JP2001037739A - In blood oxygen saturation decline estimation method using breathing waveform analysis by image processing - Google Patents

In blood oxygen saturation decline estimation method using breathing waveform analysis by image processing

Info

Publication number
JP2001037739A
JP2001037739A JP11218897A JP21889799A JP2001037739A JP 2001037739 A JP2001037739 A JP 2001037739A JP 11218897 A JP11218897 A JP 11218897A JP 21889799 A JP21889799 A JP 21889799A JP 2001037739 A JP2001037739 A JP 2001037739A
Authority
JP
Japan
Prior art keywords
blood oxygen
oxygen saturation
cheyne
patient
respiratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11218897A
Other languages
Japanese (ja)
Other versions
JP3275029B2 (en
Inventor
Yoshifumi Nishida
佳史 西田
Shigeoki Hirai
成興 平井
Tetsuo Ishii
哲夫 石井
Mikiko Takayama
幹子 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21889799A priority Critical patent/JP3275029B2/en
Publication of JP2001037739A publication Critical patent/JP2001037739A/en
Application granted granted Critical
Publication of JP3275029B2 publication Critical patent/JP3275029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring the number of times of in blood oxygen saturation decline by non-restrictively and non-invasively sensing a patient since the patient sometimes detaches the sensor, makes measurement impossible and destroys it when an exclusive sensor is attached to the patient to detect the number of times of the in blood oxygen saturation decline of patient with a sleep apnea syndrome. SOLUTION: The chest 1 or the like of the patient is photographed by a television camera 2 and the image is analyzed by an image analysis system 4. A Cheyne-Stokes respiration similar waveform obtained by that is detected, the number of the Cheyne-Stokes respiration similar waveforms within prescribed time is measured the number of times of the decline of in blood oxygen saturation is estimated from the correlation data of the number of the Cheyne-Stokes respiration similar waveforms and the number of times of the decline of the in blood oxygen saturation obtained beforehand.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、睡眠時無呼吸症候
群の患者において生じる、睡眠中の無呼吸により血中酸
素の飽和度が降下する現象を、画像処理によって呼吸波
形を分析することにより推定するための、画像処理によ
る呼吸波形分析を用いた血中酸素飽和度降下推定法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a technique for estimating the phenomenon of a decrease in blood oxygen saturation caused by apnea during sleep, which occurs in a patient with sleep apnea syndrome, by analyzing a respiratory waveform by image processing. The present invention relates to a method for estimating blood oxygen saturation drop using respiratory waveform analysis by image processing.

【0002】[0002]

【従来の技術】最近睡眠時無呼吸症候群(Sleep Apnea
Syndrome,以下「SAS」と略称する。)が注目されてい
る。この疾患は、覚醒時には呼吸障害を自覚しないが、
睡眠時に10秒以上続く換気停止が1時間に5回以上ま
たは、7時間に30回以上生じるものとして定義され
る。一次的には、低酸素血症、高炭酸ガス血症をきた
し、二次的には肺高血圧、右心不全、不整脈、脳障害な
どを引き起こし、重症例では突然死をきたすことが知ら
れている。調査によれば、人口の1%強の人がこの疾患
にかかっていると見積もられている。また、この疾患に
かかると夜間の睡眠が浅くなるために、日中に眠い状態
が続き、容易に居眠りをしてしまう傾眠傾向に陥ること
が多いことから、居眠りによる交通事故などの人災との
関係も指摘されている。
2. Description of the Related Art Recently, sleep apnea syndrome (Sleep Apnea)
Syndrome, hereinafter abbreviated as "SAS". ) Is drawing attention. The disease is not aware of breathing disorders when awake,
Ventilation cessation lasting 10 seconds or more during sleep is defined as occurring 5 times or more in 1 hour or 30 times or more in 7 hours. It is known to cause primary hypoxemia and hypercapnia, secondary to pulmonary hypertension, right heart failure, arrhythmia, encephalopathy, and sudden death in severe cases . Studies have estimated that just over 1% of the population has the disease. In addition, since the sleep at night becomes lighter at night when the disease occurs, sleepiness continues during the day, and the child tends to fall asleep easily, so it is easy to fall asleep. The relationship has also been pointed out.

【0003】現在市販されている典型的な睡眠時呼吸モ
ニタでは、血中酸素飽和度をモニタするために、専用の
センサを患者の手や足の指に直接固定する必要があった
が、この計測手法では、 1)患者がセンサを無意識に外してしまい、計測が中断
することがしばしば生じる。 2)その際に、センサを破壊してしまう事故が絶えな
い。 3)患者に相当な肉体的、心理的な負担を強いる。 4)日常の睡眠とは微妙に異なる、などの問題点があっ
た。 これらはいずれも患者を拘束したセンシングにより計測
を行なっていることに起因するものであり、無拘束・無
侵襲なセンシングによってSAS診断においてその重症度
の判定に重要である血中酸素飽和度降下回数を測定する
方法が求められている。
In a typical sleep respiratory monitor currently on the market, a dedicated sensor needs to be directly fixed to a patient's hand or toe in order to monitor blood oxygen saturation. In the measurement method, 1) the patient unconsciously removes the sensor, and the measurement is often interrupted. 2) At that time, accidents that destroy the sensor are continual. 3) It imposes a considerable physical and psychological burden on the patient. 4) There was a problem that it was slightly different from daily sleep. These are all caused by measurement using patient-constrained sensing, and the number of blood oxygen desaturation times, which is important for determining the severity of SAS diagnosis by unconstrained and non-invasive sensing. There is a need for a method of measuring

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在ま
でに提案されている無拘束・無侵襲のセンシングでは、
医師が患者の重症度を判定する際に重要である血中酸素
飽和度の降下回数の計測は扱われておらず、血中酸素飽
和度の降下回数を調査するためには、一般には、赤外線
透過率を利用した患者の手や足の指等に直接取り付ける
タイプのセンサを利用しているのが現状である。
However, in the non-restrained and non-invasive sensing proposed so far,
The measurement of the number of blood oxygen saturation drops, which is important when a physician determines the severity of a patient, is not dealt with. At present, a sensor that directly attaches to a patient's hand or toe using a transmittance is used.

【0005】したがって、本発明は、無呼吸症候群の人
が睡眠中において生じる血中酸素飽和度の降下を、無拘
束・無侵襲で推定するための計測を行うことができ、且
つその計測を正確に行うことができるようにした、画像
処理による呼吸波形分析を用いた血中酸素飽和度降下推
定法を提供することを目的とする。
[0005] Therefore, the present invention can perform measurement for estimating a drop in blood oxygen saturation that occurs during sleep of a person with apnea syndrome in an unrestrained and non-invasive manner, and can accurately perform the measurement. It is an object of the present invention to provide a blood oxygen saturation drop estimating method using respiratory waveform analysis by image processing, which can be performed at a time.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、呼吸状態を撮影し、撮影した画像からチェ
ーンストークス呼吸類似波形を検出し、所定時間内のチ
ェーンストークス呼吸類似波形の数を計測し、予め求め
られているチェーンストークス類似波形の数と血中酸素
飽和度の降下回数の相関データから血中酸素飽和度の降
下回数を推定するようにしたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention captures a respiratory state, detects a Cheyne-Stokes respiratory similar waveform from the captured image, and counts the number of Cheyne-Stokes respiratory similar waveforms within a predetermined time. Is measured, and the number of drops of blood oxygen saturation is estimated from correlation data between the number of previously obtained Cheyne-Stokes-like waveforms and the number of drops of blood oxygen saturation.

【0007】[0007]

【発明の実施の形態】睡眠時無呼吸症候群の患者におい
て、中枢型睡眠時無呼吸、あるいは閉塞型睡眠時無呼吸
に関わらず、チェーンストークス呼吸波形に類似した呼
吸波形(チェーンストークス呼吸類似波形)を示すこと
は、臨床的にも頻繁に観察され、広く知られている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In patients with sleep apnea syndrome, a respiratory waveform similar to a Cheyne-Stokes respiratory waveform (Chain-Stokes respiratory similar waveform) regardless of central sleep apnea or obstructive sleep apnea Is frequently observed clinically and is widely known.

【0008】医学的には、「チェーンストークス呼吸」
は「周期性呼吸」の一つで、図2に示すように、1回の
換気量/呼吸数が漸増p、漸減q、それに続く換気停止
r(中枢性無呼吸)を周期的に繰り返す呼吸と定義され
る。一方、「周期性呼吸」は、医学的には、1回の換気
量が大きい過呼吸の時期と無呼吸の時期とが交互に周期
的に繰り返される呼吸のことであり、広義では、必ずし
も無呼吸を伴わなくてもよいとされている。
[0008] Medically, "Chyne-Stokes breathing"
Is a type of "periodic respiration", and as shown in Fig. 2, the respiratory volume / respiratory rate gradually increases and decreases q, followed by respiratory cessation r (central apnea) that is repeated periodically. Is defined as On the other hand, “periodic respiration” is medically a respiration in which the period of hyperventilation and the period of apnea, in which one tidal volume is large, are alternately and periodically repeated. It is said that breathing is not required.

【0009】睡眠時無呼吸は、一般に、「閉塞型睡眠時
無呼吸」と「中枢型睡眠時無呼吸」に分類される。「閉
塞型睡眠時無呼吸」は、口腔咽頭部、上気道部などの抹
消部の異常により生じるものであるのに対し、「中枢型
睡眠時無呼吸」は、呼吸調整を行っている神経系の異常
によるものであり、成因が異なっている。
[0009] Sleep apnea is generally classified into "obstructive sleep apnea" and "central sleep apnea". “Occlusion-type sleep apnea” is caused by abnormalities in peripheral parts such as the oropharynx and upper respiratory tract, whereas “central-type sleep apnea” is a nervous system that regulates respiration. The cause is different, and the cause is different.

【0010】ここでは、「チェーンストークス呼吸類似
波形」を、上記「チェーンストークス呼吸」の定義を以
下の緩めたものと定義する。 1)無呼吸を伴わなくてもよい。 2)漸増/漸減だけでなく、たとえ、漸増相がなくて
も、急激な増大とそれにつづく漸減相があればよいもの
とする。 3)周期的でなくてもよい。
[0010] Here, the "Chain-Stokes respiration-like waveform" is defined as the above-mentioned "Chain-Stokes respiration" which is a loosened version of the following. 1) It is not necessary to accompany apnea. 2) In addition to the gradual increase / decrease, even if there is no gradual increase phase, it is sufficient that there is a rapid increase and a subsequent gradual decrease phase. 3) It does not need to be periodic.

【0011】このような波形は、図3に示されるように
種々の波形が存在することとなる。図中(a)は典型的
な閉塞性無呼吸の第1の例を示し、(b)は典型的なる
閉塞性無呼吸の第2の例を示し、(c)は無呼吸を伴わ
ない低換気呼吸の例を示す。
Such a waveform has various waveforms as shown in FIG. In the figure, (a) shows a first example of typical obstructive apnea, (b) shows a second example of typical obstructive apnea, and (c) shows a low level without apnea. An example of ventilation breathing is shown.

【0012】一方、1時間に生じるチェーンストークス
呼吸類似波形の数をチェーンストークスインデックス
(CSI)と定義すると、研究の結果、CSIは、1時
間あたりの血中酸素飽和度の4%降下回数(ODI4と
略されることが多い。)と高い相関を示すことが判明し
た。即ち、図3(a)及び(b)に示すように、CSI
とODI4とは高い相関を示しており、このことから、
チェーンストークス呼吸類似波形を検出することによ
り、血中酸素飽和度の降下回数を高い確率で推定するこ
とが可能であることが判明した。
On the other hand, if the number of Cheyne-Stokes respiratory-like waveforms occurring in one hour is defined as the Cheyne-Stokes index (CSI), as a result of research, CSI is calculated as the number of 4% drops in blood oxygen saturation (ODI4) per hour. Are often abbreviated.). That is, as shown in FIGS. 3A and 3B, the CSI
And ODI4 show a high correlation, indicating that
It has been found that by detecting a Cheyne-Stokes respiratory similar waveform, the number of drops in blood oxygen saturation can be estimated with high probability.

【0013】この手法は、呼吸波形を計測できるセン
サ、接触型圧力センサ、バンド型コイルを利用したセン
サ等においても広く用いることができる手法である。
This method can be widely used in sensors capable of measuring a respiratory waveform, a contact type pressure sensor, a sensor using a band type coil, and the like.

【0014】従来より、本発明者は、図1に示すよう
に、ビデオカメラ2等で寝ている患者の胸部もしくは腹
部1を観察し、その画像を簡易モニター3を備えた画像
解析システム4で処理することにより呼吸波形を計測す
る手法を研究してきたところである。この画像解析シス
テムは、胸腹部の運動を画像としてとらえ、トラッキン
グによりオプティカルフローを検出し、その結果をコン
ピュータ解析することで呼吸運動の測定を行うものであ
る。上記画像処理により、患者の呼吸状態を実用的なレ
ベルで検出することができるようになっており、布団が
掛かっているときでもほぼ正確に患者の呼吸の状態を検
出することができるようにもなっている。
Conventionally, as shown in FIG. 1, the present inventor has observed a chest or abdomen 1 of a sleeping patient with a video camera 2 or the like, and analyzed the image with an image analysis system 4 having a simple monitor 3. I have just studied the technique of measuring the respiratory waveform by processing. This image analysis system captures the movement of the chest and abdomen as an image, detects an optical flow by tracking, and measures the respiratory movement by computer analysis of the result. By the above image processing, the respiratory condition of the patient can be detected at a practical level, and even when the futon is hanging, the respiratory condition of the patient can be detected almost accurately. Has become.

【0015】この画像処理技術を用いて患者の呼吸波形
計測を行い、図3に示すような波形を検出することがで
き、この波形からCSIの数、即ちチェーンストークス
呼吸類似波形の数を計測することができる。上記のよう
に、チェーンストークス呼吸類似波形の数が血中酸素飽
和度の降下回数と極めて高い相関を示すことが研究によ
り判明した結果、上記のような波形の計測により血中酸
素飽和度の降下回数を推定することができる。
Using this image processing technique, a patient's respiratory waveform is measured, and a waveform as shown in FIG. 3 can be detected. From this waveform, the number of CSI, that is, the number of Cheyne-Stokes respiratory similar waveforms is measured. be able to. As described above, studies have shown that the number of Cheyne-Stokes respiration-like waveforms shows an extremely high correlation with the number of drops in blood oxygen saturation. The number of times can be estimated.

【0016】上記の考え方を元に、画像処理により得ら
れたチェーンストークス呼吸類似波形の数(CSI)
と、実際の血中酸素飽和度の降下回数(ODI4)の相
関を求めたものが図5であり、両者が高い相関にあるこ
とが確認された。
Based on the above concept, the number of Cheyne-Stokes respiratory similar waveforms obtained by image processing (CSI)
FIG. 5 shows the correlation between the number and the actual number of drops in blood oxygen saturation (ODI4), and it was confirmed that both were highly correlated.

【0017】[0017]

【発明の効果】本発明は上記のように、睡眠時無呼吸症
候群の患者に特有のチェーンストークス呼吸現象を元
に、それに類似した波形であるチェーンストークス呼吸
類似波形を検出し測定することにより、無侵襲、無接触
で上記患者等の血中酸素飽和度の降下回数を検出するこ
とができる。しかも、現在急速に研究開発が進んでいる
画像処理技術を用いて、正確にチェーンストークス呼吸
類似波形を検出することができ、精度の高い血中酸素飽
和度の降下回数の推定を行うことができる。
According to the present invention, as described above, based on the Cheyne-Stokes respiration phenomenon peculiar to a patient with sleep apnea syndrome, a similar waveform of the Cheyne-Stokes respiration is detected and measured. The number of drops in the blood oxygen saturation of the patient or the like can be detected in a non-invasive and non-contact manner. In addition, using the image processing technology that is currently undergoing rapid research and development, it is possible to accurately detect Cheyne-Stokes respiratory similar waveforms and to accurately estimate the number of blood oxygen saturation drops. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置の概要を示すシステム構
成図である。
FIG. 1 is a system configuration diagram showing an outline of an apparatus for implementing the present invention.

【図2】チェーンストークス呼吸の波形図である。FIG. 2 is a waveform diagram of Cheyne-Stokes breathing.

【図3】 チェーンストークス呼吸類似波形の種々の態
様を示す波形図である。
FIG. 3 is a waveform diagram showing various aspects of a Cheyne-Stokes respiration-like waveform.

【図4】チェーンストークス呼吸類似波形の数と血中酸
素飽和度の降下回数との相関を示すグラフである。
FIG. 4 is a graph showing a correlation between the number of Cheyne-Stokes respiratory similar waveforms and the number of drops in blood oxygen saturation.

【図5】画像処理により得られたチェーンストークス呼
吸類似波形の数と血中酸素飽和度の降下回数との相関を
示すグラフである。
FIG. 5 is a graph showing a correlation between the number of Cheyne-Stokes respiration-like waveforms obtained by image processing and the number of drops in blood oxygen saturation.

【符号の説明】[Explanation of symbols]

1 胸部もしくは腹部 2 ビデオカメラ 3 簡易モニター 4 画像解析システム 1 chest or abdomen 2 video camera 3 simple monitor 4 image analysis system

フロントページの続き (72)発明者 平井 成興 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 石井 哲夫 東京都新宿区河田町8−1 東京女子医科 大学病院内 (72)発明者 高山 幹子 東京都新宿区河田町8−1 東京女子医科 大学病院内 Fターム(参考) 4C038 KK01 KL05 KL07 KM00 KM01 KX01 SS09 ST00 ST04 SV01 SX07 VA04 VB28 VB33 VB40 VC05 VC20 Continuing from the front page (72) Inventor Shirai Hirai 1-4-1 Umezono, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Tetsuo Ishii 8-1 Kawadacho, Shinjuku-ku, Tokyo Tokyo Women's Medical Inside university hospital (72) Inventor Motoko Takayama 8-1 Kawatacho, Shinjuku-ku, Tokyo Tokyo Women's Medical University Hospital F-term (reference) 4C038 KK01 KL05 KL07 KM00 KM01 KX01 SS09 ST00 ST04 SV01 SX07 VA04 VB28 VB33 VB40 VC05 VC20

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 呼吸状態を撮影し、撮影した画像からチ
ェーンストークス呼吸類似波形を検出し、所定時間内の
チェーンストークス呼吸類似波形の数を計測し、予め求
められているチェーンストークス類似波形の数と血中酸
素飽和度の相関データから血中酸素飽和度の降下回数を
推定することを特徴とする画像処理による呼吸波形分析
を用いた血中酸素飽和度降下推定法。
1. A breathing state is photographed, a Cheyne-Stokes respiratory similar waveform is detected from the photographed image, the number of the Cheyne-Stokes respiratory similar waveforms is measured within a predetermined time, and the number of the pre-determined Cheyne-Stokes similar waveforms is determined. A method for estimating blood oxygen saturation drop using respiratory waveform analysis by image processing, wherein the number of blood oxygen saturation drop times is estimated from correlation data between blood oxygen saturation and blood oxygen saturation.
JP21889799A 1999-08-02 1999-08-02 Blood Oxygen Saturation Estimation Method Using Respiration Waveform Analysis by Image Processing Expired - Lifetime JP3275029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21889799A JP3275029B2 (en) 1999-08-02 1999-08-02 Blood Oxygen Saturation Estimation Method Using Respiration Waveform Analysis by Image Processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21889799A JP3275029B2 (en) 1999-08-02 1999-08-02 Blood Oxygen Saturation Estimation Method Using Respiration Waveform Analysis by Image Processing

Publications (2)

Publication Number Publication Date
JP2001037739A true JP2001037739A (en) 2001-02-13
JP3275029B2 JP3275029B2 (en) 2002-04-15

Family

ID=16727032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21889799A Expired - Lifetime JP3275029B2 (en) 1999-08-02 1999-08-02 Blood Oxygen Saturation Estimation Method Using Respiration Waveform Analysis by Image Processing

Country Status (1)

Country Link
JP (1) JP3275029B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045585A1 (en) * 2000-12-07 2002-06-13 Keio University Monitor
JP2007537777A (en) * 2004-02-05 2007-12-27 アーリーセンス・リミテッド Prediction and monitoring technology for clinical onset in respiration
JP2008110138A (en) * 2006-10-31 2008-05-15 Ngk Spark Plug Co Ltd Breathing program, recording medium, and apparatus for breath determination
US7428468B2 (en) 2001-06-15 2008-09-23 Sumitomo Osaka Cement Co., Ltd. Monitoring apparatus
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US8491492B2 (en) 2004-02-05 2013-07-23 Earlysense Ltd. Monitoring a condition of a subject
US8585607B2 (en) 2007-05-02 2013-11-19 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8821418B2 (en) 2007-05-02 2014-09-02 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
JP2014166572A (en) * 2004-12-23 2014-09-11 Resmed Ltd Method for detecting and discriminating breathing pattern from respiratory signal
US8882684B2 (en) 2008-05-12 2014-11-11 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8942779B2 (en) 2004-02-05 2015-01-27 Early Sense Ltd. Monitoring a condition of a subject
JP2016506840A (en) * 2013-02-15 2016-03-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device for acquiring respiratory information of a target
US9883809B2 (en) 2008-05-01 2018-02-06 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US10292625B2 (en) 2010-12-07 2019-05-21 Earlysense Ltd. Monitoring a sleeping subject
US10512429B2 (en) 2004-12-23 2019-12-24 ResMed Pty Ltd Discrimination of cheyne-stokes breathing patterns by use of oximetry signals

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045585A1 (en) * 2000-12-07 2002-06-13 Keio University Monitor
US7428468B2 (en) 2001-06-15 2008-09-23 Sumitomo Osaka Cement Co., Ltd. Monitoring apparatus
US8517953B2 (en) 2004-02-05 2013-08-27 Earlysense Ltd. Techniques for prediction and monitoring of coughing-manifested clinical episodes
US8731646B2 (en) 2004-02-05 2014-05-20 Earlysense Ltd. Prediction and monitoring of clinical episodes
JP4809779B2 (en) * 2004-02-05 2011-11-09 アーリーセンス・リミテッド Prediction and monitoring technology for clinical onset in respiration
US8376954B2 (en) 2004-02-05 2013-02-19 Earlysense Ltd. Techniques for prediction and monitoring of respiration-manifested clinical episodes
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US8491492B2 (en) 2004-02-05 2013-07-23 Earlysense Ltd. Monitoring a condition of a subject
US8942779B2 (en) 2004-02-05 2015-01-27 Early Sense Ltd. Monitoring a condition of a subject
US8992434B2 (en) 2004-02-05 2015-03-31 Earlysense Ltd. Prediction and monitoring of clinical episodes
US8603010B2 (en) 2004-02-05 2013-12-10 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US8679030B2 (en) 2004-02-05 2014-03-25 Earlysense Ltd. Monitoring a condition of a subject
US8840564B2 (en) 2004-02-05 2014-09-23 Early Sense Ltd. Monitoring a condition of a subject
US9131902B2 (en) 2004-02-05 2015-09-15 Earlysense Ltd. Prediction and monitoring of clinical episodes
JP2007537777A (en) * 2004-02-05 2007-12-27 アーリーセンス・リミテッド Prediction and monitoring technology for clinical onset in respiration
JP2014166572A (en) * 2004-12-23 2014-09-11 Resmed Ltd Method for detecting and discriminating breathing pattern from respiratory signal
US11896388B2 (en) 2004-12-23 2024-02-13 ResMed Pty Ltd Method for detecting and discriminating breathing patterns from respiratory signals
US10512429B2 (en) 2004-12-23 2019-12-24 ResMed Pty Ltd Discrimination of cheyne-stokes breathing patterns by use of oximetry signals
US9026199B2 (en) 2005-11-01 2015-05-05 Earlysense Ltd. Monitoring a condition of a subject
JP2008110138A (en) * 2006-10-31 2008-05-15 Ngk Spark Plug Co Ltd Breathing program, recording medium, and apparatus for breath determination
US8821418B2 (en) 2007-05-02 2014-09-02 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8734360B2 (en) 2007-05-02 2014-05-27 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8585607B2 (en) 2007-05-02 2013-11-19 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US9883809B2 (en) 2008-05-01 2018-02-06 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8882684B2 (en) 2008-05-12 2014-11-11 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8998830B2 (en) 2008-05-12 2015-04-07 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US10292625B2 (en) 2010-12-07 2019-05-21 Earlysense Ltd. Monitoring a sleeping subject
US11147476B2 (en) 2010-12-07 2021-10-19 Hill-Rom Services, Inc. Monitoring a sleeping subject
JP2016506840A (en) * 2013-02-15 2016-03-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device for acquiring respiratory information of a target

Also Published As

Publication number Publication date
JP3275029B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
US10939829B2 (en) Monitoring a condition of a subject
US9681838B2 (en) Monitoring a condition of a subject
Cysarz et al. Comparison of respiratory rates derived from heart rate variability, ECG amplitude, and nasal/oral airflow
US8679030B2 (en) Monitoring a condition of a subject
JP5284082B2 (en) A device that diagnoses respiratory diseases and determines the degree of deterioration
US6893405B2 (en) Analysis of Sleep Apnea
AU2003277338B2 (en) Method and apparatus for maintaining and monitoring sleep quality during therapeutic treatments
AU2010210569B2 (en) Apparatus, system and method for chronic disease monitoring
JP7393405B2 (en) Systems and methods for screening, diagnosing and monitoring sleep-disordered breathing
Reichert et al. Comparison of the NovaSom QSG™, a new sleep apnea home-diagnostic system, and polysomnography
JP3275029B2 (en) Blood Oxygen Saturation Estimation Method Using Respiration Waveform Analysis by Image Processing
US20080300500A1 (en) Apnea detection using a capnograph
Cheliout-Heraut et al. Obstructive sleep apnoea syndrome: comparison between polysomnography and portable sleep monitoring based on jaw recordings
Vlahandonis et al. Pulse transit time as a surrogate measure of changes in systolic arterial pressure in children during sleep
Chung et al. REM sleep estimation only using respiratory dynamics
Rühle et al. Monitoring at home
Chua et al. Pulse transit time-derived respiratory parameters and their variability across sleep stages
Dillier et al. Continuous respiratory monitoring for sleep apnea screening by ambulatory hemodynamic monitor
Nishida et al. Estimation of Oxygen Desaturation by Analyzing Breath Curve
JP2008068018A (en) Apparatus and method for outputting estimation result of biological state
Love et al. Home sleep testing and sleep apnea: a review for dentists
TWI462727B (en) System for determining whether sleep disorders suffered based on classified physiology data and method thereof
Huang et al. Pulse transit time for quantifying inspiratory effort in patients with obstructive sleep apnea
Stage Is there any benefit to repeating the study?
Jasani et al. Diagnostic studies for sleep apnea/hypopnea

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3275029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term