JP2001036169A - Bilateral pumping light amplifier - Google Patents

Bilateral pumping light amplifier

Info

Publication number
JP2001036169A
JP2001036169A JP11209710A JP20971099A JP2001036169A JP 2001036169 A JP2001036169 A JP 2001036169A JP 11209710 A JP11209710 A JP 11209710A JP 20971099 A JP20971099 A JP 20971099A JP 2001036169 A JP2001036169 A JP 2001036169A
Authority
JP
Japan
Prior art keywords
pumping
pumping light
wavelength
light source
bidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11209710A
Other languages
Japanese (ja)
Inventor
Shu Namiki
周 並木
Norio Tashiro
至男 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11209710A priority Critical patent/JP2001036169A/en
Priority to FR0009594A priority patent/FR2796766A1/en
Publication of JP2001036169A publication Critical patent/JP2001036169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • G02B6/29355Cascade arrangement of interferometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bilateral pumping light optical amplifier which makes an optical isolator unnecessary and applies a light emitting element with an FBG to a pumping light source. SOLUTION: Pumping lights, generated from pumping light sources 2, 3, are supplied to an EDF through Mach-Zehnder type wavelength multiplexing couplers 4. Two or more front and rear pumping light sources 2, 3 are installed. Pumping lights of different wavelengths are generated from all four or more pumping light sources 2, 3. For the wavelengths, the front and rear pumping lights are arranged alternately, and the longest wavelength of the front pumping lights is made shorter than the shortest wavelength of the rear pumping lights. The wave couplers 4 and an LD module with an FBG correspond to a pumping band in the vicinity of 1480 nm or 980 nm. The level of residual pumping lights, outputted from vacant ports of the wave couplers 4 can be monitored. Based on the monitored result, the levels of both the front pumping light source 2 and the rear pumping light source 3 or the level of one of them are adjusted, and the amplification level of the EDF is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光通信システムに使
用される光増幅器に関し、特に、増幅光ファイバ(ED
F)を前後方から励起する双方向励起の光増幅器に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifier used in an optical communication system, and more particularly, to an amplified optical fiber (ED).
F) is a bidirectionally pumped optical amplifier that pumps F) from front and rear.

【0002】[0002]

【従来の技術】エルビウムが添加されたEDFを用いた
光ファイバ増幅器(EDFA)が近年急速に実用化さ
れ、光ファイバ通信システムの光増幅器として採用され
ている。中でも複数の異なる波長をもつ信号光(チャン
ネル)を波長多重合波器により合波し、波長多重信号と
して伝送することにより伝送容量を拡大する波長多重通
信(WDM)システムへの適用が注目されている。ED
FAは波長多重された信号光を一括して増幅可能であ
り、WDMシステムにおいて従来の再生中継器に代わる
簡易な線形中継器として期待されている。
2. Description of the Related Art An optical fiber amplifier (EDFA) using an EDF doped with erbium has been rapidly commercialized in recent years and has been adopted as an optical amplifier in an optical fiber communication system. Above all, application to a wavelength division multiplexing (WDM) system, in which signal light (channels) having a plurality of different wavelengths is multiplexed by a wavelength division multiplexer and transmitted as a wavelength division multiplexed signal, thereby increasing the transmission capacity, has been attracting attention. I have. ED
The FA can amplify the wavelength-multiplexed signal light at a time, and is expected to be a simple linear repeater replacing a conventional regenerative repeater in a WDM system.

【0003】しかしWDMシステムにEDFAを適用す
る場合に問題となるのがEDFAの出力特性である。即
ち、チャンネル数が1、2・・・nと増大するに伴って
EDFAの出力も1、2・・・n倍だけ必要となり、よ
り高出力のEDFAが必要となる。EDFAは基本的
に、増幅媒体であるEDFと、EDFを励起するための
励起光源と、励起光源からの励起光をEDFに導入する
ための合波器とから構成される。この場合、高出力化の
ために重要なことは高出力の励起光源を用意することで
ある。
However, when the EDFA is applied to the WDM system, the problem is the output characteristic of the EDFA. That is, as the number of channels increases to 1, 2,... N, the output of the EDFA becomes 1, 2,. The EDFA basically includes an EDF as an amplification medium, an excitation light source for exciting the EDF, and a multiplexer for introducing the excitation light from the excitation light source into the EDF. In this case, it is important to prepare a high-output excitation light source for achieving high output.

【0004】励起光強度を高めてEDFAの高出力化を
図るために、従来はEDFへの励起光供給を次のような
方法で行なっていた。 (1)図5に示すようにEDFの前後に励起光源A、B
を挿入し、前方励起光源Aからの励起光を前方合波器C
を通して信号光と同一方向から供給してEDFを励起す
る前方励起と、後方の励起光源Bからの励起光を後方合
波器Dを通して信号光と逆方向から供給してEDFを励
起する後方励起とを組み合わせて双方向から励起する双
方向励起方法。 (2)図6に示すようにEDFの前方に単一偏波の励起
光を発生する2つの励起光源A1 、A2 を、後方にも単
一偏波の励起光を発生する2つの励起光源B1、B2
挿入し、前方の励起光源A1 、A2 から発生される励起
光を前方の偏波合成素子Eで合成し、それを前方合波器
Cを通して信号光と同一方向から供給してEDFを励起
し、後方励起光源B1 、B2 から発生される励起光を後
方の偏波合成素子Eで合成し、それを後方の合波器Dを
通して信号光と逆方向から供給してEDFを励起する方
法。 (3)図6に示す前方の励起光源A1 、A2 及び後方の
励起光源B1 、B2 を波長の異なる励起光を発生するも
のとし、前方の励起光源A1 、A2 からの励起光を前方
の波長多重素子Fで合成し、それを前方合波器Cを通し
て信号光と同一方向から供給してEDFを励起し、後方
励起光源B1 、B2 からの励起光を後方の波長多重素子
Fで合成し、それを後方の合波器Dを通して信号光と逆
方向から供給してEDFを励起する方法。 (4)前記3つの方法を組み合わせた方法。
In order to increase the output of the EDFA by increasing the intensity of the excitation light, the excitation light has been supplied to the EDF by the following method. (1) As shown in FIG. 5, before and after the EDF, the excitation light sources A and B
And the excitation light from the forward excitation light source A is
Forward pumping to supply the signal light through the same direction to excite the EDF, and backward pumping to supply the pumping light from the rear pumping light source B through the rear multiplexer D from the opposite direction to the signal light to excite the EDF. A bidirectional excitation method that excites from both directions by combining the two methods. (2) As shown in FIG. 6, two pump light sources A 1 and A 2 for generating a single-polarized pump light in front of the EDF and two pump light sources for generating a single-polarized pump light behind the EDF. The light sources B 1 and B 2 are inserted, and the pump lights generated from the front pump light sources A 1 and A 2 are combined by the front polarization combining element E, and the combined light is passed through the front multiplexer C in the same direction as the signal light. From the rear pump light source B 1 , B 2 , and the pump light generated from the rear pump light sources B 1 and B 2 is combined by the backward polarization combining element E, and the combined light is passed through the backward multiplexer D from the opposite direction to the signal light. A method of supplying and exciting EDF. (3) It is assumed that the front pump light sources A 1 and A 2 and the rear pump light sources B 1 and B 2 shown in FIG. 6 generate pump lights having different wavelengths, and the pump light from the front pump light sources A 1 and A 2 is used. The light is synthesized by the front wavelength multiplexing element F, supplied through the front multiplexer C from the same direction as the signal light to excite the EDF, and the pump light from the rear pump light sources B 1 and B 2 is converted to the rear wavelength. A method of combining with a multiplexing element F and supplying it from the opposite direction to the signal light through a rear multiplexer D to excite the EDF. (4) A method combining the above three methods.

【0005】前記(1)の双方向励起方法では、EDF
に注入されてEDFを励起した励起光の他に励起に使用
されなかった励起光(残留励起光)がある。この残留励
起光は出射された励起光源とは反対側の励起光源に入射
して当該励起光源の出力を不安定にしたり破損を招く虞
れがある。これを防止するためには図5、図6に示すよ
うに励起光源の出力端に光アイソレータGを挿入するこ
とが不可欠であった。
In the bidirectional excitation method (1), the EDF
There is excitation light (residual excitation light) that is not used for the excitation, other than the excitation light that is injected into the EDF and excites the EDF. This residual pump light may enter the pump light source on the side opposite to the pump light source that has been emitted, making the output of the pump light source unstable or damaging. In order to prevent this, it is essential to insert an optical isolator G at the output end of the pump light source as shown in FIGS.

【0006】前記(2)の励起方法では、偏波合成素子
Eが2つの励起光しか合波できないため励起光の高出力
化に限度がある。
In the pumping method (2), since the polarization combining element E can multiplex only two pump lights, there is a limit in increasing the output of the pump light.

【0007】前記(3)の励起方法では、波長多重素子
Fは有効な励起波長帯域内であれば理論的には多重可能
な励起光の数に制限はないが、現実には励起光源A1
2 、B1 、B2 の出力スペクトルには幅があるため、波
長多重素子Fの合波波長特性によっては効率的な多重度
が限られる。例えば、EDFAの励起光源として最も一
般的な1480nmの半導体レーザダイオード(LD)
は縦多モード発振しており、そのスペクトル幅は5nm
程度である。一方、EDFAの1480nm付近での有
効励起波長帯域は1450nm〜1500nmの50n
m程度であるため、現実には3波長多重が限界である。
[0007] In excitation method (3), there is no limit to the number of multiple possible excitation light in theory if wavelength multiplexing element F is within the effective excitation wavelength range, in reality excitation light source A 1 A
2, B 1, since the output spectrum of B 2 there is a range, efficient multiplicity by multiplexing the wavelength characteristics of the wavelength multiplexing element F is limited. For example, the most common 1480 nm semiconductor laser diode (LD) as an excitation light source for EDFAs
Oscillates in vertical multimode, and its spectrum width is 5 nm
It is about. On the other hand, the effective excitation wavelength band of the EDFA near 1480 nm is 50n from 1450 nm to 1500 nm.
m, so that three-wavelength multiplexing is actually the limit.

【0008】近年、図7に示す様に、半導体レーザダイ
オード(LD)の外部にファイバーブラッググレーティ
ング(FBG)を外部共振器として備えることによっ
て、スペクトル幅を狭窄化した半導体レーザダイオード
モジュール(FBG付きLDモジュール)が実用化され
つつある。これは半導体レーザに接続される光ファイバ
の一部にFBGが備えられており、その出力スペクトル
幅は図8に示す様に従来のFBGが無いものよりも狭窄
化されて1nm程度となっており、これまで以上に高密
度の波長多重が可能となっている。
In recent years, as shown in FIG. 7, a semiconductor laser diode module (LD with FBG) having a narrowed spectrum width by providing a fiber Bragg grating (FBG) as an external resonator outside the semiconductor laser diode (LD). Module) is being put to practical use. This is provided with an FBG in a part of an optical fiber connected to a semiconductor laser, and its output spectrum width is narrowed to about 1 nm as compared with the conventional one without an FBG as shown in FIG. Thus, higher-density wavelength multiplexing is possible.

【0009】近年、波長多重素子として、ファイバ溶融
や石英導波路素子を用いたマハツェンダ型波長多重合波
器が開発されている。図9(a)にその概略図を、図9
(b)にその透過スペクトルを示す。図10に1×8マ
ハツェンダ型波長多重合波器の例を示す。この波長多重
合波器は1×8のポートを持っており、n(=1、2…
8)個のポートから異なる中心波長を持ち、且つ、周波
数的に等間隔の光を入射すると、それら光が合波されて
0ポートから出力する特性を有する。1×8マハツェン
ダ型波長多重合波器の各ポートの透過特性は図11に示
す通りである。
In recent years, as a wavelength division multiplexing device, a Maha-Zehnder type wavelength multi-wavelength device using a fused fiber or a quartz waveguide device has been developed. FIG. 9A is a schematic diagram thereof, and FIG.
(B) shows the transmission spectrum. FIG. 10 shows an example of a 1 × 8 Mahachender-type wavelength-multiplexed wave device. This wavelength-multiplexed wave device has 1 × 8 ports, and n (= 1, 2,...)
8) When light having different center wavelengths and equally spaced in frequency is input from the ports, the lights are multiplexed and output from the 0 port. FIG. 11 shows the transmission characteristics of each port of the 1 × 8 Mach-Zehnder type multi-wavelength optical device.

【0010】以上の様に、スペクトル幅を狭窄化して高
密度の波長多重を可能としたFBG付きLDモジュール
と、中心波長の異なる多くの光を効率良く合波可能なマ
ハツェンダ型波長多重合波器の登場によって、より高出
力である励起光源が実現可能となり、これをEDFAの
励起光源として用いることができればEDFAを簡易且
つ効果的に高出力化することが可能となる。
As described above, an LD module with an FBG capable of narrowing the spectrum width and enabling high-density wavelength multiplexing, and a Mach-Zehnder-type multi-wavelength multiplexer capable of efficiently multiplexing many lights having different center wavelengths. With the advent of this, an excitation light source having a higher output can be realized, and if this can be used as an excitation light source for an EDFA, the EDFA can be easily and effectively increased in output.

【0011】[0011]

【発明が解決しようとする課題】しかし、前記FBG付
きLDモジュールをEDFAの励起光源に用いると次の
ような課題がある。 (1)前記したように、図5、図6では残留励起光のた
めに励起光源から発生される励起光が不安定になった
り、励起光源が破損したりする虞れがある。これを防止
するためには光アイソレータが必要不可欠である。しか
し、FBG付きLDモジュールはFBGを外部共振器と
して備えているため内部に光アイソレータを内蔵するこ
とはできない。 (2)前記理由のため光アイソレータは外部に備える
か、FBG付きLDモジュールから出力された励起光の
合波後に挿入するしかない。そのようにすれば残留励起
光の入射による励起光出力の不安定化や励起光源の破損
の虞は回避することができるが、光アイソレータの挿入
損失によって励起光強度が低下するという新たな問題が
ある。
However, when the LD module with FBG is used as an excitation light source of an EDFA, there are the following problems. (1) As described above, in FIGS. 5 and 6, there is a possibility that the excitation light generated from the excitation light source becomes unstable or the excitation light source is damaged due to the residual excitation light. To prevent this, an optical isolator is indispensable. However, since an LD module with an FBG has an FBG as an external resonator, an optical isolator cannot be built therein. (2) For the above reason, the optical isolator must be provided externally or inserted after multiplexing the pump light output from the LD module with FBG. By doing so, it is possible to avoid the possibility of instability of the pump light output and the damage of the pump light source due to the incidence of the residual pump light, but there is a new problem that the pump light intensity decreases due to the insertion loss of the optical isolator. is there.

【0012】[0012]

【課題を解決するための手段】本発明の目的はEDFA
を用いた光通信システムの前記課題を解決することにあ
る。その目的実現のために本発明では励起光源にFBG
付きLDモジュールを使用し、この励起光源からの励起
光をEDFAに送る合波器としてマハツェンダ型波長多
重合波器を使用して、更に、前方励起光と後方励起光の
波長を異なるものとすることにより光アイソレータを不
要とした。
SUMMARY OF THE INVENTION An object of the present invention is to provide an EDFA.
It is an object of the present invention to solve the above-mentioned problems of the optical communication system using the optical communication. In order to realize the object, the present invention uses FBG as the excitation light source.
Using a LD module with a pump, and using a Mach-Zehnder multi-wavelength multiplexer as a multiplexer for transmitting the excitation light from the excitation light source to the EDFA, and further having different wavelengths for the forward excitation light and the backward excitation light. This eliminates the need for an optical isolator.

【0013】本件出願の第1の双方向励起光増幅器は、
増幅光ファイバ(EDF)を前方励起光源からの励起光
により前方から励起し、後方励起光源からの励起光によ
り後方から励起する双方向励起光増幅器(EDFA)に
おいて、両励起光源を半導体レーザダイオードモジュー
ル(FBG付きLDモジュール)とし、夫々の励起光源
から発生される励起光をマハツェンダー型波長多重合波
器を通して増幅光ファイバ(EDF)に供給し、前方励
起光源と後方励起光源から異なる波長の励起光が発光さ
れることを特徴としたものである。
The first bidirectional pumping optical amplifier of the present application is:
In a bidirectional pumping optical amplifier (EDFA) in which an amplification optical fiber (EDF) is pumped from the front by pumping light from a forward pumping light source and pumped from behind by pumping light from a backward pumping light source, both pumping light sources are semiconductor laser diode modules. (LD module with FBG), pumping light generated from each pumping light source is supplied to an amplification optical fiber (EDF) through a Mach-Zehnder type wavelength-multiplexed wave filter, and pumping of different wavelengths is performed from a forward pumping light source and a backward pumping light source. Light is emitted.

【0014】本件出願の第2の双方向励起光増幅器は、
増幅光ファイバ(EDF)を前方励起光源からの励起光
により前方から励起し、後方励起光源らの励起光により
後方から励起する双方向励起光増幅器において、両励起
光源を半導体レーザダイオードモジュール(FBG付き
LDモジュール)とし、夫々の励起光源から発生される
励起光をマハツェンダー型波長多重合波器を通して増幅
光ファイバ(EDF)供給し、前方励起光源(2)と後
方励起光源(3)の夫々を2以上設け、それら4以上の
全ての励起光源(2、3)から異なる波長の励起光が発
光されることを特徴としたものである。
The second bidirectional pumping optical amplifier of the present application is:
In a bidirectional pumping optical amplifier that pumps an amplification optical fiber (EDF) from the front with pumping light from a forward pumping light source and pumps it from behind with pumping light from a backward pumping light source, both pumping light sources are connected to a semiconductor laser diode module (with FBG). LD module), and the pump light generated from each pump light source is supplied to an amplification optical fiber (EDF) through a Mach-Zehnder multi-wavelength multi-wave device, and the forward pump light source (2) and the backward pump light source (3) are respectively supplied. Two or more excitation light sources (2, 3) emit excitation light of different wavelengths.

【0015】本件出願の第3の双方向励起光増幅器は、
増幅光ファイバ(EDF)を前方励起光源からの励起光
により前方から励起し、後方励起光源からの励起光によ
り後方から励起する双方向励起光増幅器において、両励
起光源を半導体レーザダイオードモジュール(FBG付
きLDモジュール)とし、夫々の励起光源から発生され
る励起光をマハツェンダー型波長多重合波器を通して増
幅光ファイバ(EDF)供給し、前方励起光源と後方励
起光源を夫々2以上設け、それら励起光源から発光され
る励起光の波長が全て異なり、且つ前方励起光と後方励
起光が交互に配列される波長であることを特徴とするも
のである。
[0015] The third bidirectional pumping optical amplifier of the present application is:
In a bidirectional pumping optical amplifier that pumps an amplification optical fiber (EDF) from the front with pumping light from a forward pumping light source and pumps from the back with pumping light from a backward pumping light source, both pumping light sources are equipped with semiconductor laser diode modules (with FBGs). LD module), the pump light generated from each pump light source is supplied to an amplification optical fiber (EDF) through a Mach-Zehnder multi-wavelength multi-wave device, and two or more forward pump light sources and two or more backward pump light sources are provided. The wavelengths of the excitation lights emitted from the light sources are different from each other, and the excitation light and the rear excitation light are arranged alternately.

【0016】本件出願の第4の双方向励起光増幅器は、
増幅光ファイバ(EDF)を前方励起光源からの励起光
により前方から励起し、後方励起光源からの励起光によ
り後方から励起する双方向励起光増幅器において、両励
起光源を半導体レーザダイオードモジュール(FBG付
きLDモジュール)とし、夫々の励起光源から発生され
る励起光をマハツェンダー型波長多重合波器を通して増
幅光ファイバ(EDF)供給し、前方励起光源と後方励
起光源を夫々2以上設け、それら励起光源から発光され
る励起光の波長が全て異なり、且つ前方励起光の最長の
波長が後方励起光の最短の波長より短いことを特徴とす
るものである。
The fourth bidirectional pumping optical amplifier of the present application is:
In a bidirectional pumping optical amplifier that pumps an amplification optical fiber (EDF) from the front with pumping light from a forward pumping light source and pumps from the back with pumping light from a backward pumping light source, both pumping light sources are equipped with semiconductor laser diode modules (with FBGs). LD module), the pump light generated from each pump light source is supplied to an amplification optical fiber (EDF) through a Mach-Zehnder multi-wavelength multi-wave device, and two or more forward pump light sources and two or more backward pump light sources are provided. The wavelengths of the pumping lights emitted from the light sources are different from each other, and the longest wavelength of the forward pumping light is shorter than the shortest wavelength of the backward pumping light.

【0017】本件出願の第5の双方向励起光増幅器は、
請求項1乃至請求項4のいずれかに記載の双方向励起光
増幅器において、マハツェンダー型波長多重合波器と半
導体レーザダイオードモジュール(FBG付きLDモジ
ュール)とを1480nm付近の励起帯域に対応するもの
としたものである。
The fifth bidirectional pumping optical amplifier of the present application is:
The bidirectional pumping optical amplifier according to any one of claims 1 to 4, wherein the Mach-Zehnder type multi-wavelength optical multiplexer and the semiconductor laser diode module (LD module with FBG) correspond to an excitation band near 1480 nm. It is what it was.

【0018】本件出願の第6の双方向励起光増幅器は、
請求項1乃至請求項4のいずれかに記載の双方向励起光
増幅器において、マハツェンダー型波長多重合波器と半
導体レーザダイオードモジュール(FBG付きLDモジ
ュール)とを980nm付近の励起帯域に対応するものと
したものである。
The sixth bidirectional pumping optical amplifier of the present application is:
The bidirectional pumping optical amplifier according to any one of claims 1 to 4, wherein the Mach-Zehnder type multi-wavelength optical multiplexer and the semiconductor laser diode module (LD module with FBG) correspond to an excitation band around 980 nm. It is what it was.

【0019】本件出願の第7の双方向励起光増幅器は、
請求項1乃至請求項6のいずれかに記載の双方向励起光
増幅器において、マハツェンダー型波長多重合波器の空
きポートから出射する残留励起光のレベルをモニタ可能
としたものである。
The seventh bidirectional pumping optical amplifier of the present application is:
The bidirectional pumping optical amplifier according to any one of claims 1 to 6, wherein the level of the residual pumping light emitted from an empty port of the Mach-Zehnder multi-wavelength wavelength multiplexer can be monitored.

【0020】本件出願の第8の双方向励起光増幅器は、
請求項1乃至請求項6のいずれかに記載の双方向励起光
増幅器において、マハツェンダー型波長多重合波器の空
きポートから出射する残留励起光のレベルをモニタし、
そのモニタ結果に基づいて前方励起光源及び後方励起光
源の双方又は一方のレベルを調節して、EDFの増幅レ
ベルを制御するものである。
The eighth bidirectional pumping optical amplifier of the present application is:
The bidirectional pumping optical amplifier according to any one of claims 1 to 6, wherein a level of the residual pumping light emitted from an empty port of the Mach-Zehnder type multi-wavelength wavelength monitor is monitored,
The level of one or both of the forward pumping light source and the backward pumping light source is adjusted based on the monitoring result to control the EDF amplification level.

【0030】[0030]

【発明の実施の形態】(実施形態1)本発明の双方向励
起光増幅器の第1の実施形態を図1に示す。これは増幅
光ファイバ(EDF)を前方励起光源2からの励起光に
より前方から励起し、後方励起光源3からの励起光によ
り後方から励起するものであり、EDFの前方に前方合
波器(WDMカプラ)10を介して前方の1×2ポート
のマハツェンダー型波長多重合波器4を接続し、そのマ
ハツェンダー型波長多重合波器4の一方の入射ポートP
1に前方励起光源2を接続し、EDFの後方に後方合波
器(WDMカプラ)12を介して後方の1×2ポートの
マハツェンダー型波長多重合波器4を接続し、そのマハ
ツェンダー型波長多重合波器4の一方の入射ポートP2
に後方励起光源3を接続してある。また、両励起光源
(2、3)には半導体レーザダイオードモジュール(F
BG付きLDモジュール)を使用し、前方励起光源2と
後方励起光源3から異なる波長の励起光を発光するよう
にしてある。
(Embodiment 1) FIG. 1 shows a first embodiment of a bidirectional pumping optical amplifier according to the present invention. This is to excite an amplification optical fiber (EDF) from the front by the excitation light from the forward excitation light source 2 and from the rear by the excitation light from the rear excitation light source 3. A 1 × 2 port Mach-Zehnder multi-wavelength multiplexer 4 is connected via a coupler) 10 and one of the input ports P of the Mach-Zender multi-wavelength multi-wave detector 4 is connected.
1, a front pumping light source 2 is connected, and a rear 1 × 2 port Mach-Zehnder multi-wavelength multi-wave device 4 is connected to the rear of the EDF via a rear multiplexer (WDM coupler) 12, and the Mach-Zender type is connected. One input port P2 of the wavelength-multiplexed wave device 4
Is connected to the backward excitation light source 3. In addition, the semiconductor laser diode modules (F
(LD module with BG), and the excitation light of different wavelengths is emitted from the front excitation light source 2 and the rear excitation light source 3.

【0031】本発明に使用されるマハツェンダー型波長
多重合波器4は図9(a)に示す基本構造を有してお
り、ポート1→3、ポート1→4の透過強度I
13(λ)、I14(λ)は式1のように表される。但し、
α:分岐率、τ:2つの行路の行路差による遅延量、
Φ:初期位相。 I13(λ)=1−4α(1−α)sin2 (πcτ/λ+φ/2) I14(λ)=4α(1−α)sin2 (πcτ/λ+φ/2)・・・(式1) マハツェンダー型波長多重合波器4の透過強度スペクト
ルを図9(b)に示す。この式1及び図9(a、b)か
らわかるように、ポート1→3において透過率が最大と
なる波長ではポート1→4の透過率は−40dB以下で
あり、非常に高いアイソレーションを持つ。同様に1×
n個のポートからなり、ポートnは波長λnを高い透過
率で透過するように設計されたマハツェンダ型波長多重
合波器の特性は、ポート0から入射した波長λm(1≦
m≦n)の光はポートmにのみ結合し、他のポート1
(1≦m≦かつ1≠m)には結合しないので、ポートn
において波長λ1とλmは十分にアイソレーションがと
れることになる。
The Mach-Zehnder multi-wavelength wavelength-multiplexing device 4 used in the present invention has a basic structure shown in FIG. 9 (a), and has a transmission intensity I of ports 1 → 3 and ports 1 → 4.
13 (λ) and I 14 (λ) are expressed as in Equation 1. However,
α: branching rate, τ: delay amount due to a difference between two paths,
Φ: initial phase. I 13 (λ) = 1-4α ( 1-α) sin 2 (πcτ / λ + φ / 2) I 14 (λ) = 4α (1-α) sin 2 (πcτ / λ + φ / 2) ··· ( wherein 1 FIG. 9B shows a transmission intensity spectrum of the Mahachender-type wavelength-multiplexed wave device 4. As can be seen from Equation 1 and FIGS. 9 (a, b), at the wavelength where the transmittance is maximum at port 1 → 3, the transmittance of port 1 → 4 is −40 dB or less, and has very high isolation. . Similarly 1 ×
The characteristics of a Mahachender-type wavelength-multiplexed wave filter composed of n ports and designed to transmit a wavelength λn with a high transmittance at the port n have a wavelength λm (1 ≦ 1) incident from the port 0.
m ≦ n) is coupled only to port m and the other port 1
(1 ≦ m ≦ and 1 ≠ m), so port n
In this case, the wavelengths λ1 and λm can be sufficiently isolated.

【0032】図10に1×8ポートのマハツェンダ型波
長多重合波器を示し、図11にその波長多重合波器にお
けるポート0とポート1〜8の透過強度スペクトルを示
した。このグラフに示されるようにポート0−1間の透
過特性(図11の)はポート1に対する中心波長にお
いて透過率が最大であり、他のポートの中心波長に対し
ては−40dB以上のアイソレーションを持つ。同様に
ポート0−2間の透過特性(図11の)はポート2に
対する中心波長において透過率が最大であり、他のポー
トの中心波長に対しては−40dB以上のアイソレーシ
ョンを持ち、ポート0−3間の透過特性(図11の)
はポート3に対する中心波長において透過率が最大であ
り、他のポートの中心波長に対しては−40dB以上の
アイソレーションを持ち、ポート0−4間の透過特性
(図11の)はポート4に対する中心波長において透
過率が最大であり、他のポートの中心波長に対しては−
40dB以上のアイソレーションを持つことが確認され
る。
FIG. 10 shows a 1 × 8-port Mach-Zehnder type wavelength-multiplexed wave device, and FIG. 11 shows the transmission intensity spectrum of port 0 and ports 1 to 8 in the wavelength-wavelength-multiplexed wave device. As shown in this graph, the transmission characteristics between ports 0 and 1 (FIG. 11) have the maximum transmittance at the center wavelength for port 1 and an isolation of -40 dB or more for the center wavelength of the other ports. have. Similarly, the transmission characteristics between ports 0 and 2 (FIG. 11) are such that the transmittance is maximum at the center wavelength with respect to port 2 and the isolation is -40 dB or more with respect to the center wavelength of the other ports. -3 transmission characteristics (of FIG. 11)
Has the maximum transmittance at the center wavelength for port 3, has an isolation of −40 dB or more with respect to the center wavelength of the other ports, and has a transmission characteristic between ports 0 and 4 (FIG. 11) The transmittance is maximum at the center wavelength, and-for the center wavelength of other ports.
It is confirmed that it has an isolation of 40 dB or more.

【0033】従って、図1の1×2ポートのマハツェン
ダ型波長多重合波器4のポートP1に、同ポートの中心
波長λ1に対応する励起光源を接続してEDFを前方励
起し、同一特性の後方の1×2ポートのマハツェンダ型
波長多重合波器4のポートP2に同ポートの中心波長λ
2に対応する励起光源を接続して同EDFを後方励起し
た場合、前方励起光はEDFを励起し、残留励起光が後
方励起側のWDMカプラ12を通じて後方のマハツェン
ダ型波長多重合波器4に到達し、当該合波器4における
励起光源3の接続されていないポートから出射するの
で、後方の励起光源3に悪影響が及ばない。逆に、ED
Fを励起しなかった後方励起光の残留励起光は前方励起
側のWDMカプラ10を通じて前方のマハツェンダ型波
長多重合波器4に到達し、当該合波器4における励起光
源2の接続されていないポートから出射し、前方の励起
光源2に悪影響が及ばない。
Accordingly, the pump light source corresponding to the center wavelength λ1 of the port is connected to the port P1 of the 1 × 2 port Mahach-Zehnder multi-wavelength multi-wave device 4 in FIG. The center wavelength λ of the rear 1 × 2 port Maha-Zehnder multi-wavelength wavelength-multiplexed wave port 4 is connected to port P2 of the same port.
When the pumping light source corresponding to 2 is connected and the EDF is backward pumped, the forward pumping light pumps the EDF, and the residual pumping light passes through the WDM coupler 12 on the backward pumping side to the rear Mach-Zehnder type multi-wavelength optical device 4. Since the light arrives and exits from the port of the multiplexer 4 to which the excitation light source 3 is not connected, the rear excitation light source 3 is not adversely affected. Conversely, ED
The residual pumping light of the backward pumping light that does not pump F reaches the front Mach-Zehnder multi-wavelength multiplexer 4 through the WDM coupler 10 on the forward pumping side, and the pumping light source 2 in the multiplexer 4 is not connected. The light exits from the port and does not adversely affect the excitation light source 2 ahead.

【0034】(実施形態2)本発明の双方向励起光増幅
器の第2の実施形態を図2に基づいて説明する。図2に
示す光増幅器の基本構成は前記図1に示すものと同一で
ある。異なるのはマハツェンダ型波長多重合波器4を1
×4ポートとし、前方のマハツェンダ型波長多重合波器
4にはそのポートP1、P3に接続された前方励起光源
(FBG付きの半導体LD)2から同ポートP1、P3
に波長λ1、λ3の光を入力し、後方のマハツェンダ型
波長多重合波器4にはそのポートP2、P4に接続され
た後方励起光源(FBG付きの半導体LD)3から同ポ
ートP2、P4に波長λ2、λ4(すべての波長λ1、
λ2、λ3、λ4が異なる)の光を入力するようにした
ことである。この場合、前方のマハツェンダ型波長多重
合波器4のP1、P3に入力された光(λ1、λ3)は
当該合波器4によって合波され、後方のマハツェンダ型
波長多重合波器4のポートP2、P4に入力された光
(λ2、λ4)は当該合波器4によって合波され、それ
らは夫々、前方合波器(WDMカプラ)10、後方合波
器(WDMカプラ)12を介してEDFに注入されてE
DFを励起し、夫々の残留励起光は出射側と反対側のマ
ハツェンダー型波長多重合波器4の空きポートから出射
する。
(Embodiment 2) A second embodiment of the bidirectional pumping optical amplifier according to the present invention will be described with reference to FIG. The basic configuration of the optical amplifier shown in FIG. 2 is the same as that shown in FIG. The only difference is that the Mahachender type
× 4 ports, and a front pump light source (semiconductor LD with FBG) 2 connected to the ports P1 and P3 is connected to the front Mach-Zehnder type wavelength-multiplexed wave device 4 at the same ports P1 and P3.
Light of wavelengths λ1 and λ3 is input to the rear side, and a rear pumping light source (semiconductor LD with FBG) 3 connected to the ports P2 and P4 is applied to the rear Mach-Zehnder type wavelength-multiplexed wave modulator 4 to the ports P2 and P4. Wavelengths λ2, λ4 (all wavelengths λ1,
(λ2, λ3, and λ4 are different). In this case, the light (λ1, λ3) input to P1 and P3 of the front Mach-Zehnder multi-wavelength multiplexer 4 is multiplexed by the multiplexer 4 and the port of the rear Mach-Zehnder multi-wavelength multiplexer 4 is connected. The lights (λ2, λ4) input to P2 and P4 are multiplexed by the multiplexer 4, and are multiplexed via a front multiplexer (WDM coupler) 10 and a rear multiplexer (WDM coupler) 12, respectively. E injected into EDF
The DF is excited, and each residual excitation light is emitted from an empty port of the Mach-Zehnder multi-wavelength multiplexer 4 on the side opposite to the emission side.

【0035】(実施形態3)本発明の双方向励起光増幅
器の第3の実施形態を図3に基づいて説明する。図3に
示す光増幅器の基本構成は前記図2に示すものと同一で
ある。異なるのは夫々の励起光源2、3が発振する励起
光の波長λ1、λ2、λ3、λ4がλ1、λ3<λ2、
λ4の関係、即ち、前方励起側に短波長励起光を、後方
励起側に長波長励起光を配置したことである。これによ
って低雑音、高飽和出力特性が得られる。この場合も前
方励起光、後方励起光の夫々の残留励起光は出射側と反
対側のマハツェンダー型波長多重合波器4の空きポート
から出射する。夫々の励起光源2、3から発振される光
の波長λ1、λ2、λ3、λ4はλ1<λ2<λ3<λ
4の関係、即ち、前方励起波長と後方励起波長とが交互
に配置されるように設定することもできる。
(Embodiment 3) A third embodiment of a bidirectional pumping optical amplifier according to the present invention will be described with reference to FIG. The basic configuration of the optical amplifier shown in FIG. 3 is the same as that shown in FIG. The difference is that the wavelengths λ1, λ2, λ3, λ4 of the pump light oscillated by the respective pump light sources 2, 3 are λ1, λ3 <λ2,
The relationship of λ4, that is, the short-wavelength pumping light is arranged on the forward pumping side and the long-wavelength pumping light is arranged on the backward pumping side. Thereby, low noise and high saturation output characteristics can be obtained. Also in this case, each of the residual pump light of the forward pump light and the backward pump light is emitted from an empty port of the Mahachender-type multi-wavelength multiplexer 4 on the side opposite to the emission side. The wavelengths λ1, λ2, λ3, λ4 of the light oscillated from the respective excitation light sources 2, 3 are λ1 <λ2 <λ3 <λ
The relationship of 4, ie, the forward pumping wavelength and the backward pumping wavelength can be set so as to be alternately arranged.

【0036】(実施形態4)本発明の双方向励起光増幅
器の第4の実施形態を図4に基づいて説明する。図4に
示す光増幅器の基本構成も前記図2に示すものと同一で
ある。異なるのは前方のマハツェンダー型波長多重合波
器4のポートP2、P4から出射する残留励起光をそれ
らポートP2、P4に接続した受光素子21によって受
光し、これをモニタすることによってEDFの励起状態
を検知し、その検知結果に基づいて制御回路22を介し
て後方の励起光レベルを調整し、所定の増幅状態が保持
されるようにしたことである。
(Embodiment 4) A fourth embodiment of a bidirectional pumping optical amplifier according to the present invention will be described with reference to FIG. The basic configuration of the optical amplifier shown in FIG. 4 is the same as that shown in FIG. The difference is that the residual pump light emitted from the ports P2 and P4 of the front Mach-Zehnder type multi-wavelength optical device 4 is received by the light receiving element 21 connected to the ports P2 and P4 and monitored to monitor the excitation light. That is, the state is detected, and the level of the backward pumping light is adjusted via the control circuit 22 based on the detection result, so that a predetermined amplification state is maintained.

【0037】図4では前方のマハツェンダー型波長多重
合波器4のポートP2、P4から出射する残留励起光の
双方をモニタするようにしてあるが、ポートP2、P4
から出射する残留励起光のうちの何れか一方のみをモニ
タしてもよい。また、後方のマハツェンダー型波長多重
合波器4のポートP1、P3から出射する残留励起光を
モニタし、これに応じて前方の励起光レベルを調整する
こともできる。さらには、前後双方のマハツェンダー型
波長多重合波器4から出射する残留励起光をモニタし、
これに応じて互いの励起光レベルを調整することもでき
る。
In FIG. 4, both the residual pumping light emitted from the ports P2 and P4 of the front Mach-Zehnder type multi-wavelength wavelength monitor 4 are monitored.
May be monitored only one of the residual excitation light emitted from the. Further, it is also possible to monitor the residual pump light emitted from the ports P1 and P3 of the rear Mach-Zehnder type multi-wavelength optical device 4, and adjust the level of the forward pump light accordingly. Further, the residual pump light emitted from both the front and rear Mahachender type multi-wavelength wave filters 4 is monitored,
The levels of the excitation light can be adjusted accordingly.

【0040】[0040]

【発明の効果】本件出願の第1の双方向励起光増幅器
は、励起光源にFBG付きLDモジュールを使用し、励
起光源からの励起光をマハツェンダー型波長多重合波器
を通してEDFに注入し、更に、前方励起光源からの励
起光と後方励起光源からの励起光を異なる波長としたの
で次のような効果が有る。 (1)前方励起光と後方励起光の夫々の残留励起光が、
出射側と反対側のマハツェンダー型波長多重合波器の空
きポートから出射することになり、光アイソレータを挿
入しなくても励起光源の出力不安定化や破損を招く虞が
ない。 (2)光アイソレータが不要なので同光アイソレータの
挿入損失がない。 (3)FBG付き半導体モジュールから発生される励起
光を高密度に多重化して効率良く増幅光ファイバの励起
に用いることができ、光増幅器を高出力化することがで
きる。
The first bidirectional pumping light amplifier of the present application uses an LD module with an FBG as a pumping light source, injects pumping light from the pumping light source into the EDF through a Mach-Zehnder type wavelength-multiplexed wave device, Further, since the excitation light from the forward excitation light source and the excitation light from the rear excitation light source have different wavelengths, the following effects are obtained. (1) Each of the residual pump light of the forward pump light and the backward pump light is
Since the light is emitted from an empty port of the Mach-Zehnder multi-wavelength duplexer on the side opposite to the emission side, the output of the pump light source is not unstable or damaged without inserting an optical isolator. (2) Since an optical isolator is unnecessary, there is no insertion loss of the optical isolator. (3) Pump light generated from a semiconductor module with an FBG can be multiplexed at high density and used efficiently for pumping an amplification optical fiber, and the output of an optical amplifier can be increased.

【0041】本件出願の第2、第3の双方向励起光増幅
器は、前後方の励起光源を2以上とし、夫々の励起光源
から発光されるの励起光を全て異なる波長としたので、
上記効果に加えて、異なる波長の励起光をマハツェンダ
ー型波長多重合波器によって波長多重化して、より高レ
ベルの励起光を得ることができ、光増幅器からの出力を
高出力化することができるという効果もある。
In the second and third bidirectional pumping light amplifiers of the present application, the front and rear pumping light sources are two or more, and the pumping lights emitted from each pumping light source are all different wavelengths.
In addition to the above effects, pump lights of different wavelengths can be wavelength-multiplexed by a Mach-Zehnder type multi-wavelength multiplexer to obtain a higher-level pump light, and the output from the optical amplifier can be increased. There is also an effect that can be done.

【0042】本件出願の第4の双方向励起光増幅器は、
前方励起光源の発光素子が発振する光の最長の波長が後
方励起光源の発光素子が発振する光の最短の波長よりも
短波長であるため、上記効果に加えて、高出力で低雑音
の光増幅器を実現することができる、という効果もあ
る。
The fourth bidirectional pumping optical amplifier of the present application is:
Since the longest wavelength of the light oscillated by the light emitting element of the forward pumping light source is shorter than the shortest wavelength of the light oscillating by the light emitting element of the rear pumping light source, in addition to the above-described effects, high-output, low-noise light There is also an effect that an amplifier can be realized.

【0043】本件出願の第5、第6の双方向励起光増幅
器はマハツェンダー型波長多重合波器とFBG付き半導
体モジュールとがこの種の光増幅器において最も一般的
に使用されていいる1480nm又は980nm付近の
励起帯域に対応しているため、上記効果に加えて、利用
範囲が広いという効果もある。
In the fifth and sixth bidirectional pumping optical amplifiers of the present application, a Mach-Zehnder type multi-wavelength optical multiplexer and a semiconductor module with an FBG are used at 1480 nm or 980 nm which are most commonly used in this type of optical amplifier. Since it corresponds to the nearby excitation band, in addition to the above-mentioned effects, there is also an effect that the use range is wide.

【0044】本件出願の第7の双方向励起光増幅器は、
マハツェンダー型波長多重合波器の空きポートから出射
する残留励起光のレベルをモニタ可能としたので、上記
効果に加えて、光ファイバ増幅器の増幅状態その他の必
要な情報を得ることができる、という効果もある。
The seventh bidirectional pumping optical amplifier of the present application is:
Since the level of the residual pump light emitted from the empty port of the Mahzender-type multi-wavelength multi-wavelength device can be monitored, in addition to the above effects, it is possible to obtain the amplification state of the optical fiber amplifier and other necessary information. There is also an effect.

【0045】本件出願の第8の双方向励起光増幅器は、
マハツェンダー型波長多重合波器の空きポートから出射
する残留励起光のレベルをモニタし、その結果に基づい
て前方励起光源及び後方励起光源の双方又は一方のレベ
ルを調節することによって、光ファイバ増幅器の増幅レ
ベルを制御するので、上記効果に加えて、光ファイバ増
幅器の増幅レベルを常に所定レベルに保持することがで
きる、という効果もある。
The eighth bidirectional pumping optical amplifier of the present application is:
By monitoring the level of the residual pump light emitted from an empty port of the Mach-Zehnder multi-wavelength optical multiplexer, and adjusting the level of the forward pump light source and / or the backward pump light source based on the result, an optical fiber amplifier is provided. Is controlled, so that in addition to the above effect, there is also an effect that the amplification level of the optical fiber amplifier can be always maintained at a predetermined level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の双方向励起光増幅器の第1の実施形態
を示す説明図。
FIG. 1 is an explanatory diagram showing a first embodiment of a bidirectional pumping optical amplifier according to the present invention.

【図2】本発明の双方向励起光増幅器の第2の実施形態
を示す説明図。
FIG. 2 is an explanatory diagram showing a second embodiment of the bidirectional pumping optical amplifier of the present invention.

【図3】本発明の双方向励起光増幅器の第3の実施形態
を示す説明図。
FIG. 3 is an explanatory view showing a third embodiment of the bidirectional pumping optical amplifier according to the present invention.

【図4】本発明の双方向励起光増幅器の第4の実施形態
を示す説明図。
FIG. 4 is an explanatory view showing a fourth embodiment of the bidirectional pumping optical amplifier according to the present invention.

【図5】従来の双方向励起光増幅器の一例を示す説明
図。
FIG. 5 is an explanatory diagram showing an example of a conventional bidirectional pumping optical amplifier.

【図6】従来の双方向励起光増幅器の他例を示す説明
図。
FIG. 6 is an explanatory diagram showing another example of a conventional bidirectional pumping optical amplifier.

【図7】FBG付きLDモジュールの基本構造を示す説
明図。
FIG. 7 is an explanatory diagram showing a basic structure of an LD module with an FBG.

【図8】FBG付きLDモジュールと通常のLDモジュ
ールとの出力スペクトルを比較したグラフ
FIG. 8 is a graph comparing output spectra of an LD module with FBG and a normal LD module.

【図9】(a)はマハツェンダー型波長多重合波器の基
本構造を示す説明図、(b)は(a)に示す合波器の透
過強度スペクトルを示すグラフ。
FIG. 9A is an explanatory diagram showing a basic structure of a Mach-Zehnder multi-wavelength multiplexer, and FIG. 9B is a graph showing a transmission intensity spectrum of the multiplexer shown in FIG.

【図10】1×8ポートのマハツェンダー型波長多重合
波器の基本構造を示す説明図。
FIG. 10 is an explanatory diagram showing a basic structure of a 1 × 8-port Mahachender type wavelength-multiplexed wave device.

【図11】図10に示す合波器の透過強度スペクトルを
示すグラフ。
11 is a graph showing a transmission intensity spectrum of the multiplexer shown in FIG.

【符号の説明】[Explanation of symbols]

2 前方励起光源 3 後方励起光源 4 マハツェンダー型波長多重合波器 2 forward pumping light source 3 backward pumping light source 4 Mahachender wavelength multi-wave device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F072 AB09 AK06 HH02 HH03 JJ04 KK07 PP07 RR01 YY17 5K002 AA06 BA02 BA05 BA13 CA10 CA13 DA02 DA04 EA05 FA01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F072 AB09 AK06 HH02 HH03 JJ04 KK07 PP07 RR01 YY17 5K002 AA06 BA02 BA05 BA13 CA10 CA13 DA02 DA04 EA05 FA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】増幅光ファイバ(EDF)を前方励起光源
(2)からの励起光により前方から励起し、後方励起光
源(3)からの励起光により後方から励起する双方向励
起光増幅器において、両励起光源(2、3)を半導体レ
ーザダイオードモジュール(FBG付きLDモジュー
ル)とし、夫々の励起光源(2、3)から発生される励
起光をマハツェンダー型波長多重合波器(4)を通して
増幅光ファイバ(EDF)に供給し、前方励起光源
(2)と後方励起光源(3)から異なる波長の励起光が
発光されることを特徴とする双方向励起光増幅器。
A bidirectional pump light amplifier for pumping an amplification optical fiber (EDF) from the front with pump light from a forward pump light source (2) and pumping from the back with pump light from a backward pump light source (3), The two pumping light sources (2, 3) are semiconductor laser diode modules (LD modules with FBG), and the pumping light generated from each of the pumping light sources (2, 3) is amplified through a Mach-Zehnder type wavelength-multiplexed wave device (4). A bidirectional pump light amplifier, which supplies an optical fiber (EDF) and emits pump light having different wavelengths from a front pump light source (2) and a rear pump light source (3).
【請求項2】増幅光ファイバ(EDF)を前方励起光源
(2)からの励起光により前方から励起し、後方励起光
源(3)からの励起光により後方から励起する双方向励
起光増幅器において、両励起光源(2、3)を半導体レ
ーザダイオードモジュール(FBG付きLDモジュー
ル)とし、夫々の励起光源(2、3)から発生される励
起光をマハツェンダー型波長多重合波器(4)を通して
増幅光ファイバ(EDF)に供給し、前方励起光源
(2)と後方励起光源(3)の夫々を2以上設け、それ
ら4以上の全ての励起光源(2、3)から異なる波長の
励起光が発光されることを特徴とする双方向励起光増幅
器。
2. A bidirectional pump light amplifier for pumping an amplification optical fiber (EDF) from the front with pump light from a forward pump light source (2) and pumping from behind with pump light from a backward pump light source (3). The two pumping light sources (2, 3) are semiconductor laser diode modules (LD modules with FBG), and the pumping light generated from each of the pumping light sources (2, 3) is amplified through a Mach-Zehnder type wavelength-multiplexed wave device (4). An optical fiber (EDF) is supplied, and two or more of each of the forward pumping light source (2) and the backward pumping light source (3) are provided, and pumping lights of different wavelengths are emitted from all of the four or more pumping light sources (2, 3). And a bidirectional pumping optical amplifier.
【請求項3】増幅光ファイバ(EDF)を前方励起光源
(2)からの励起光により前方から励起し、後方励起光
源(3)からの励起光により後方から励起する双方向励
起光増幅器において、両励起光源(2、3)を半導体レ
ーザダイオードモジュール(FBG付きLDモジュー
ル)とし、夫々の励起光源(2、3)から発生される励
起光をマハツェンダー型波長多重合波器(4)を通して
増幅光ファイバ(EDF)に供給し、前方励起光源
(2)と後方励起光源(3)の夫々を2以上設け、それ
ら4以上の励起光源(2、3)から発光される励起光の
波長が全て異なり、且つ前方励起光と後方励起光が交互
に配列される波長であることを特徴とする双方向励起光
増幅器。
3. A bidirectional pumping light amplifier for pumping an amplification optical fiber (EDF) from the front with pumping light from a forward pumping light source (2) and pumping from behind with pumping light from a backward pumping light source (3), The two pumping light sources (2, 3) are semiconductor laser diode modules (LD modules with FBG), and the pumping light generated from each of the pumping light sources (2, 3) is amplified through a Mach-Zehnder type wavelength-multiplexed wave device (4). An optical fiber (EDF) is supplied, and two or more of each of the forward pumping light source (2) and the backward pumping light source (3) are provided, and the wavelengths of the pumping light emitted from the four or more pumping light sources (2, 3) are all A bidirectional pumping light amplifier, which is different in wavelength and has a wavelength in which forward pumping light and backward pumping light are alternately arranged.
【請求項4】増幅光ファイバ(EDF)を前方励起光源
(2)からの励起光により前方から励起し、後方励起光
源(3)からの励起光により後方から励起する双方向励
起光増幅器において、両励起光源(2、3)を半導体レ
ーザダイオードモジュール(FBG付きLDモジュー
ル)とし、夫々の励起光源(2、3)から発生される励
起光をマハツェンダー型波長多重合波器(4)を通して
増幅光ファイバ(EDF)に供給し、前方励起光源
(2)と後方励起光源(3)を夫々2以上設け、それら
4以上励起光源(2、3)から発光される励起光の波長
が全て異なり、且つ前方励起光の最長の波長が後方励起
光の最短の波長より短いことを特徴とする双方向励起光
増幅器。
4. A bidirectional pumping light amplifier for pumping an amplification optical fiber (EDF) from the front with pumping light from a forward pumping light source (2) and pumping from behind with pumping light from a backward pumping light source (3). The two pumping light sources (2, 3) are semiconductor laser diode modules (LD modules with FBG), and the pumping light generated from each of the pumping light sources (2, 3) is amplified through a Mach-Zehnder type wavelength-multiplexed wave device (4). An optical fiber (EDF) is supplied, and two or more forward pumping light sources (2) and two or more backward pumping light sources (3) are provided. The wavelengths of the pumping light emitted from the four or more pumping light sources (2, 3) are all different. A bidirectional pumping light amplifier, wherein the longest wavelength of the forward pumping light is shorter than the shortest wavelength of the backward pumping light.
【請求項5】請求項1乃至請求項4のいずれかに記載の
双方向励起光増幅器において、マハツェンダー型波長多
重合波器(4)と半導体レーザダイオードモジュール
(FBG付きLDモジュール)とが1480nm付近の励
起帯域に対応するものであることを特徴とする双方向励
起光増幅器。
5. The bidirectional pumping optical amplifier according to claim 1, wherein the wavelength-multiplexed Mach-Zehnder multi-wave device (4) and the semiconductor laser diode module (LD module with FBG) have a wavelength of 1480 nm. A bidirectional pumping optical amplifier corresponding to a nearby pumping band.
【請求項6】請求項1乃至請求項4のいずれかに記載の
双方向励起光増幅器において、マハツェンダー型波長多
重合波器(4)と半導体レーザダイオードモジュール
(FBG付きLDモジュール)とが980nm付近の励起
帯域に対応するものであることを特徴とする双方向励起
光増幅器。
6. A bidirectional pumping optical amplifier according to claim 1, wherein the wavelength-multiplexed Maha-Zehnder multi-wavelength optical device and the semiconductor laser diode module (LD module with FBG) have a wavelength of 980 nm. A bidirectional pumping optical amplifier corresponding to a nearby pumping band.
【請求項7】請求項1乃至請求項6のいずれかに記載の
双方向励起光増幅器において、マハツェンダー型波長多
重合波器(4)の空きポートから出射する残留励起光の
レベルをモニタ可能としたことを特徴とする双方向励起
光増幅器。
7. The bidirectional pumping optical amplifier according to claim 1, wherein the level of the residual pumping light emitted from an empty port of the Mach-Zehnder multi-wavelength multiplexer (4) can be monitored. And a bidirectional pumping optical amplifier.
【請求項8】請求項1乃至請求項6のいずれかに記載の
双方向励起光増幅器において、マハツェンダー型波長多
重合波器(4)の空きポートから出射する残留励起光の
レベルをモニタし、そのモニタ結果に基づいて前方励起
光源(2)及び後方励起光源(3)の双方又は一方のレ
ベルを調節して、EDFの増幅レベルを制御することを
特徴とする双方向励起光増幅器。
8. The bidirectional pumping optical amplifier according to claim 1, wherein the level of the residual pumping light emitted from an empty port of the Mahachender wavelength multiplexing wave monitor is monitored. A bidirectional pumping optical amplifier characterized in that the level of one or both of the front pumping light source (2) and the rear pumping light source (3) is adjusted based on the monitoring result to control the amplification level of the EDF.
JP11209710A 1999-07-23 1999-07-23 Bilateral pumping light amplifier Pending JP2001036169A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11209710A JP2001036169A (en) 1999-07-23 1999-07-23 Bilateral pumping light amplifier
FR0009594A FR2796766A1 (en) 1999-07-23 2000-07-21 Optical bi-directional amplifier for fibre optics has two pumping sources with output applied to fibre optic via multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11209710A JP2001036169A (en) 1999-07-23 1999-07-23 Bilateral pumping light amplifier

Publications (1)

Publication Number Publication Date
JP2001036169A true JP2001036169A (en) 2001-02-09

Family

ID=16577373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11209710A Pending JP2001036169A (en) 1999-07-23 1999-07-23 Bilateral pumping light amplifier

Country Status (2)

Country Link
JP (1) JP2001036169A (en)
FR (1) FR2796766A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318013A (en) * 2006-05-29 2007-12-06 Sumitomo Electric Ind Ltd Optical amplifier, and optical transmission system
US7667889B2 (en) * 2007-02-21 2010-02-23 Pyrophotonics Lasers Inc. Methods and systems for gain control in pulsed optical amplifiers
US8964801B2 (en) 2009-06-11 2015-02-24 Esi-Pyrophotonics Lasers, Inc. Method and system for stable and tunable high power pulsed laser system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004030914D1 (en) 2003-07-14 2011-02-17 Photonicsystems Inc BIDIRECTIONAL SIGNAL INTERFACE
US7809216B2 (en) 2007-03-16 2010-10-05 Photonic Systems, Inc. Bi-directional signal interface and apparatus using same
US8755750B2 (en) 2010-05-22 2014-06-17 Photonic Systems, Inc. Wide-bandwidth signal canceller
US9935680B2 (en) 2012-07-30 2018-04-03 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US11539392B2 (en) 2012-07-30 2022-12-27 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US10374656B2 (en) 2012-07-30 2019-08-06 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US9209840B2 (en) 2012-07-30 2015-12-08 Photonic Systems, Inc. Same-aperture any-frequency simultaneous transmit and receive communication system
US10158432B2 (en) 2015-10-22 2018-12-18 Photonic Systems, Inc. RF signal separation and suppression system and method
US10623986B2 (en) 2015-10-22 2020-04-14 Photonic Systems, Inc. RF signal separation and suppression system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430400A (en) * 1990-05-25 1992-02-03 Mitsubishi Electric Corp Method for testing semiconductor memory device
US5287216A (en) * 1992-12-14 1994-02-15 Gte Laboratories Incorporated Fiber amplifier with multiple pumps
GB2293684B (en) * 1994-09-27 1998-10-14 Northern Telecom Ltd An interfermetric multiplexer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318013A (en) * 2006-05-29 2007-12-06 Sumitomo Electric Ind Ltd Optical amplifier, and optical transmission system
US7667889B2 (en) * 2007-02-21 2010-02-23 Pyrophotonics Lasers Inc. Methods and systems for gain control in pulsed optical amplifiers
US8964801B2 (en) 2009-06-11 2015-02-24 Esi-Pyrophotonics Lasers, Inc. Method and system for stable and tunable high power pulsed laser system

Also Published As

Publication number Publication date
FR2796766A1 (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US6996138B2 (en) Fabry-Perot laser apparatus mode-locked to multi-frequency lasing light source and optical transmission apparatus using the same
US7738165B2 (en) Amplified spontaneous emission reflector-based gain-clamped fiber amplifier
JP3250428B2 (en) Optical amplifier
US6529317B2 (en) L-band erbium-doped fiber amplifier pumped by 1530 nm-band pump
JP2001036169A (en) Bilateral pumping light amplifier
CA2492810C (en) Multi-stage raman amplifier
JP2003243755A (en) Long-band erbium doped fiber amplifier
JP3327148B2 (en) Optical amplifier and laser light generator
US6212000B1 (en) Two-way optical amplifier module
EP1246324B1 (en) White light source
US6901085B2 (en) Multi-wavelength ring laser source
US6917464B2 (en) Unpolarized multi-lambda source
US7031048B2 (en) Hybrid broadband light source
JP3570927B2 (en) Optical fiber communication system using Raman amplification.
US7385753B2 (en) Hybrid optical amplifier using gain-clamped semiconductor optical amplifier enabling raman amplification
EP1030415A2 (en) Optical fiber amplifier and method of amplifying an optical signal
JP2001230480A (en) Excitation light source using raman amplification and optical fiber communication system
JP2004200690A (en) Thulium-doped optical fiber amplifier
JP2002094152A (en) Optical amplification
US20020085803A1 (en) Optical amplifier
JP3273911B2 (en) Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
JPH11186639A (en) Pumping light generator
KR100539937B1 (en) Dual-port broadband light source
JP4000732B2 (en) Optical amplifier
JPH08148744A (en) Light source