JP2001038102A - Supercritical fluid extraction device - Google Patents

Supercritical fluid extraction device

Info

Publication number
JP2001038102A
JP2001038102A JP11217024A JP21702499A JP2001038102A JP 2001038102 A JP2001038102 A JP 2001038102A JP 11217024 A JP11217024 A JP 11217024A JP 21702499 A JP21702499 A JP 21702499A JP 2001038102 A JP2001038102 A JP 2001038102A
Authority
JP
Japan
Prior art keywords
fluid
extraction
vessel
pressure
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11217024A
Other languages
Japanese (ja)
Other versions
JP4382201B2 (en
Inventor
Katsushi Yano
勝史 矢野
Satoru Kadoriku
悟 角陸
Tadahiro Takahachi
忠弘 高八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryusyo Industrial Co Ltd
Original Assignee
Ryusyo Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryusyo Industrial Co Ltd filed Critical Ryusyo Industrial Co Ltd
Priority to JP21702499A priority Critical patent/JP4382201B2/en
Publication of JP2001038102A publication Critical patent/JP2001038102A/en
Application granted granted Critical
Publication of JP4382201B2 publication Critical patent/JP4382201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0292Treatment of the solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0203Solvent extraction of solids with a supercritical fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To repeatedly extract without discharging fluid to the outside until the extraction is completed by arranging switching valves respectively on an inlet pipe line of an extraction vessel and an outlet pipe line of an absorption vessel, connecting the pipe lines to each other with a pipe line provided with a circulation pump and switching respective switching valves. SOLUTION: A sample material is filled in the extraction vessel 3, an adsorbent is filled in the adsorption vessel 5 and carbon dioxide is supplied as the fluid form a fluid bomb 1. A supercritical state is formed by controlling to a prescribed pressure and temp. with a pressure pump 2, a pressure controller 6 and a temp. controller 11. After that, a circulation passage is formed by respectively switching plural switching valves 8, 9 and the fluid is circulated by the circulation pump 10. As a result, an extracting component in the sample material is dissolved in the circulating fluid and absorbed on the adsorbent while the extracting state is monitored by a detector 4. By repeating the extraction in this way, the extraction work of the fluid is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、超臨界状態の流
体を利用した超臨界流体抽出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical fluid extraction device using a supercritical fluid.

【0002】[0002]

【従来の技術】超臨界状態の流体を利用した抽出方法
は、有機溶媒を使用する抽出方法に比べると、安全性が
高く、また一般に40℃〜80℃程度の温度条件下で抽
出できることから、熱に不安定な抽出物質に適した安定
な抽出方法として最近注目を浴びている。
2. Description of the Related Art An extraction method using a fluid in a supercritical state is safer than an extraction method using an organic solvent, and generally can be extracted under a temperature condition of about 40 ° C. to 80 ° C. Recently, it has attracted attention as a stable extraction method suitable for heat-unstable extraction substances.

【0003】今図2は、例えば流体として二酸化炭素
(CO2)を採用した従来の超臨界流体抽出装置の構成
を示した概略図であり、流体ボンベ1、加圧ポンプ2、
抽出容器3、検出器4、圧力制御装置6、回収容器7を
順次配管で接続して構成されている。
FIG. 2 is a schematic diagram showing the configuration of a conventional supercritical fluid extraction apparatus employing, for example, carbon dioxide (CO 2 ) as a fluid.
The extraction container 3, the detector 4, the pressure control device 6, and the collection container 7 are sequentially connected by piping.

【0004】この装置では、流体入口側で流体の圧力を
高める加圧ポンプ2と流体出口側でその背圧を調整する
圧力制御装置6とにより抽出容器3内を流れる流体を臨
界圧力(例えば二酸化炭素の場合73atm)以上に加
圧制御するとともに、恒温槽型の温度制御装置11によ
り臨界温度(同二酸化炭素の場合31℃程度)以上に加
温制御することにより、二酸化炭素を超臨界流体(以
下、単に流体という)の状態にし、抽出容器3中の試料
物質から所望の成分を抽出し、検出器4によりモニター
を行う。次に、抽出物が溶解した同流体を圧力制御装置
6に導き、リリーフして所定の圧力に減圧する。圧力制
御装置6の出口側は、入口側に対して圧力が低いので上
記流体が元の二酸化炭素にもどり、流体に溶解していた
抽出成分は析出・分離されて、回収容器7内に回収され
る。なお、この場合、必要に応じて、抽出成分の回収効
率を高めるために、上記検出器4と圧力制御装置6の間
に吸着容器5を設け、抽出成分の一部若しくは全部を吸
着させる方法も採用される。
In this apparatus, the fluid flowing through the extraction vessel 3 is subjected to a critical pressure (for example, dioxide) by a pressure pump 2 for increasing the pressure of the fluid at the fluid inlet side and a pressure control device 6 for adjusting the back pressure at the fluid outlet side. In addition to controlling the pressure to 73 atm or more in the case of carbon and controlling the temperature to be equal to or higher than the critical temperature (about 31 ° C. in the case of the same carbon dioxide) by the temperature control device 11 of the thermostatic bath type, the carbon dioxide is supercritical fluid ( (Hereinafter, simply referred to as a fluid), a desired component is extracted from the sample substance in the extraction container 3, and monitoring is performed by the detector 4. Next, the same fluid in which the extract is dissolved is led to the pressure control device 6, where the fluid is relieved and reduced to a predetermined pressure. Since the pressure at the outlet side of the pressure control device 6 is lower than that at the inlet side, the fluid returns to the original carbon dioxide, and the extracted components dissolved in the fluid are separated and separated, and collected in the collection container 7. You. In this case, if necessary, in order to increase the recovery efficiency of the extracted component, a method of providing an adsorption container 5 between the detector 4 and the pressure control device 6 and adsorbing a part or all of the extracted component may be employed. Adopted.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
超臨界流体抽出装置は、圧力制御装置6から常に流体の
一部を放出し続ける構造であり、常に新たに流体ボンベ
1から二酸化炭素を送り続ける方式であった。すなわ
ち、常時流通方式であるため、多量の流体を使用しなけ
ればいけないという問題があった。また、圧力制御装置
6から常時流体と抽出成分が放出し続けられるため、工
程環境が決して良いものとはいえない問題もある。
As described above, the conventional supercritical fluid extraction device has a structure in which a part of the fluid is continuously released from the pressure control device 6, and the carbon dioxide is always newly supplied from the fluid cylinder 1. It was a method to keep sending. In other words, there is a problem that a large amount of fluid has to be used because the system is always in circulation. Further, since the fluid and the extracted components are continuously released from the pressure control device 6, there is a problem that the process environment is not always good.

【0006】本願発明は、上記の問題を解決するために
なされたもので、上記抽出容器の入口配管と上記吸着容
器の出口配管にそれぞれ切換バルブを設け、これら切換
バルブ相互の間を配管で接続するとともに該配管の途中
に循環ポンプを設け、上記切換バルブを切換えることに
より、上記吸着容器から上記抽出容器にかけての循環系
路を形成し、抽出が完了するまで所定量の流体を外部に
放出することなく繰り返し抽出容器を通して抽出を行う
ことができる超臨界流体抽出装置を提供することを目的
とするものである。
The present invention has been made in order to solve the above-mentioned problems. A switching valve is provided at each of the inlet pipe of the extraction vessel and the outlet pipe of the adsorption vessel, and the switching valves are connected to each other by a pipe. At the same time, a circulation pump is provided in the middle of the pipe, and by switching the switching valve, a circulation system from the adsorption vessel to the extraction vessel is formed, and a predetermined amount of fluid is discharged to the outside until the extraction is completed. It is an object of the present invention to provide a supercritical fluid extraction device capable of repeatedly performing extraction through an extraction container without using the same.

【0007】[0007]

【課題を解決するための手段】本願発明は、上記の目的
を達成するために、次のような課題解決手段を備えて構
成されている。
Means for Solving the Problems In order to achieve the above object, the present invention is provided with the following means for solving the problems.

【0008】すなわち、本願発明の超臨界流体抽出装置
では、所定の流体の超臨界状態において所定の試料物質
中から所望の成分を抽出する超臨界流体抽出装置であっ
て、加圧ポンプ、抽出容器、検出器、吸着容器、圧力制
御装置を順次配管により接続した主経路を有し、上記抽
出容器の入口配管と上記吸着容器の出口配管にそれぞれ
切換バルブを設け、これら切換バルブ相互の間を配管で
接続するとともに該配管の途中に循環ポンプを設け、上
記切換バルブを切換えることにより、上記吸着容器から
上記抽出容器にかけての循環系路を形成するようになっ
ている。
That is, the supercritical fluid extraction device of the present invention is a supercritical fluid extraction device for extracting a desired component from a predetermined sample substance in a supercritical state of a predetermined fluid, comprising a pressure pump, an extraction vessel , A detector, an adsorption vessel, and a pressure control device are sequentially connected by a main pipe, and a switching valve is provided in each of an inlet pipe of the extraction vessel and an outlet pipe of the adsorption vessel, and a pipe is provided between these switching valves. And a circulation pump is provided in the middle of the pipe, and the switching valve is switched to form a circulation path from the adsorption vessel to the extraction vessel.

【0009】従って、該構成では、抽出が完了するまで
上記循環系路を介して所定量の流体を外部に放出するこ
となく繰り返し抽出容器を通して抽出を行うことができ
るようになる。その結果、使用流体の量を低減し、かつ
短時間で効率良く抽出を行うことができるようになる。
Therefore, with this configuration, the extraction can be repeatedly performed through the extraction container without discharging a predetermined amount of fluid to the outside through the circulation system until the extraction is completed. As a result, the amount of fluid used can be reduced, and extraction can be performed efficiently in a short time.

【0010】[0010]

【発明の実施の形態】次に、本願発明の一実施の形態に
ついて図1を参照して詳細に説明する。
Next, an embodiment of the present invention will be described in detail with reference to FIG.

【0011】すなわち、先ず図1は同本願発明の一実施
の形態に係る超臨界流体抽出装置の構成を示すフロー図
である。この超臨界流体抽出装置は、図示のように、例
えば二酸化炭素(CO2)を充填した流体ボンベ1、流
体圧を高める加圧ポンプ2、試料物質が入れられる第1
の抽出容器3、流体入口側第1の切換バルブ8、抽出レ
ベルモニター用の検出器4、抽出成分を吸着させる吸着
容器5、流体出口側第2の切換バルブ9、流体を外部に
リリーフして圧力(背圧)を制御する圧力制御装置6、
抽出成分を回収する回収容器7、流体を循環させる循環
ポンプ10を順次配管で接続して後述する主系路および
循環系路を構成するようになっている。
That is, FIG. 1 is a flow chart showing a configuration of a supercritical fluid extracting apparatus according to an embodiment of the present invention. As shown in the drawing, this supercritical fluid extraction apparatus includes a fluid cylinder 1 filled with, for example, carbon dioxide (CO 2 ), a pressurizing pump 2 for increasing the fluid pressure, and a first pump for storing a sample substance.
Extraction vessel 3, fluid inlet side first switching valve 8, detector 4 for monitoring the extraction level, adsorption vessel 5 for adsorbing the extracted components, fluid outlet side second switching valve 9, and relieving the fluid to the outside. Pressure control device 6 for controlling pressure (back pressure),
A collection vessel 7 for collecting the extracted components and a circulation pump 10 for circulating the fluid are sequentially connected by piping to form a main system passage and a circulation system described later.

【0012】主経路は、流体ボンベ1、加圧ポンプ2、
第1の切換バルブ8、抽出容器3、検出器4、吸着容器
5、第2の切換バルブ9、圧力制御装置6、回収容器7
で構成されている。そして、この主経路には、上記第
1,第2の切換バルブ8,9相互の間を逆方向に配管で
接続し、該配管の途中に逆流方向に作用する循環ポンプ
10を設けた循環系路が設けられている。
The main route is a fluid cylinder 1, a pressure pump 2,
First switching valve 8, extraction container 3, detector 4, adsorption container 5, second switching valve 9, pressure control device 6, recovery container 7
It is composed of In this main path, a circulating system in which the first and second switching valves 8 and 9 are connected to each other by a pipe in a reverse direction, and a circulation pump 10 acting in a reverse flow direction is provided in the middle of the pipe. Roads are provided.

【0013】したがって、該構成では、上記第1,第2
の切換バルブ8,9を上記主系路側から循環系路側に切
換えることにより、上記主系路の第1の切換バルブ8か
ら第2の切換バルブ9までの間の抽出容器3、検出器
4、吸着容器5を、循環ポンプ10を介した循環系路に
切換えて所定の流体を常時矢印仮想線のように循環させ
ることができる。また装置全体の温度をコントロールす
る恒温槽型の温度制御装置11により、同循環系路の各
装置及び配管部の温度を所定の温度(40〜80℃)に
制御し、同循環系路内を流れる流体を超臨界流体状態に
制御する。
Therefore, in this configuration, the first and second
By switching the switching valves 8 and 9 from the main system path side to the circulation system path side, the extraction vessel 3, the detector 4, and the like between the first switching valve 8 and the second switching valve 9 of the main system path are switched. By switching the adsorption vessel 5 to a circulation path via the circulation pump 10, a predetermined fluid can always be circulated as indicated by the imaginary line of the arrow. Further, the temperature of each device and the piping section of the circulation system is controlled to a predetermined temperature (40 to 80 ° C.) by the temperature control device 11 of a constant temperature bath type which controls the temperature of the entire system, and the inside of the circulation system is controlled. The flowing fluid is controlled to a supercritical fluid state.

【0014】今、先ず最初に、上記抽出容器3内に試料
物質を充填するとともに、上記吸着容器5内に吸着剤
(例えばシリカゲルなど)を充填し、上記流体ボンベ1
から流体としての二酸化炭素を流し始める。そして、上
記循環系路を含む全ての系の空気を二酸化炭素で置換し
た後、上記加圧ポンプ2、圧力制御装置6及び温度制御
装置11で所定の圧力・温度に調整して超臨界状態を形
成する。次に上記第1,第2の切換バルブ8,9を切換
えることにより上述の循環系路を形成した後、上記超臨
界状態にある流体を循環ポンプ10で矢印仮想線のよう
に循環させる。すると、上記抽出容器3内の試料物質中
の抽出成分の一部は該循環する流体に溶解し、上記検出
器4により、その抽出状態をモニターされながら、上記
吸着容器5内の吸着剤に吸着される。
First, first, the extraction container 3 is filled with a sample substance, and the adsorption container 5 is filled with an adsorbent (for example, silica gel).
Begins to flow carbon dioxide as a fluid from. After the air in all the systems including the circulation system is replaced with carbon dioxide, the pressure and temperature are adjusted to a predetermined pressure and temperature by the pressurizing pump 2, the pressure control device 6, and the temperature control device 11, thereby setting the supercritical state. Form. Next, after the above-mentioned circulation system path is formed by switching the first and second switching valves 8 and 9, the fluid in the supercritical state is circulated by the circulation pump 10 as indicated by the imaginary line of the arrow. Then, a part of the extracted components in the sample substance in the extraction container 3 dissolves in the circulating fluid, and is adsorbed on the adsorbent in the adsorption container 5 while the extraction state is monitored by the detector 4. Is done.

【0015】そして、このように抽出成分が吸着容器5
内の吸着剤に吸着されて行くと、上記流体中の抽出成分
は減少し、流体の抽出力は増大する。そして、この抽出
力の大きくなった流体が、再び上記循環ポンプ10を介
して上記抽出容器3内に導入されて抽出が行われる。こ
の繰り返しが連続して行われ、流体の抽出成分の抽出作
用が大幅に向上する。一方、吸着剤に吸着した抽出成分
は、抽出工程終了後、上記第1,第2の切換バルブ8,
9の切換により循環系路を遮断して元の主経路のみの状
態に戻した後、温度・圧力等を溶出条件に制御して溶出
させ、最終的に回収容器7内に回収する。
[0015] Then, as described above, the extracted component is adsorbed on the adsorption vessel 5.
As it is adsorbed by the adsorbent inside, the extraction components in the fluid decrease, and the extraction power of the fluid increases. Then, the fluid having the increased extraction force is again introduced into the extraction container 3 via the circulation pump 10 and extraction is performed. This repetition is performed continuously, and the effect of extracting the extracted components of the fluid is greatly improved. On the other hand, the extracted component adsorbed on the adsorbent is subjected to the first and second switching valves 8 and
After the circulation path is cut off by the switching of 9 to return to the state of the original main path only, elution is performed by controlling the temperature and pressure under elution conditions and finally collected in the collection container 7.

【0016】以上のようにして主経路に沿った循環系路
を形成するとともに吸着容器5を設けると、流体が抽出
成分の溶解により飽和されることが解消され、常に高い
抽出効率(大きな抽出成分量と短かい抽出時間)で抽出
を行うことができるようになる。しかも、上記循環系路
を介して所定量の流体を繰り返し抽出工程に供給して抽
出を行えるため、使用する流体量が少なくて済み、工程
環境も良くなる。
When the circulation path is formed along the main path as described above and the adsorption vessel 5 is provided, the fluid is prevented from being saturated by the dissolution of the extracted component, and the extraction efficiency is always high (a large extracted component). Volume and short extraction time). In addition, since a predetermined amount of fluid can be repeatedly supplied to the extraction step through the circulation system for extraction, the amount of fluid used can be reduced, and the process environment is improved.

【0017】また、その際、検出器4によって抽出状況
をモニター(例えば分光光度計よりなる検出器の検出デ
ータを監視)することにより、抽出作用の完了を明確に
認識することができるようになるので無駄な作業時間が
なくなる。
At this time, the completion of the extraction operation can be clearly recognized by monitoring the extraction status by the detector 4 (for example, monitoring the detection data of a detector composed of a spectrophotometer). Therefore, unnecessary working time is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施の形態に係る超臨界流体抽出装
置の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a supercritical fluid extraction device according to an embodiment of the present invention.

【図2】従来例に係る超臨界流体抽出装置の構成を示す
概略図である。
FIG. 2 is a schematic diagram showing a configuration of a supercritical fluid extraction device according to a conventional example.

【符号の説明】[Explanation of symbols]

1は流体ボンベ、2は加圧ポンプ、3は抽出容器、4は
検出器、5は吸着容器、6は圧力制御装置、7は回収容
器、8は第1の切換バルブ、9は第2の切換バルブ、1
0は循環ポンプ、11は温度制御装置である。
1 is a fluid cylinder, 2 is a pressure pump, 3 is an extraction vessel, 4 is a detector, 5 is an adsorption vessel, 6 is a pressure control device, 7 is a recovery vessel, 8 is a first switching valve, and 9 is a second switching valve. Switching valve, 1
0 is a circulation pump and 11 is a temperature control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高八 忠弘 香川県高松市林町2217番地2 隆祥産業株 式会社研究情報センター内 Fターム(参考) 4D056 AC24 BA16 CA33 CA34 CA36 CA40 DA01 DA02  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tadahiro Takahachi 2217-2 Hayashi-cho, Takamatsu-shi, Kagawa Prefecture Ryusho Sangyo Co., Ltd. Research Information Center F term (reference) 4D056 AC24 BA16 CA33 CA34 CA36 CA40 DA01 DA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の流体の超臨界状態において所定の
試料物質中から所望の成分を抽出する超臨界流体抽出装
置であって、加圧ポンプ、抽出容器、検出器、吸着容
器、圧力制御装置を順次配管により接続した主経路を有
し、上記抽出容器の入口配管と上記吸着容器の出口配管
にそれぞれ切換バルブを設け、これら切換バルブ相互の
間を配管で接続するとともに該配管の途中に循環ポンプ
を設け、上記切換バルブを切換えることにより、上記吸
着容器から上記抽出容器にかけての循環系路を形成する
ようにしたことを特徴とする超臨界流体抽出装置。
1. A supercritical fluid extraction device for extracting a desired component from a predetermined sample substance in a supercritical state of a predetermined fluid, comprising: a pressure pump, an extraction container, a detector, an adsorption container, and a pressure control device. And a switching valve is provided at each of the inlet pipe of the extraction vessel and the outlet pipe of the adsorption vessel, and the switching valves are connected to each other by a pipe and circulated in the middle of the pipe. A supercritical fluid extraction device, wherein a pump is provided, and the switching valve is switched to form a circulation path from the adsorption container to the extraction container.
JP21702499A 1999-07-30 1999-07-30 Supercritical fluid extraction device Expired - Fee Related JP4382201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21702499A JP4382201B2 (en) 1999-07-30 1999-07-30 Supercritical fluid extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21702499A JP4382201B2 (en) 1999-07-30 1999-07-30 Supercritical fluid extraction device

Publications (2)

Publication Number Publication Date
JP2001038102A true JP2001038102A (en) 2001-02-13
JP4382201B2 JP4382201B2 (en) 2009-12-09

Family

ID=16697650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21702499A Expired - Fee Related JP4382201B2 (en) 1999-07-30 1999-07-30 Supercritical fluid extraction device

Country Status (1)

Country Link
JP (1) JP4382201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224093A1 (en) * 2020-05-07 2021-11-11 Amorim Cork, S.A. Process and system for decontaminating cork material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980863B (en) * 2012-12-03 2015-09-16 力合科技(湖南)股份有限公司 A kind of auto extractive separation detecting device and a kind of auto extractive method for separating and detecting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224093A1 (en) * 2020-05-07 2021-11-11 Amorim Cork, S.A. Process and system for decontaminating cork material

Also Published As

Publication number Publication date
JP4382201B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US5198115A (en) Integrated instrument for supercritical fluid sample extraction, sample separation and concentration
US4118314A (en) Apparatus for treatment of artificial kidney dialyzing fluid
JP2022505901A (en) Devices, systems, and methods for the passive recovery of atmospheric carbon dioxide
WO2000029088A3 (en) Recovery of organic solutes from aqueous solutions
JP6626115B2 (en) Systems and methods for capacitive deionization of fluids
KR100426739B1 (en) Method and apparatus for separating, removing, and recovering gas components
KR20180125226A (en) Air circulation system for energy
CN108332997A (en) A kind of seawater sample and the particulate matter automatic acquisition device in situ and its method of anti-halobios adhersion
JP2001038102A (en) Supercritical fluid extraction device
JP2003234113A (en) Fuel cell system
US11709154B2 (en) Liquid chromatograph including passage switch valve
US6083464A (en) Ozone supplying apparatus with fluid purification and recycling
KR100487896B1 (en) Gaseous sample injection apparatus for fast gaschromatography
JP2864696B2 (en) Liquid sending device for liquid chromatograph
JP2005279473A (en) Washing apparatus and washing method for adsorption filter
JP3616041B2 (en) Animal disposal device and animal disposal method, and carbon dioxide recovery device and carbon dioxide recovery method used for animal disposal device
JPH0356114A (en) Method for treating exhaust gas of organic solvent storage vessel
JP4459633B2 (en) Sample injection method and injection apparatus
Turnell et al. A concurrent process for the automatic preparation of biological samples combined with high pressure liquid chromatographic analysis
WO2020163533A1 (en) System and method of water rejuvenation for the regeneration of sorbent filters
US6214298B1 (en) Ozone producing apparatus responsive to an abnormal driving condition
CN220899964U (en) Carbon dioxide recovery device
EP3589945A1 (en) Parallel separation and washing in size exclusion chromatography separation or in desalting of a target from a sample
CN106198162A (en) Accelerate solvent extraction gel purification combined instrument and control method thereof
CN206396027U (en) A kind of sludge wet processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees