JP2001036142A - Light source for optical communication system and optical communication system - Google Patents
Light source for optical communication system and optical communication systemInfo
- Publication number
- JP2001036142A JP2001036142A JP20303499A JP20303499A JP2001036142A JP 2001036142 A JP2001036142 A JP 2001036142A JP 20303499 A JP20303499 A JP 20303499A JP 20303499 A JP20303499 A JP 20303499A JP 2001036142 A JP2001036142 A JP 2001036142A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- range
- communication system
- light source
- optical signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 161
- 230000005540 biological transmission Effects 0.000 claims abstract description 101
- 239000013308 plastic optical fiber Substances 0.000 claims description 17
- 239000013307 optical fiber Substances 0.000 abstract description 20
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Landscapes
- Led Devices (AREA)
- Optical Communication System (AREA)
Abstract
(57)【要約】
【課題】 車両のように所定範囲内で温度が任意に変化
する使用環境下においても、光伝送路における光信号の
伝送損失特性の影響を抑制して大容量高密度の情報伝送
を高い精度で実現させることができる光通信システム
と、そのような光通信システムに用いて好適な光源を提
供すること。
【解決手段】 光送信モジュール3から光受信モジュー
ル5への光信号の伝送に用いられる光ファイバ7の伝送
損失特性を考慮して、光通信システム1が搭載される車
両の温度環境である−40゜C〜+85゜Cの範囲にお
いて、光ファイバ7の伝送損失の変動幅が最大で12d
B/km(±6dB/km)の範囲内に収まるような、
634.4nm〜654.1nmの範囲内でしか中心発
光波長が変動しない青色LED35を、光送信モジュー
ル3の発光光源として用いる構成とした。
(57) [Problem] To suppress the influence of the transmission loss characteristic of an optical signal in an optical transmission line even in a use environment where the temperature changes arbitrarily within a predetermined range, such as a vehicle, to achieve a large capacity and high density. An optical communication system capable of realizing information transmission with high accuracy, and a light source suitable for such an optical communication system. SOLUTION: In consideration of the transmission loss characteristic of an optical fiber 7 used for transmitting an optical signal from an optical transmission module 3 to an optical reception module 5, the temperature environment of the vehicle in which the optical communication system 1 is mounted is -40. In the range of ゜ C to + 85 ° C, the fluctuation range of the transmission loss of the optical fiber 7 is 12d at the maximum.
B / km (± 6 dB / km)
The blue LED 35 whose center emission wavelength fluctuates only within the range of 634.4 nm to 654.1 nm is used as the emission light source of the light transmission module 3.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、伝送情報に応じて
変調された光信号を光源から光伝送路に向けて出力する
光通信システム及びこの光通信システムで用いて好適な
光源に係り、特に、所定範囲内で温度が任意に変化する
使用環境下において用いるのに適した光通信システム及
び光通信システム用光源に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication system for outputting an optical signal modulated according to transmission information from a light source toward an optical transmission line, and a light source suitable for use in the optical communication system. The present invention relates to an optical communication system and a light source for an optical communication system which are suitable for use in an environment where the temperature changes arbitrarily within a predetermined range.
【0002】[0002]
【従来の技術】近年、情報伝送の分野では、その伝送情
報の大容量化や高密度化に対応して、在来の電気信号に
変えて光信号を用いる光通信システムが多用され始めて
おり、負荷駆動のためのスイッチ情報等を伝送する車内
LANについても、光通信システムの導入が検討、一部
実施されている。2. Description of the Related Art In recent years, in the field of information transmission, an optical communication system using an optical signal instead of a conventional electric signal has begun to be widely used in response to an increase in the capacity and density of the transmitted information. Regarding an in-vehicle LAN that transmits switch information and the like for driving a load, introduction of an optical communication system has been studied and partially implemented.
【0003】ところで、車両のように光伝送路を敷設す
るスペースに制約がある場合には、可撓性を有し敷設の
自由度が高いプラスチック光ファイバが多用されること
になろうが、このプラスチック光ファイバには一般的
に、光信号の光源として一般的に用いられる赤色LED
の発光波長領域において、波長の変化により伝送損失量
が大きく変動するという特性がある。In the case where the space for laying the optical transmission line is limited as in a vehicle, a plastic optical fiber which is flexible and has a high degree of freedom in laying is likely to be used. Red LED commonly used as a light source for optical signals in plastic optical fibers
In the light emission wavelength region, there is a characteristic that the amount of transmission loss greatly changes due to a change in wavelength.
【0004】[0004]
【発明が解決しようとする課題】そのため、車両のよう
に外気温や車載物の放射熱により温度が変化する環境の
下では、温度補償回路等の手当てがない限り、上述した
ような赤色LEDを光信号の光源としプラスチック光フ
ァイバを光伝送路とする光通信システムは運用できな
い。Therefore, in an environment where the temperature changes due to the outside temperature or the radiant heat of a vehicle-mounted object such as a vehicle, the above-described red LED is used unless a temperature compensation circuit or the like is provided. An optical communication system using a plastic optical fiber as a light source as an optical signal light source cannot be operated.
【0005】換言すると、光通信システムを構築するに
当たっては、使用環境を考慮に入れ、光伝送路との相性
を考えた上で、光信号の光源の仕様を設定しないと、大
容量高密度の情報伝送を安定した精度で実現することが
できなくなってしまう。[0005] In other words, when constructing an optical communication system, if the specifications of the light source of the optical signal are not set in consideration of the use environment and the compatibility with the optical transmission line, a large-capacity, high-density optical system is required. Information transmission cannot be realized with stable accuracy.
【0006】本発明は前記事情に鑑みなされたもので、
本発明の目的は、車両のように所定範囲内で温度が任意
に変化する使用環境下においても、光伝送路における光
信号の伝送損失特性の影響を抑制して大容量高密度の情
報伝送を高い精度で実現させることができる光通信シス
テムと、そのような光通信システムに用いて好適な光源
を提供することにある。The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a large-capacity, high-density information transmission by suppressing the influence of the transmission loss characteristic of an optical signal in an optical transmission line even in a usage environment in which the temperature changes arbitrarily within a predetermined range such as a vehicle. An object of the present invention is to provide an optical communication system that can be realized with high accuracy and a light source suitable for such an optical communication system.
【0007】[0007]
【課題を解決するための手段】前記目的を達成する請求
項1及び請求項2に各々記載した本発明は光通信システ
ム用光源に関するものであり、請求項3に記載した本発
明は光通信システム関するものである。The present invention described in each of claims 1 and 2 for achieving the above-mentioned object relates to a light source for an optical communication system, and the present invention described in claim 3 relates to an optical communication system. It is about.
【0008】そして、請求項1に記載した本発明の光通
信システム用光源は、所定範囲内で温度が任意に変化す
る使用環境下で用いられる光通信システムにおいて、伝
送情報に応じて変調された光信号を光伝送路に向けて出
力するために用いられる光源であって、前記所定範囲内
での温度変化に応じた前記光信号の波長の変動を所定波
長範囲内とする発光素子によって構成されており、前記
所定波長範囲が、前記光信号の波長の変動に応じた前記
光伝送路における前記光信号の伝送損失の変動幅が所定
の許容値以下となる範囲に設定されていることを特徴と
する。The light source for an optical communication system according to the first aspect of the present invention is modulated in accordance with transmission information in an optical communication system used in a usage environment in which the temperature changes arbitrarily within a predetermined range. A light source used to output an optical signal toward an optical transmission line, the light source being configured by a light emitting element that changes a wavelength of the optical signal within a predetermined wavelength range according to a temperature change within the predetermined range. Wherein the predetermined wavelength range is set to a range in which the fluctuation range of the transmission loss of the optical signal in the optical transmission line according to the fluctuation of the wavelength of the optical signal is equal to or less than a predetermined allowable value. And
【0009】また、請求項2に記載した本発明の光通信
システム用光源は、請求項1に記載した本発明の光通信
システム用光源において、前記光伝送路が前記所定範囲
内の温度における所要の耐熱性を有するプラスチック光
ファイバにより構成されており、前記所定波長範囲が、
前記プラスチック光ファイバにおける前記光信号の伝送
損失特性に応じて定められるものとした。According to a second aspect of the present invention, there is provided the light source for an optical communication system according to the first aspect of the present invention, wherein the optical transmission line is required to be at a temperature within the predetermined range. It is constituted by a plastic optical fiber having heat resistance of the predetermined wavelength range,
It is determined according to the transmission loss characteristic of the optical signal in the plastic optical fiber.
【0010】さらに、請求項3に記載した本発明の光通
信システムは、伝送情報に応じて変調された光信号を出
力するために用いられる光源と、該光源から出力された
光信号を伝送する光伝送路とを有し、所定範囲内で温度
が任意に変化する使用環境下で用いられる光通信システ
ムにおいて、前記光源は、前記所定範囲内での温度変化
に応じた前記光信号の波長の変動を所定波長範囲内とす
る発光素子によって構成されており、前記所定波長範囲
は、前記光信号の波長の変動に応じた前記光伝送路にお
ける前記光信号の伝送損失の変動幅が所定の許容値以下
となる範囲に設定されていることを特徴とする。Further, according to a third aspect of the present invention, an optical communication system according to the present invention transmits a light source used to output an optical signal modulated according to transmission information, and transmits the optical signal output from the light source. In an optical communication system having an optical transmission path and used in a usage environment in which the temperature is arbitrarily changed within a predetermined range, the light source has a wavelength of the optical signal corresponding to a temperature change within the predetermined range. The light-emitting element has a variation within a predetermined wavelength range, and the predetermined wavelength range is such that a variation width of the transmission loss of the optical signal in the optical transmission line according to the variation of the wavelength of the optical signal has a predetermined tolerance. It is characterized in that it is set in a range below the value.
【0011】請求項1に記載した本発明の光通信システ
ム用光源によれば、所定範囲内での温度変化に応じて、
光源を構成する発光素子の出力する光信号の波長が所定
波長範囲内で変動すると、その変動幅が、光通信システ
ムの光伝送路における光信号の伝送損失変動幅を所定の
許容値以下とする範囲に収まることになる。According to the light source for an optical communication system of the present invention described in claim 1, according to a temperature change within a predetermined range,
When the wavelength of the optical signal output from the light emitting element constituting the light source fluctuates within a predetermined wavelength range, the fluctuation width makes the transmission loss fluctuation width of the optical signal in the optical transmission line of the optical communication system equal to or less than a predetermined allowable value. It will fall within the range.
【0012】また、請求項2に記載した本発明の光通信
システム用光源によれば、請求項1に記載した本発明の
光通信システム用光源において、所要の耐熱性を有する
プラスチック光ファイバにより光伝送路を構成する場
合、このプラスチック光ファイバにおける光信号の伝送
損失特性に応じて、所定範囲内での温度変化に伴い発光
素子の出力する光信号の波長が変動する範囲を定める
と、プラスチック光ファイバで実際に起こる光信号の伝
送損失変動幅が、所定の許容値以下に収まることにな
る。Further, according to the light source for an optical communication system of the present invention described in claim 2, in the light source for an optical communication system of the present invention described in claim 1, the light is transmitted through a plastic optical fiber having a required heat resistance. When configuring a transmission line, if the range in which the wavelength of the optical signal output from the light emitting element fluctuates with a temperature change within a predetermined range is determined according to the transmission loss characteristic of the optical signal in the plastic optical fiber, the plastic optical fiber The transmission loss fluctuation range of the optical signal actually occurring in the fiber falls below a predetermined allowable value.
【0013】さらに、請求項3に記載した本発明の光通
信システムによれば、所定範囲内での温度変化に応じ
て、光源を構成する発光素子の出力する光信号の波長が
所定波長範囲内で変動すると、光伝送路での光信号の伝
送損失変動幅が所定の許容値以下に収まることになる。Further, according to the optical communication system of the present invention, the wavelength of the optical signal output from the light emitting element constituting the light source falls within the predetermined wavelength range according to the temperature change within the predetermined range. , The fluctuation range of the transmission loss of the optical signal in the optical transmission line falls below a predetermined allowable value.
【0014】[0014]
【発明の実施の形態】以下、本発明の光通信システムを
光通信システム用光源と共に、図面を参照して説明す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical communication system according to the present invention, together with a light source for an optical communication system, will be described below with reference to the drawings.
【0015】図1は本発明の一実施形態に係る光通信シ
ステムのブロック図であり、図1中引用符号1で示す本
実施形態の光通信システムは、不図示の車両に搭載され
て車内の情報伝送に用いられるもので、複数のノード1
a,1b,1c,1dを備えて構成されており、各ノー
ド1a,1b,1c,1dの光送信モジュール3と、他
の各ノード1a,1b,1c,1dの光受信モジュール
5とを、光信号伝送用の光ファイバ7により接続するこ
とで、光ネットワークを構成している。FIG. 1 is a block diagram of an optical communication system according to an embodiment of the present invention. The optical communication system of this embodiment, which is denoted by reference numeral 1 in FIG. Used for information transmission, multiple nodes 1
a, 1b, 1c, 1d. The optical transmission module 3 of each node 1a, 1b, 1c, 1d and the optical reception module 5 of each of the other nodes 1a, 1b, 1c, 1d are An optical network is formed by connecting optical fibers 7 for transmitting optical signals.
【0016】図2は図1中の或るノード1a,1b,1
c,1dの光送信モジュール3と、他の或るノード1
a,1b,1c,1dの光受信モジュール5との接続関
係を一部ブロックにて示す説明図であり、図2に示すよ
うに、各光ファイバ7は、光送信モジュール3に光学的
に結合される光コネクタ71と、光受信モジュール5に
光学的に結合される光コネクタ73とを、両端に有して
いる。FIG. 2 shows a certain node 1a, 1b, 1 in FIG.
c, 1d optical transmission module 3 and some other node 1
FIG. 3 is an explanatory diagram showing, in partial blocks, a connection relationship between a, 1b, 1c, and 1d with the optical receiving module 5, and as shown in FIG. 2, each optical fiber 7 is optically coupled to the optical transmitting module 3. An optical connector 71 and an optical connector 73 optically coupled to the optical receiving module 5 are provided at both ends.
【0017】前記光送信モジュール3は、ノード1a,
1b,1c,1dの不図示のコントローラで発生した送
信信号がデジタル入力される信号入力端子31と、この
信号入力端子31に入力されたデジタル送信信号によっ
て駆動信号を変調するドライブ回路33と、このドライ
ブ回路33からの変調された駆動信号により発光駆動さ
れて光信号を出力する青色LED35とを有している。The optical transmission module 3 includes nodes 1a,
A signal input terminal 31 to which a transmission signal generated by a controller (not shown) of 1b, 1c, 1d is digitally input, a drive circuit 33 for modulating a drive signal by the digital transmission signal input to the signal input terminal 31, A blue LED 35 that is driven to emit light by a modulated drive signal from the drive circuit 33 and outputs an optical signal.
【0018】また、前記光受信モジュール5は、光ファ
イバ7の光コネクタ73を介して入力される光送信モジ
ュール3からの光信号を受光するピンフォトダイオード
51と、このピンフォトダイオード51により光電変換
された受信信号を増幅する増幅回路53と、この増幅回
路53で増幅された受信信号をデジタル変換するA/D
変換回路55と、このA/D変換回路55でデジタル変
換された受信信号が、デジタル受信信号としてノード1
a,1b,1c,1dの不図示のコントローラに対して
出力される信号出力端子57とを有している。The optical receiving module 5 includes a pin photodiode 51 for receiving an optical signal from the optical transmitting module 3 input through the optical connector 73 of the optical fiber 7, and the pin photodiode 51 performs photoelectric conversion. Amplifying circuit 53 for amplifying the amplified reception signal, and an A / D for digitally converting the reception signal amplified by the amplification circuit 53
A conversion circuit 55 and a reception signal digitally converted by the A / D conversion circuit 55 are used as a digital reception signal at the node 1.
a, 1b, 1c, and 1d, and a signal output terminal 57 that is output to a controller (not shown).
【0019】前記光ファイバ7は、本実施形態では、P
MMA(ポリメチルメタクリレート)を材料とするプラ
スチック光ファイバであり、この光ファイバ7は、縦軸
に伝送損失(dB/km)を取り横軸に波長(nm)を
取った図3のグラフに示すような伝送損失特性を有して
いる。In the present embodiment, the optical fiber 7 is formed of P
The optical fiber 7 is a plastic optical fiber made of MMA (polymethyl methacrylate). The optical fiber 7 is shown in the graph of FIG. 3 in which the vertical axis indicates the transmission loss (dB / km) and the horizontal axis indicates the wavelength (nm). It has such transmission loss characteristics.
【0020】そして、本実施形態の光通信システム1で
は、光送信モジュール3の青色LED35として、光通
信システム1が搭載される車両の温度環境である−40
゜C〜+85゜Cの間において、図3のグラフにおける
伝送損失の変動幅が最大で12dB/km(±6dB/
km)の範囲内(請求項中の所定の許容値以下となる範
囲に相当)に収まるように、標準温度25゜Cにおける
中心発光波長が470nm±5nmであり、かつ、−4
0゜C〜+85゜Cの間での発光波長変動幅が最大で±
1.3nmのものを使用している。In the optical communication system 1 of the present embodiment, the temperature of the vehicle on which the optical communication system 1 is mounted is −40 as the blue LED 35 of the optical transmission module 3.
Between ゜ C and +85 ゜ C, the fluctuation range of the transmission loss in the graph of FIG. 3 is 12 dB / km (± 6 dB /
km) (equivalent to a range of not more than a predetermined allowable value in the claims), the center emission wavelength at a standard temperature of 25 ° C. is 470 nm ± 5 nm, and -4 nm.
The emission wavelength fluctuation range between 0 ° C and + 85 ° C is ±
1.3 nm one is used.
【0021】換言すると、−40゜C〜+85゜Cの間
における青色LED35の中心発光波長は、470nm
±6.3nm=463.7nm〜476.3nmの範囲
内であり、図3のグラフからも明らかなように、その中
心発光波長域における伝送損失の変動幅は、最大で12
dB/km(±6dB/km)の範囲内に収まる117
dB/km〜129dB/kmとなる。In other words, the center emission wavelength of the blue LED 35 between -40 ° C. and + 85 ° C. is 470 nm.
± 6.3 nm = 463.7 nm to 476.3 nm, and as can be seen from the graph of FIG. 3, the fluctuation range of the transmission loss in the central emission wavelength range is 12 at maximum.
117 within the range of dB / km (± 6 dB / km)
dB / km to 129 dB / km.
【0022】尚、図3のグラフを得るための光ファイバ
7の伝送損失特性の評価に当たっては、評価範囲の波長
の光を出力する光源として、比較的指向性の高い励振N
A=0.1のLEDを用いているため、伝送損失値が各
波長とも全体的に良好な値を示している。In the evaluation of the transmission loss characteristics of the optical fiber 7 for obtaining the graph of FIG. 3, the excitation N having a relatively high directivity is used as a light source for outputting light having a wavelength within the evaluation range.
Since the LED of A = 0.1 is used, the transmission loss value generally shows a good value for each wavelength.
【0023】したがって、図3のグラフを得るのに用い
たLEDよりも指向性が低いLEDを用いて光ファイバ
7の伝送損失特性を評価した場合には、当然のことなが
ら、伝送損失のボリュームが図3のグラフに示されてい
る値よりも相対的に高くなるはずであるが、その場合で
あっても、各波長相互間での伝送損失値の高低関係が図
3に示すような関係から変わることはない。Therefore, when the transmission loss characteristic of the optical fiber 7 is evaluated using an LED having lower directivity than the LED used to obtain the graph of FIG. 3, the volume of the transmission loss naturally increases. Although it should be relatively higher than the value shown in the graph of FIG. 3, even in this case, the relationship between the transmission loss values between the respective wavelengths is higher than that shown in FIG. It will not change.
【0024】次に、上述した構成による本実施形態の光
通信システム1の動作(作用)について説明する。Next, the operation (operation) of the optical communication system 1 according to the present embodiment having the above configuration will be described.
【0025】本実施形態の光通信システム1において
は、車両の状況によって光通信システム1の使用温度環
境が−40゜C〜+85゜Cの間で変動する場合、光送
信モジュール3の青色LED35が、デジタル送信信号
によって変調されたドライブ回路33からの駆動信号に
より発光駆動されて出力する光信号の中心発光波長が、
463.7nm〜476.3nmの範囲内となり、した
がって、光ファイバ7における伝送損失は、117dB
/km〜129dB/kmの範囲内となる。In the optical communication system 1 of the present embodiment, when the operating temperature environment of the optical communication system 1 varies between -40 ° C. and + 85 ° C. depending on the condition of the vehicle, the blue LED 35 of the optical transmission module 3 is turned on. The center emission wavelength of the optical signal that is driven to emit light by the drive signal from the drive circuit 33 modulated by the digital transmission signal and is output is:
463.7 nm to 476.3 nm, so that the transmission loss in the optical fiber 7 is 117 dB.
/ Km to 129 dB / km.
【0026】したがって、光受信モジュール5のピンフ
ォトダイオード51が受光する受信信号は、−40゜C
〜+85゜Cの間のいかなる温度においても117dB
/km〜129dB/kmを逸脱しない範囲でしか伝送
損失しない。Therefore, the reception signal received by the pin photodiode 51 of the optical receiving module 5 is -40.degree.
117 dB at any temperature between ~ + 85 ° C
/ Km to 129 dB / km.
【0027】よって、増幅回路53で増幅された後にA
/D変換回路55で変換されて信号出力端子57から出
力されるデジタル受信信号のレベルも、光ファイバ7に
おける青色LED35からの光信号の伝送損失変動幅で
ある、最大12dB/kmに応じた範囲でしか変動しな
い。Therefore, after being amplified by the amplification circuit 53, A
The level of the digital reception signal converted by the / D conversion circuit 55 and output from the signal output terminal 57 is also in a range corresponding to a maximum transmission loss variation range of 12 dB / km of the optical signal from the blue LED 35 in the optical fiber 7. It only fluctuates.
【0028】尚、参考までに、青色LED35に代えて
一般的な赤色LEDを光送信モジュール3に用いた場合
を想定すると、赤色LEDによる発光波長の温度依存性
は0.2nm/゜Cと一般に言われており、これに基づ
くと、標準温度25゜Cにおける中心発光波長を650
nmとした場合、−40゜C〜+85゜Cの間における
赤色LEDの中心発光波長は、650nm+4.1n
m,650nm−15.6nm=634.4nm〜65
4.1nmの範囲内である。For reference, assuming that a general red LED is used for the light transmitting module 3 instead of the blue LED 35, the temperature dependence of the emission wavelength of the red LED is generally 0.2 nm / ° C. According to this, the center emission wavelength at a standard temperature of 25 ° C. is 650.
nm, the center emission wavelength of the red LED between −40 ° C. and + 85 ° C. is 650 nm + 4.1 n
m, 650 nm-15.6 nm = 634.4 nm-65
It is in the range of 4.1 nm.
【0029】そうとすると、図3のグラフからも明らか
なように、634.4nm〜654.1nmの中心発光
波長域における伝送損失の変動幅は、最大で12dB/
km(±6dB/km)の範囲内には到底収まらない、
133dB/km〜340dB/kmとなる。Then, as is apparent from the graph of FIG. 3, the fluctuation range of the transmission loss in the central emission wavelength region of 634.4 nm to 654.1 nm is 12 dB / max at the maximum.
km (± 6 dB / km),
133 dB / km to 340 dB / km.
【0030】このように本実施形態の光通信システム1
によれば、光送信モジュール3から光受信モジュール5
への光信号の伝送に用いられる光ファイバ7の伝送損失
特性を考慮して、光通信システム1が搭載される車両の
温度環境である−40゜C〜+85゜Cの範囲におい
て、光ファイバ7の伝送損失の変動幅が最大で12dB
/km(±6dB/km)の範囲内に収まるような、6
34.4nm〜654.1nmの範囲内でしか中心発光
波長が変動しない青色LED35を、光送信モジュール
3の発光光源として用いる構成とした。As described above, the optical communication system 1 of the present embodiment
According to the above, from the optical transmitting module 3 to the optical receiving module 5
In consideration of the transmission loss characteristics of the optical fiber 7 used for transmitting the optical signal to the optical fiber 7, the optical fiber 7 is used in a temperature range of −40 ° C. to + 85 ° C., which is the temperature environment of the vehicle on which the optical communication system 1 is mounted. 12dB maximum variation in transmission loss
/ Km (± 6 dB / km).
The blue LED 35 whose center emission wavelength fluctuates only within the range of 34.4 nm to 654.1 nm is used as a light source of the light transmission module 3.
【0031】このため、車両の状況によって光通信シス
テム1の使用温度環境が−40゜C〜+85゜Cの間で
変動しても、光ファイバ7における伝送損失を最大で1
2dB/km(±6dB/km)となる117dB/k
m〜129dB/kmの範囲内に抑制して、大容量高密
度の情報伝送を高い精度で実現させることができる。Therefore, even if the operating temperature environment of the optical communication system 1 fluctuates between −40 ° C. and + 85 ° C. depending on the condition of the vehicle, the transmission loss in the optical fiber 7 is reduced by 1 at the maximum.
117 dB / k which becomes 2 dB / km (± 6 dB / km)
m to 129 dB / km, large-capacity, high-density information transmission can be realized with high accuracy.
【0032】尚、本実施形態では、光ファイバ7の許容
される伝送損失の変動幅を最大12dB/km(±6d
B/km)とし、−40゜C〜+85゜Cの温度環境下
における青色LED35の許容される中心発光波長の変
動幅を、標準温度25゜Cにおける中心発光波長が47
0nm±5nmであるものとして最大±1.3nmとし
たが、これらの数値は、使用する光伝送路の伝送損失特
性や想定される光通信システムの使用温度環境に応じて
適宜変更される。In the present embodiment, the allowable variation range of the transmission loss of the optical fiber 7 is 12 dB / km (± 6 dB) at the maximum.
B / km), and the allowable fluctuation range of the center emission wavelength of the blue LED 35 under the temperature environment of −40 ° C. to + 85 ° C. is set to 47 at the standard temperature of 25 ° C.
The maximum value is ± 1.3 nm assuming that it is 0 nm ± 5 nm, but these values are appropriately changed according to the transmission loss characteristics of the optical transmission line to be used and the assumed operating temperature environment of the optical communication system.
【0033】また、本実施形態では、光ファイバ7とし
てPMMAを材料とするプラスチック光ファイバを用
い、これに応じて、光送信モジュール3の発光光源とし
て青色LED35を用いる構成について説明したが、例
えば、光伝送路としてPMMA以外を材料とするプラス
チック光ファイバを用い、これに応じて、光送信モジュ
ール3の発光光源として、例えば緑色や赤色等、青色以
外で発光するLED等の発光素子を用いてもよい。In this embodiment, a plastic optical fiber made of PMMA is used as the optical fiber 7, and the blue LED 35 is used as the light source of the light transmitting module 3 according to this. As the light transmission path, a plastic optical fiber made of a material other than PMMA is used, and accordingly, a light emitting element such as an LED that emits light other than blue light, such as green light or red light, may be used as the light emitting light source of the light transmitting module 3. Good.
【0034】その際、重要なのは、車両の状況によって
光通信システムの使用温度環境が所定の範囲内で変動し
ても、光伝送路における伝送損失を最大でも一定の範囲
内で抑えることができるような範囲で発光中心波長が変
動する発光素子を、光伝送路の波長に対する伝送損失特
性に応じて選択することであり、光伝送路の伝送損失特
性とは無関係に何色で発光する発光素子を用いるかを吟
味することは、全く意味を持たない。In this case, it is important that the transmission loss in the optical transmission line can be suppressed within a certain range even if the operating temperature environment of the optical communication system fluctuates within a predetermined range depending on the condition of the vehicle. It is to select a light emitting element whose emission center wavelength fluctuates within an appropriate range according to the transmission loss characteristics with respect to the wavelength of the optical transmission line. Examining whether to use it has no meaning at all.
【0035】さらに、本実施形態では車両に搭載される
光通信システム1を例に取って説明したが、本発明が、
車両に限らず所定範囲内で温度が任意に変化する使用環
境下で用いられる光通信システムに広く適用可能である
ことは、言うまでもない。Further, in the present embodiment, the optical communication system 1 mounted on a vehicle has been described as an example.
It goes without saying that the present invention is widely applicable not only to vehicles but also to optical communication systems used under usage environments where the temperature arbitrarily changes within a predetermined range.
【0036】[0036]
【発明の効果】以上説明したように請求項1に記載した
本発明の光通信システム用光源によれば、所定範囲内で
温度が任意に変化する使用環境下で用いられる光通信シ
ステムにおいて、伝送情報に応じて変調された光信号を
光伝送路に向けて出力するために用いられる光源であっ
て、前記所定範囲内での温度変化に応じた前記光信号の
波長の変動を所定波長範囲内とする発光素子によって構
成されており、前記所定波長範囲が、前記光信号の波長
の変動に応じた前記光伝送路における前記光信号の伝送
損失の変動幅が所定の許容値以下となる範囲に設定され
ている構成とした。As described above, according to the light source for an optical communication system according to the first aspect of the present invention, the light transmission in an optical communication system used in an operating environment where the temperature arbitrarily changes within a predetermined range. A light source used to output an optical signal modulated in accordance with information toward an optical transmission line, wherein a change in the wavelength of the optical signal according to a temperature change in the predetermined range is within a predetermined wavelength range. Wherein the predetermined wavelength range is within a range in which the fluctuation range of the transmission loss of the optical signal in the optical transmission line according to the fluctuation of the wavelength of the optical signal is equal to or less than a predetermined allowable value. The configuration has been set.
【0037】このため、所定範囲内での温度変化に応じ
た発光素子による出力信号波長の変動幅を、光通信シス
テムの光伝送路における光信号の伝送損失変動幅を所定
の許容値以下とする範囲内に抑制して、大容量高密度の
情報伝送を高い精度で光通信システムに実現させること
ができる。For this reason, the fluctuation width of the output signal wavelength by the light emitting element according to the temperature change within the predetermined range is set so that the transmission loss fluctuation width of the optical signal in the optical transmission line of the optical communication system is equal to or less than a predetermined allowable value. Within this range, large-capacity, high-density information transmission can be realized in the optical communication system with high accuracy.
【0038】また、請求項2に記載した本発明の光通信
システム用光源によれば、請求項1に記載した本発明の
光通信システム用光源において、前記光伝送路が前記所
定範囲内の温度における所要の耐熱性を有するプラスチ
ック光ファイバにより構成されており、前記所定波長範
囲が、前記プラスチック光ファイバにおける前記光信号
の伝送損失特性に応じて定められる構成とした。According to the light source for an optical communication system of the present invention described in claim 2, in the light source for an optical communication system of the present invention described in claim 1, the optical transmission line has a temperature within the predetermined range. , And the predetermined wavelength range is determined according to the transmission loss characteristic of the optical signal in the plastic optical fiber.
【0039】このため、光伝送路として用いるプラスチ
ック光ファイバの伝送損失特性に応じて発光素子による
出力信号波長の変動幅を、そのプラスチック光ファイバ
の伝送損失変動幅を所定の許容値以下とする範囲内に抑
制することができる。For this reason, the variation range of the output signal wavelength by the light emitting element according to the transmission loss characteristics of the plastic optical fiber used as the optical transmission line is set so that the variation range of the transmission loss of the plastic optical fiber is not more than a predetermined allowable value. Can be suppressed within.
【0040】さらに、請求項3に記載した本発明の光通
信システムによれば、伝送情報に応じて変調された光信
号を出力するために用いられる光源と、該光源から出力
された光信号を伝送する光伝送路とを有し、所定範囲内
で温度が任意に変化する使用環境下で用いられる光通信
システムにおいて、前記光源は、前記所定範囲内での温
度変化に応じた前記光信号の波長の変動を所定波長範囲
内とする発光素子によって構成されており、前記所定波
長範囲は、前記光信号の波長の変動に応じた前記光伝送
路における前記光信号の伝送損失の変動幅が所定の許容
値以下となる範囲に設定されている構成とした。Further, according to the optical communication system of the present invention, a light source used to output an optical signal modulated according to transmission information, and an optical signal output from the light source An optical communication system having an optical transmission path for transmission and used in an operating environment in which the temperature is arbitrarily changed within a predetermined range, wherein the light source is configured to transmit the optical signal according to a temperature change within the predetermined range. The light-emitting element has a wavelength variation within a predetermined wavelength range, and the predetermined wavelength range is such that a variation width of the transmission loss of the optical signal in the optical transmission line according to the wavelength variation of the optical signal is a predetermined value. Is set to be within the range of the allowable value or less.
【0041】このため、所定範囲内での温度変化に応じ
た発光素子による出力信号波長の変動幅を、光伝送路に
おける光信号の伝送損失変動幅を所定の許容値以下とす
る範囲内に抑制して、大容量高密度の情報伝送を高い精
度で実現させることができる。For this reason, the fluctuation width of the output signal wavelength by the light emitting element according to the temperature change within the predetermined range is suppressed within a range where the fluctuation width of the transmission loss of the optical signal in the optical transmission line is equal to or less than a predetermined allowable value. Thus, large-capacity, high-density information transmission can be realized with high accuracy.
【図1】本発明の一実施形態に係る光通信システムのブ
ロック図である。FIG. 1 is a block diagram of an optical communication system according to an embodiment of the present invention.
【図2】図1中の或るノードと他の或るノードの光受信
モジュールとの接続関係を一部ブロックにて示す説明図
である。FIG. 2 is an explanatory diagram showing, in partial blocks, a connection relationship between a certain node in FIG. 1 and an optical receiving module of another certain node.
【図3】図1の光ファイバの伝送損失特性を、縦軸に伝
送損失を取り横軸に波長を取って示すグラフである。FIG. 3 is a graph showing transmission loss characteristics of the optical fiber of FIG. 1 with transmission loss on the vertical axis and wavelength on the horizontal axis.
1 光通信システム 35 青色LED(光源、発光素子) 7 光ファイバ(光伝送路、プラスチック光ファイバ) Reference Signs List 1 optical communication system 35 blue LED (light source, light emitting element) 7 optical fiber (optical transmission line, plastic optical fiber)
Claims (3)
環境下で用いられる光通信システムにおいて、伝送情報
に応じて変調された光信号を光伝送路に向けて出力する
ために用いられる光源であって、 前記所定範囲内での温度変化に応じた前記光信号の波長
の変動を所定波長範囲内とする発光素子によって構成さ
れており、 前記所定波長範囲は、前記光信号の波長の変動に応じた
前記光伝送路における前記光信号の伝送損失の変動幅が
所定の許容値以下となる範囲に設定されている、ことを
特徴とする光通信システム用光源。1. A light source used for outputting an optical signal modulated according to transmission information to an optical transmission line in an optical communication system used in a usage environment in which the temperature changes arbitrarily within a predetermined range. And a light-emitting element configured to change the wavelength of the optical signal according to a temperature change within the predetermined range within a predetermined wavelength range, wherein the predetermined wavelength range is the fluctuation of the wavelength of the optical signal. Wherein the variation range of the transmission loss of the optical signal in the optical transmission line according to the above is set within a range of not more than a predetermined allowable value.
おける所要の耐熱性を有するプラスチック光ファイバに
より構成されており、前記所定波長範囲は、前記プラス
チック光ファイバにおける前記光信号の伝送損失特性に
応じて定められる請求項1記載の光通信システム用光
源。2. The optical transmission line is formed of a plastic optical fiber having a required heat resistance at a temperature within the predetermined range, and the predetermined wavelength range is determined by a transmission loss characteristic of the optical signal in the plastic optical fiber. The light source for an optical communication system according to claim 1, wherein the light source is determined according to:
力するために用いられる光源と、該光源から出力された
光信号を伝送する光伝送路とを有し、所定範囲内で温度
が任意に変化する使用環境下で用いられる光通信システ
ムにおいて、 前記光源は、前記所定範囲内での温度変化に応じた前記
光信号の波長の変動を所定波長範囲内とする発光素子に
よって構成されており、 前記所定波長範囲は、前記光信号の波長の変動に応じた
前記光伝送路における前記光信号の伝送損失の変動幅が
所定の許容値以下となる範囲に設定されている、ことを
特徴とする光通信システム。3. A light source used for outputting an optical signal modulated in accordance with transmission information, and an optical transmission line for transmitting an optical signal output from the light source, wherein the temperature is within a predetermined range. In an optical communication system used under an arbitrarily changing use environment, the light source is configured by a light-emitting element that causes a wavelength change of the optical signal according to a temperature change within the predetermined range to be within a predetermined wavelength range. Wherein the predetermined wavelength range is set to a range in which the fluctuation range of the transmission loss of the optical signal in the optical transmission line according to the fluctuation of the wavelength of the optical signal is equal to or less than a predetermined allowable value. Optical communication system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20303499A JP2001036142A (en) | 1999-07-16 | 1999-07-16 | Light source for optical communication system and optical communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20303499A JP2001036142A (en) | 1999-07-16 | 1999-07-16 | Light source for optical communication system and optical communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001036142A true JP2001036142A (en) | 2001-02-09 |
Family
ID=16467263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20303499A Abandoned JP2001036142A (en) | 1999-07-16 | 1999-07-16 | Light source for optical communication system and optical communication system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001036142A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287851A (en) * | 2006-04-14 | 2007-11-01 | Toyoda Gosei Co Ltd | LIGHT EMITTING ELEMENT USED FOR OPTICAL COMMUNICATION AND COMMUNICATION DEVICE USING THE SAME |
WO2008149734A1 (en) * | 2007-05-31 | 2008-12-11 | Sony Corporation | Optical waveguide, signal processing device, and signal processing substrate |
JP2009009102A (en) * | 2007-05-31 | 2009-01-15 | Sony Corp | Optical waveguide, signal processing device, and signal processing substrate |
US20210401730A1 (en) * | 2017-03-07 | 2021-12-30 | Laboratoires De Biologie Vegetale Yves Rocher | Use of extracts of agave for a hair application |
WO2024066614A1 (en) * | 2022-09-27 | 2024-04-04 | 华为技术有限公司 | Optical modulation device, wavelength selective switch, and optical communication device |
-
1999
- 1999-07-16 JP JP20303499A patent/JP2001036142A/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007287851A (en) * | 2006-04-14 | 2007-11-01 | Toyoda Gosei Co Ltd | LIGHT EMITTING ELEMENT USED FOR OPTICAL COMMUNICATION AND COMMUNICATION DEVICE USING THE SAME |
WO2008149734A1 (en) * | 2007-05-31 | 2008-12-11 | Sony Corporation | Optical waveguide, signal processing device, and signal processing substrate |
JP2009009102A (en) * | 2007-05-31 | 2009-01-15 | Sony Corp | Optical waveguide, signal processing device, and signal processing substrate |
US8346034B2 (en) | 2007-05-31 | 2013-01-01 | Sony Corporation | Optical selector switch and signal-processing apparatus |
US20210401730A1 (en) * | 2017-03-07 | 2021-12-30 | Laboratoires De Biologie Vegetale Yves Rocher | Use of extracts of agave for a hair application |
WO2024066614A1 (en) * | 2022-09-27 | 2024-04-04 | 华为技术有限公司 | Optical modulation device, wavelength selective switch, and optical communication device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7450858B2 (en) | Apparatus and method for transmitting and receiving wavelength division multiplexing signals | |
JPH0591047A (en) | Optical balanced transmitter | |
US5384651A (en) | Optical transmission system | |
US6603587B1 (en) | Optical amplifier repeater | |
EP0674406A1 (en) | System and method for transmitting a parallel electrical signal via a serial optical path | |
US6246499B1 (en) | Optical signal communication apparatus and optical signal communication method | |
JP2001036142A (en) | Light source for optical communication system and optical communication system | |
JPH04324989A (en) | Dual-mode laser-diode transmitter and manufacture thereof | |
US6201822B1 (en) | Optical signal transmission apparatus and optical signal transmission method | |
CN109743113A (en) | Optical module and optical line terminal | |
US20060039656A1 (en) | Communications system employing single-mode lasers and multimode optical fibers | |
US20030048977A1 (en) | Dispersion-compensated optical fiber amplifier | |
US7136218B2 (en) | Raman optical amplifier | |
CN111726167A (en) | Controller of light emitter | |
US20110142454A1 (en) | Optical transmission and reception control apparatus | |
JP2943766B2 (en) | Semiconductor laser module | |
EP0431654B1 (en) | Adapter for amplified optical lines | |
JPH01123538A (en) | Light balance transmitting circuit | |
JP3853313B2 (en) | Optical communication system | |
CN118882805B (en) | A distributed acoustic wave sensing system based on optical neural network and all-optical integration method | |
US20040114844A1 (en) | Directly modulated distributed feedback laser diode optical transmitter applying vestigial side band modulation | |
JPH04364790A (en) | Fiber type optical amplifier | |
JPH0252536A (en) | Digital optical transmitter | |
JPH11234246A (en) | Optical transmission system and optical transmitter used in the optical transmission system | |
JPH0376167A (en) | Photodetector, light transceiver using the photodetector, light transmitter and optical communication apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20041227 |