例で用いた丸棒状塊
から作製し、その疲労破壊試験を行った。破断試験片の
破面に観察された介在物径を測定したところ、29.3
μmであった。
The following test was conducted to confirm the evaluation accuracy of these results. Small mechanical parts which were subjected to repeated stress and required to have fatigue strength were produced from the round bar-shaped mass used in this example, and subjected to a fatigue fracture test. When the diameter of the inclusions observed on the fracture surface of the fracture test piece was measured, it was 29.3.
μm.

【0050】したがって、本発明の推定最大径の値と実
測値がよく整合し、本発明の評価方法の予測精度が格段
に優れることがわかった。
Therefore, it was found that the value of the estimated maximum diameter of the present invention matched well with the actually measured value, and the prediction accuracy of the evaluation method of the present invention was extremely excellent.

【0051】(実施例2)ばね鋼(JIS鋼種SUP1
0)を電気炉で150t溶解した。これをRH脱ガス
後、連続鋳造で断面が380×490mmの鋳片(プル
ーム)に鋳造した。そして分塊圧延しφ167mmで重
量が2tのビレットを得た。これを圧延し、φ5の弁バ
ネに加工した。このバネを使用すると使用中に破断した
ので破断部を調査すると50μmの介在物が確認され
た。
(Example 2) Spring steel (JIS steel type SUP1)
0) was melted in an electric furnace for 150 tons. After degassing the RH, it was cast into a slab (plume) having a cross section of 380 × 490 mm by continuous casting. Then, it was subjected to bulk rolling to obtain a billet having a diameter of 167 mm and a weight of 2 t. This was rolled and processed into a φ5 valve spring. When this spring was used, it was broken during use. When the broken portion was examined, inclusions of 50 μm were found.

【0052】一方、このバネに供した圧延材のうち、バ
ネ加工せず保管しておいた圧延材の残存から試料片を切
りだし、上述の実施例1と同様にして、試料片調整、酸
素分析法による酸化物系介在物の粒径評価を行ったとこ
ろ、このバネ加工に供した圧延材約2t中に存在し得
る、酸化物系介在物の最大径は53μmであると推定さ
れた。このように、酸化物系介在物の最大径の評価方法
として適していることがわかった。
On the other hand, of the rolled material subjected to the spring, a sample piece was cut out from the remaining rolled material that had been stored without being subjected to spring processing, and was prepared in the same manner as in Example 1 described above. When the particle diameter of the oxide-based inclusions was evaluated by an analytical method, it was estimated that the maximum diameter of the oxide-based inclusions that could be present in about 2 t of the rolled material subjected to the spring working was 53 μm. Thus, it was found that the method was suitable as a method for evaluating the maximum diameter of oxide-based inclusions.

【0053】[0053]

【発明の効果】本発明によれば、金属材料の清浄度の評
価を、精度よく、高い信頼性をもって、迅速に行うこと
ができる。
According to the present invention, the cleanliness of a metal material can be quickly and accurately evaluated with high reliability.

【0054】また、最近の鋼などの金属材料の清浄度の
評価・品質保証に寄与するものであり、当業界のニーズ
に応える極めて有用な発明である。
The present invention also contributes to the recent evaluation of cleanliness and quality assurance of metal materials such as steel, and is a very useful invention that meets the needs of the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸素分析法による酸素の抽出曲線を示す説明図
である。
FIG. 1 is an explanatory diagram showing an oxygen extraction curve by an oxygen analysis method.

【図2】被分析対象金属材料における検査部位の設定、
各検査部位からの試料片の採取数の一例を示す図であ
る。
FIG. 2 shows the setting of an inspection site in a metal material to be analyzed;
It is a figure which shows an example of the collection number of the sample piece from each test | inspection part.

【図3】酸素の抽出曲線から求められるTEと酸化物系
介在物の最大径との対比検量線の一例を示す図である。
3 is a diagram showing an example of a comparison calibration curve T E obtained from the extraction curve of oxygen and the maximum diameter of the oxide inclusions.

【図4】酸化物系介在物の最大径の推定における光学顕
微鏡法(従来法)と本発明法とを比較して示した図であ
る。
FIG. 4 is a diagram showing a comparison between the optical microscopy (conventional method) and the method of the present invention in estimating the maximum diameter of oxide-based inclusions.

フロントページの続き (72)発明者 加藤 恵之 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 2G055 AA03 BA04 BA20 CA25 EA05 EA08 EA10 FA02 Continuation of the front page (72) Inventor Yoshiyuki Kato 3007 one character of Nakajima character in Shima, Himeji-shi, Hyogo F-term in Sanyo Special Steel Co., Ltd. 2G055 AA03 BA04 BA20 CA25 EA05 EA08 EA10 FA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物系介在物の最大径を求めて金属材
料の清浄度を評価する方法であって、被分析対象金属材
料からn個の試料片を採取し、各試料片中の前記介在物
を還元し、還元に要する時間TEを各試料片についてそ
れぞれ測定し、TEと前記介在物の最大径とが対応する
検量線から、n個の各試料片についての前記介在物の最
大径aj(j=1,n)を算出し、下記式(1)および
(1’)により被分析対象金属材料中の前記介在物の推
定最大径amaxを算出して被分析対象金属材料の清浄度
を評価することを特徴とする金属材料の清浄度評価方
法。 [式1] 酸化物系の介在物の最大径aj (j=1,
n)と基準化変数yj (j=1,n)の一次回帰式 a=ty+u ・・・・・・・・・・・(1) ただし、 n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式1’]被分析対象金属中の酸化物系介在物の推定最
大径amax の算出式(回帰式) amax=t×ymax +u・・・・・・・・・・(1’) ただし、 Vo=検査基準体積(mm3 ) V=予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax(基準化変数)=−ln[ −ln{(T−1)/ T] ]
1. A method for evaluating the cleanliness of a metal material by obtaining a maximum diameter of an oxide-based inclusion, wherein n sample pieces are collected from a metal material to be analyzed, and the inclusions were reduced, the time T E necessary for the reduction were measured for each sample piece, a calibration curve and the maximum diameter of the inclusions T E corresponding, in said n inclusions for each specimen The maximum diameter a j (j = 1, n) is calculated, and the estimated maximum diameter a max of the inclusions in the metal material to be analyzed is calculated by the following equations (1) and (1 ′), and the metal to be analyzed is calculated. A method for evaluating the cleanliness of a metal material, comprising evaluating the cleanliness of the material. [Equation 1] The maximum diameter a j (j = 1, 2) of oxide-based inclusions
n) and a linear regression equation of the standardization variable y j (j = 1, n) a = ty + u (1) where n = the number of inspections Standardization variable y j = −ln [−ln {j / (n + 1)]] (j = 1,
n) t = regression coefficient u = constant [Equation 1 '] Formula for calculating the estimated maximum diameter a max of oxide-based inclusions in the metal to be analyzed (regression formula) a max = t × y max + u... (1 ′) where V o = inspection reference volume (mm 3 ) V = volume for prediction (mm 3 ) T (recursion period) = (V + V o ) / V o y max (normalization Variable) =-ln [-ln {(T-1) / T]]
【請求項2】 酸化物系介在物の最大径を求めて金属の
清浄度を評価する方法であって、被分析対象金属材料か
らn個の試料片を採取し、各試料片中の前記介在物を還
元し、還元に要する時間TEを各試料片についてそれぞ
れ測定しTEj(j=1,n)を求め、下記式(2)およ
び(2’)により推定最大TEmaxを算出し、TEと前記
介在物の最大径とが対応する検量線から、被分析対象金
属材料中の前記介在物の推定最大径amaxを算出して被
分析対象金属材料の清浄度を評価することを特徴とする
金属材料の清浄度評価方法。 [式2] 酸化物系介在物の還元に要する時間TEj(j
=1,n)と基準化変数yj (j=1,n)の一次回帰
式 TE=ty+u ・・・・・・・・・・・(1) ただし、 n=検査回数 基準化変数yj =−ln[ −ln{j/(n+1)] ](j=1,
n) t=回帰係数 u=定数 [式2’]被分析対象金属中の酸化物系介在物の推定最
大TEmax の算出式(回帰式) TEmax=t×ymax +u・・・・・・・・・・(1’) ただし、 Vo=検査基準体積(mm3 ) V=予測を行う体積(mm3 ) T(再帰期間)=(V+Vo )/Vomax(基準化変数)=−ln[ −ln{(T−1)/ T] ]
2. A method for evaluating the cleanliness of a metal by determining the maximum diameter of an oxide-based inclusion, comprising: collecting n pieces of a sample from a metal material to be analyzed; reducing things, determine the time T E necessary for the reduction were measured for each sample piece T Ej (j = 1, n ), calculates the estimated maximum T Emax by the following formula (2) and (2 '), a calibration curve between T E and the maximum diameter of the inclusions is corresponding, to assess the cleanliness of the analyzed metal material by calculating the estimated maximum size a max of the inclusions of the analyzed metal material Characteristic metal material cleanliness evaluation method. [Equation 2] Time T Ej (j required for reduction of oxide-based inclusions
= 1, n) and the reference variables y j (j = 1, n ) of the linear regression equation T E = ty + u ··········· ( 1) However, n = number of tests standard variables y j = −ln [−ln {j / (n + 1)]] (j = 1,
n) t = regression coefficient u = constant [Equation 2 '] Calculation equation (regression equation) of estimated maximum TEmax of oxide-based inclusions in the metal to be analyzed TEEmax = t * ymax + u ... (1 ′) where V o = inspection reference volume (mm 3 ) V = predicted volume (mm 3 ) T (recursion period) = (V + V o ) / V o y max (standardization variable ) = − Ln [−ln {(T−1) / T]]
【請求項3】 試料片を不活性ガス雰囲気下で加熱溶融
し炭素源と反応させて一酸化炭素ガスを発生させ、一酸
化炭素ガスの発生から終了までの時間を各試料片ごとに
測定して、当該測定値を各試料片のTEとすることを特
徴とする、請求項1または2に記載の金属材料の清浄度
評価方法。
3. A sample piece is heated and melted in an inert gas atmosphere, reacted with a carbon source to generate carbon monoxide gas, and the time from generation to termination of carbon monoxide gas is measured for each sample piece. Te, characterized by the measured value T E of each sample piece, cleanliness evaluation method for a metal material according to claim 1 or 2.
JP11214859A 1999-07-29 1999-07-29 Method for evaluating cleanliness of metallic material Pending JP2001041952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214859A JP2001041952A (en) 1999-07-29 1999-07-29 Method for evaluating cleanliness of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214859A JP2001041952A (en) 1999-07-29 1999-07-29 Method for evaluating cleanliness of metallic material

Publications (1)

Publication Number Publication Date
JP2001041952A true JP2001041952A (en) 2001-02-16

Family

ID=16662747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214859A Pending JP2001041952A (en) 1999-07-29 1999-07-29 Method for evaluating cleanliness of metallic material

Country Status (1)

Country Link
JP (1) JP2001041952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114288A (en) * 2007-10-05 2008-05-22 Nippon Yakin Kogyo Co Ltd Method of producing stainless steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114288A (en) * 2007-10-05 2008-05-22 Nippon Yakin Kogyo Co Ltd Method of producing stainless steel sheet
JP4571662B2 (en) * 2007-10-05 2010-10-27 日本冶金工業株式会社 Stainless steel sheet manufacturing method

Similar Documents

Publication Publication Date Title
Atkinson et al. Characterization of inclusions in clean steels: a review including the statistics of extremes methods
Shi et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels
Ren et al. Detection of non-metallic inclusions in steel continuous casting billets
Beretta More than 25 years of extreme value statistics for defects: Fundamentals, historical developments, recent applications
Bartosiaki et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel
Hudson et al. Inclusion detection in molten aluminum: current art and new avenues for in situ analysis
CN111157620B (en) Traceability analysis method for large-size inclusions in steel
Luo et al. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review
Mitrasinovic et al. On-line prediction of the melt hydrogen and casting porosity level in 319 aluminum alloy using thermal analysis
Mayerhofer Enhanced characterization of non-metallic inclusions for (sub) micro steel cleanness evaluations
Heuler et al. Fatigue behaviour of steel castings containing near‐surface defects
Auclair et al. Cleanliness assessment: a critical review and a real need to predict rolling contact fatigue behaviour
Vaara et al. Bayesian analysis of critical fatigue failure sources
JP2001041952A (en) Method for evaluating cleanliness of metallic material
Guthrie et al. In-situ sensors for liquid metal quality
Franceschini et al. An assessment of cleanliness techniques for low alloyed steel grades
JP3505415B2 (en) Evaluation method of cleanliness of metallic materials by ultrasonic testing
Vander Voort Inclusion measurement
Bogdanoff et al. On the combined effects of surface quality and pore size on the fatigue life of Al–7Si–3Cu–Mg alloy castings
Kumar et al. Microinclusion evaluation using various standards
JPH05346387A (en) Judging method for cleanliness of metal material
JP3563313B2 (en) Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection
Kanbe et al. Application of statistics of extreme values for inclusions in stainless steel on different stages of steel making process
Auclair et al. Methods for assessment of cleanliness in superclean steels. Application to bearing steels
Yang et al. Notch size influence on fatigue limit of steels pertinent to grain size