JP2001033501A - Method for analyzing inverse-phase component in power system - Google Patents

Method for analyzing inverse-phase component in power system

Info

Publication number
JP2001033501A
JP2001033501A JP2000186320A JP2000186320A JP2001033501A JP 2001033501 A JP2001033501 A JP 2001033501A JP 2000186320 A JP2000186320 A JP 2000186320A JP 2000186320 A JP2000186320 A JP 2000186320A JP 2001033501 A JP2001033501 A JP 2001033501A
Authority
JP
Japan
Prior art keywords
phase
phase component
negative
vector
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000186320A
Other languages
Japanese (ja)
Inventor
Takanori Tsunoda
孝典 角田
Takashi Yoshimura
吉村  隆志
Yoshihiro Tano
義浩 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000186320A priority Critical patent/JP2001033501A/en
Publication of JP2001033501A publication Critical patent/JP2001033501A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To minimize an error caused by frequency asynchronous property by obtaining a negative-phase component vector for two data rows being separated by a specific phase angle each other and adding them for obtaining the negative-phase component vector after correction. SOLUTION: LPFs 1a, 1b, and 1c input three-phase current detections signals 1a, 1b, and 1c and perform low-pass filtering. A sample/hold circuit 3 samples and holds an input signal being selected by a multiplexer 2 at a fixed period, and an A/D converter 4 converts it into digital data. A CPU 6 extracts two data rows where phase angles are separated by 90 deg. and obtains a negative-phase component with a positive-phase component as a reference for each two data rows. By adding the two negative-phase component vectors, negative-phase component vectors after correction can be obtained, thus canceling out an error caused by frequency asynchronous property and analyzing an accurate negative- phase component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統におい
て逆相成分を分析する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a reverse phase component in a power system.

【0002】[0002]

【従来の技術】一般に、電力系統において、電源品質の
管理または制御を行う上で、高調波成分や逆相成分の測
定が要求される。
2. Description of the Related Art Generally, in a power system, in order to manage or control the quality of a power supply, it is required to measure a harmonic component and a reverse phase component.

【0003】従来、電力系統の高調波成分または逆相成
分を分析する際には、系統側の商用電源周波数が変動す
るため、これに追従してサンプリングを行い、サンプリ
ングデータ列について所定の演算を行うことによって高
調波成分や逆相成分を算出している。
Conventionally, when analyzing a harmonic component or a negative phase component of a power system, since the frequency of the commercial power supply on the system side fluctuates, sampling is performed in accordance with the fluctuation, and a predetermined operation is performed on the sampling data sequence. By doing so, a harmonic component and a negative phase component are calculated.

【0004】[0004]

【発明が解決しようとする課題】ところが、実時間軸に
おいて前記高調波成分および逆相成分を評価する場合に
は、サンプリング周期を一定としなければならない。こ
のように商用電源周波数に同期しない固定サンプリング
によるデータ列を利用して、高調波成分および逆相成分
を分析する場合、周波数非同期性に起因する誤差が生じ
る。この発明の目的は、周波数非同期性に起因する誤差
を極小化する、電力系統における逆相成分の分析方法を
提供することにある。
However, when evaluating the harmonic component and the negative phase component on the real time axis, the sampling period must be constant. When analyzing a harmonic component and a negative-phase component using a data stream obtained by fixed sampling that is not synchronized with the commercial power frequency, an error occurs due to frequency asynchrony. An object of the present invention is to provide a method for analyzing an anti-phase component in a power system, which minimizes an error caused by frequency asynchrony.

【0005】[0005]

【課題を解決するための手段】今、平衡三相交流電流の
1相であるIaの高調波成分を、定格系統周波数(50
Hz)の36倍である1800Hzでサンプリングし、
位相角10°毎の1周期分のサンプリングデータを基
に、フーリエ変換を行って分析するものとし、基本波に
対し5%の第5次高調波成分を位相0°で注入し、基本
波周波数の周波数変動Δfを0.5Hzとする。そし
て、図1に示すように、サンプリングの開始位置または
既にサンプリングされたデータからの切り出し開始位置
(以下サンプリング位相角αと言う。)を変化させたと
き、見掛け上の第5次高調波成分のベクトル軌跡は図2
に示すようになる。ここでベクトルの基準は基本波位相
である。図2において各プロット点はサンプリング位相
角αを0°から350°まで10°毎に変化させたとき
の見掛け上の第5次高調波成分のベクトルである。この
ように、サンプリング位相角αを0°から350°まで
変化させる間に、図2に示すベクトル軌跡を2周し、そ
の間に見掛け上の第5次高調波成分の含有率は±0.5
%程度変動する。
Means for Solving the Problems Now, the harmonic component of Ia, which is one phase of a balanced three-phase alternating current, is converted to a rated system frequency (50%).
Hz), sampling at 1800 Hz which is 36 times
Fourier transform is performed based on the sampling data for one cycle at every 10 ° of the phase angle, and the analysis is performed. The fifth harmonic component of 5% with respect to the fundamental wave is injected at a phase of 0 °, and the fundamental wave frequency is Is 0.5 Hz. Then, as shown in FIG. 1, when the sampling start position or the cutout start position from the already sampled data (hereinafter referred to as sampling phase angle α) is changed, the apparent fifth harmonic component of the fifth harmonic component is changed. Vector trajectory
It becomes as shown in. Here, the reference of the vector is the fundamental wave phase. In FIG. 2, each plot point is an apparent vector of the fifth harmonic component when the sampling phase angle α is changed every 10 ° from 0 ° to 350 °. As described above, while changing the sampling phase angle α from 0 ° to 350 °, the vector locus shown in FIG. 2 makes two rounds, during which the apparent fifth harmonic component content is ± 0.5.
It fluctuates by about%.

【0006】以上の条件で平衡三相電流の逆相成分を求
める場合を考える。先ず、電流Ia,Ib,Icの各相
についてそれぞれフーリエ変換し、各相のベクトルを求
め、対称座標法により正相成分と逆相成分を求め、逆相
電流I2 のベクトルを正相電流I1 を基準にして表す。
そして、図1に示したサンプリング位相角αを10°毎
に変化させ、また周波数fを49.5〜50.5Hzの
範囲で0.1Hz毎に変化させれば、逆相電流ベクトル
2 の軌跡は図3に示すようになる。すなわちΔf=±
0.5Hzで約0.5%の逆相電流成分が発生し、その
ベクトルは大きさを変えないままサンプリング位相角α
により位相回転する。ここで注目すべきことは、α=0
〜350°の変化により図3に示した同心円上を2周回
転することである。
Consider a case in which the reverse phase component of the balanced three-phase current is obtained under the above conditions. First, the current Ia, Ib, respectively Fourier transform for each phase of Ic, determined each phase vector, determined the positive phase component and negative phase components by symmetry coordinates method, positive phase current I a vector of reverse-phase current I 2 Expressed based on 1 .
Then, if the sampling phase angle α shown in FIG. 1 is changed every 10 ° and the frequency f is changed every 0.1 Hz within a range of 49.5 to 50.5 Hz, the negative-phase current vector I 2 The trajectory is as shown in FIG. That is, Δf = ±
At 0.5 Hz, a negative phase current component of about 0.5% is generated, and the vector of the vector has a sampling phase angle α without changing its magnitude.
Rotates the phase. It should be noted that α = 0
The rotation of the concentric circle shown in FIG.

【0007】この関係から、位相角が90°離れた二つ
のサンプリングデータ列を基に、各々正相成分を基準に
した逆相成分ベクトル求め、両ベクトルをベクトル加算
することによって、周波数変動またはサンプリング位相
角の変動による影響を相殺できるものと推定される。
From this relationship, based on two sampling data strings having a phase angle of 90 ° apart, a negative phase component vector is determined based on the normal phase component, and both vectors are added to obtain a frequency variation or sampling. It is presumed that the influence of the phase angle fluctuation can be offset.

【0008】そこで、この発明の電力系統における逆相
成分の分析方法は、電力系統の定格系統周波数の一周期
の整数分の一の固定周期で被測定信号をサンプリングし
てデータ列を求め、互いに位相角が90°離れた二つの
データ列を抽出し、この二つのデータ列毎に正相成分を
基準とした逆相成分ベクトルを求め、この二つの逆相成
分ベクトルを加算して補正後の逆相成分ベクトルを求め
ることを特徴とする。この発明の電力系統における逆相
成分の分析方法では、電力系統の定格系統周波数の1周
期の整数分の1の固定周期による被測定信号のサンプリ
ングによりデータ列が求められ、互いに位相角が90°
離れた2つのデータ列が抽出され、この2つのデータ列
毎に正相成分を基準とした逆相成分ベクトルが求められ
る。この2つの逆相成分ベクトルは、元になるデータ列
の位相角が90°離れているため、図3に示した同心円
上のベクトル軌跡のうち点対称の位置関係となる(サン
プリング位相角αの1周によりベクトル軌跡は同心円上
を2周する)。従ってこのようにして求められた2つの
逆相成分ベクトルが加算されることによって、周波数非
同期性に起因する誤差が相殺されて、正確な逆相成分の
分析が可能となる。
Therefore, the method of analyzing a negative phase component in a power system according to the present invention provides a data sequence by sampling a signal under measurement at a fixed period that is an integer fraction of one period of the rated system frequency of the power system. Two data strings with a phase angle of 90 ° apart are extracted, a negative-phase component vector based on the normal-phase component is obtained for each of these two data strings, and these two negative-phase component vectors are added to obtain the corrected It is characterized in that an inverse phase component vector is obtained. In the method for analyzing a negative-phase component in a power system according to the present invention, a data string is obtained by sampling a signal to be measured at a fixed period that is an integer fraction of one period of the rated system frequency of the power system, and the phase angles of the data lines are 90 ° with each other.
Two separated data strings are extracted, and a negative-phase component vector based on the normal-phase component is obtained for each of the two data strings. The two opposite-phase component vectors have a point symmetrical positional relationship among the vector trajectories on the concentric circles shown in FIG. The vector locus makes two rounds on a concentric circle by one round). Therefore, by adding the two opposite-phase component vectors obtained in this way, an error due to frequency asynchronism is canceled out, and accurate analysis of the opposite-phase component becomes possible.

【0009】[0009]

【発明の実施の形態】この発明の実施形態である測定装
置の構成をブロック図として図4に示す。図4において
ローパスフィルタ1a,1b,1cは三相電流の検出信
号(Ia),(Ib),(Ic)を入力し、それぞれロ
ーパスフィルタリングを行う。そのカットオフ周波数
は、通常サンプリング周波数に基づく折り返し誤差が生
じないように定める。マルチプレクサ2はローパスフィ
ルタ1a,1b,1cのうち何れか1つを選択する。サ
ンプルホールド回路3はマルチプレクサ2により選択さ
れた入力信号を一定周期でサンプルホールドし、A/D
コンバータ4はこれをディジタルデータに変換する。C
PU6はROM7にあらかじめ書き込んだプログラムを
実行して、後述する処理によって高調波成分の分析およ
び逆相成分の分析を行う。CPU6はI/Oポート5を
介してマルチプレクサ2、サンプルホールド回路3およ
びA/Dコンバータ4に対し制御信号を出力するととも
に、A/Dコンバータ4により求められたディジタルデ
ータを読み取る。RAM8はサンプリングデータの記憶
および各種演算処理のためのワーキングエリアとして用
いる。操作パネル10は高調波成分の測定と逆相成分の
測定のモード切り替えスイッチを含むキーボードと測定
結果の表示を行う表示器から成り、CPU6はインタフ
ェース9を介してキーの読取および測定結果の表示出力
制御を行う。プリンタ12は測定結果の印字記録を行う
装置であり、CPU6はインタフェース11を介して測
定結果の印字制御を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 4 is a block diagram showing the configuration of a measuring apparatus according to an embodiment of the present invention. In FIG. 4, low-pass filters 1a, 1b, and 1c receive three-phase current detection signals (Ia), (Ib), and (Ic), and perform low-pass filtering. The cutoff frequency is usually determined so that no aliasing error based on the sampling frequency occurs. The multiplexer 2 selects one of the low-pass filters 1a, 1b, 1c. The sample and hold circuit 3 samples and holds the input signal selected by the multiplexer 2 at a constant period, and
Converter 4 converts this into digital data. C
The PU 6 executes a program written in the ROM 7 in advance, and performs analysis of a harmonic component and analysis of a negative-phase component by processing described later. The CPU 6 outputs a control signal to the multiplexer 2, the sample and hold circuit 3, and the A / D converter 4 via the I / O port 5, and reads digital data obtained by the A / D converter 4. The RAM 8 is used as a working area for storing sampling data and performing various arithmetic processing. The operation panel 10 includes a keyboard including a mode changeover switch for measuring a harmonic component and a measurement of a reverse phase component, and a display for displaying a measurement result. The CPU 6 reads a key via the interface 9 and outputs a display of the measurement result. Perform control. The printer 12 is a device that records and records the measurement results, and the CPU 6 controls the printing of the measurement results via the interface 11.

【0010】次に、図4に示した測定装置におけるCP
U6の処理手順を図5および図6に示す。図5は高調波
成分測定時の処理手順であり、先ず、所定の相電流の検
出信号である入力信号を一定データ数サンプリングす
る。例えば定格系統周波数が50Hzであれば、位相角
10°毎の周期、すなわち1800Hzの周波数でサン
プリングを行う。その後、それぞれ180°分のデータ
列を、位相角10°毎にずらせて基本波周波数の1周期
に亘って抽出する。これにより36種のデータ列を得
る。その後、各データ列毎に離散的フーリエ変換(DF
T)を行い、基本波成分と各高調波成分のベクトルを求
める。そして、基本波成分のベクトルを基準にして目的
の高調波成分(ここでは第5次高調波成分)のベクトル
を回転させる。その後、このようにして36種のデータ
列について求めた第5次高調波成分のベクトルをベクト
ル平均して、周波数非同期性に起因する誤差を伴わない
第5次高調波成分のベクトルを求める。
Next, the CP in the measuring device shown in FIG.
The processing procedure of U6 is shown in FIGS. FIG. 5 shows a processing procedure at the time of measuring a harmonic component. First, an input signal which is a detection signal of a predetermined phase current is sampled by a certain number of data. For example, if the rated system frequency is 50 Hz, sampling is performed at a cycle of every 10 ° of the phase angle, that is, at a frequency of 1800 Hz. Thereafter, a data sequence for each 180 ° is shifted for every 10 ° of the phase angle and extracted over one cycle of the fundamental frequency. As a result, 36 kinds of data strings are obtained. Thereafter, a discrete Fourier transform (DF
T) is performed to obtain a vector of the fundamental wave component and each harmonic component. Then, the vector of the target harmonic component (here, the fifth harmonic component) is rotated based on the vector of the fundamental component. Thereafter, the vector of the fifth harmonic component obtained for the 36 kinds of data strings in this manner is vector-averaged, and the vector of the fifth harmonic component without error caused by frequency asynchronism is obtained.

【0011】尚、上述の例では、10°毎の位相角でサ
ンプリングを行い、切り出し開始位相角を10°毎に異
ならせることによって、36種のデータ列を抽出するよ
うにしたが、切り出し開始位相角のずらせる間隔はサン
プリング周期に等しくする必要はなく、例えば、30°
毎に異ならせて、12種のデータ列を抽出するようにし
てもよい。
In the above-described example, sampling is performed at a phase angle of every 10 °, and 36 kinds of data strings are extracted by changing the cutout start phase angle every 10 °. The phase angle shift interval does not need to be equal to the sampling period, for example, 30 °
It may be different for each case, and 12 types of data strings may be extracted.

【0012】図6は逆相成分測定時の処理手順であり、
先ず、三相電流の各検出信号である三つの入力信号につ
いて、それぞれ一定データ数サンプリングする。例えば
定格系統周波数が50Hzであれば、位相角10°毎の
周期、すなわち1800Hzの周波数でサンプリングを
行う。その後、各相毎に互いに位相角が90°離れた2
つのデータ列を抽出し、両データ列について逆相成分の
ベクトルを対象座標法により算出する。そして、それぞ
れ正相成分を基準にした2つの逆相成分のベクトルをベ
クトル加算することによって、周波数非同期性に起因す
る誤差を伴わない逆相成分を求める。
FIG. 6 shows a processing procedure at the time of measuring the reversed-phase component.
First, a fixed number of data are sampled for each of three input signals which are detection signals of a three-phase current. For example, if the rated system frequency is 50 Hz, sampling is performed at a cycle of every 10 ° of the phase angle, that is, at a frequency of 1800 Hz. After that, each phase has a phase angle of 90 ° apart from each other.
One data string is extracted, and a vector of an antiphase component is calculated for both data strings by the target coordinate method. Then, by adding the vectors of the two negative-phase components based on the normal-phase components, respectively, a negative-phase component having no error due to frequency asynchrony is obtained.

【0013】[0013]

【発明の効果】この発明の電力系統における逆相成分の
分析方法では、電力系統の定格系統周波数の1周期の整
数分の1の固定周期で被測定信号をサンプリングして得
たデータ列を基にして、系統の商用電源周波数の変動に
拘らず、周波数非同期性に起因する誤差を極小にして逆
相成分を求めることができる。
According to the method for analyzing a negative-phase component in a power system of the present invention, a data string obtained by sampling a signal under measurement at a fixed period equal to an integral number of one period of the rated system frequency of the power system is used. Thus, regardless of the fluctuation of the commercial power supply frequency of the system, the error due to the frequency asynchrony can be minimized to obtain the negative phase component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】三相交流電流波形とサンプリング位相角および
1周期分のサンプリングデータとの関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a three-phase alternating current waveform, a sampling phase angle, and sampling data for one cycle.

【図2】第5次高調波のベクトル軌跡の例を示す図であ
る。
FIG. 2 is a diagram illustrating an example of a vector locus of a fifth harmonic.

【図3】逆相成分のベクトル軌跡の例を示す図である。FIG. 3 is a diagram illustrating an example of a vector trajectory of an antiphase component.

【図4】実施例に係る測定装置の構成を示すブロック図
である。
FIG. 4 is a block diagram illustrating a configuration of a measurement device according to an embodiment.

【図5】高調波成分測定時の処理手順を示すフローチャ
ートである。
FIG. 5 is a flowchart illustrating a processing procedure when measuring a harmonic component.

【図6】逆相成分測定時の処理手順を示すフローチャー
トである。
FIG. 6 is a flowchart showing a processing procedure at the time of measuring a negative-phase component.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電力系統の定格系統周波数の一周期の整数
分の一の固定周期で被測定信号をサンプリングしてデー
タ列を求め、互いに位相角が90°離れた二つのデータ
列を抽出し、この二つのデータ列毎に正相成分を基準と
した逆相成分ベクトルを求め、この二つの逆相成分ベク
トルを加算して補正後の逆相成分ベクトルを求めること
を特徴とする電力系統における逆相成分の分析方法。
1. A data sequence is obtained by sampling a signal under measurement at a fixed period that is an integral fraction of one period of a rated system frequency of a power system, and two data sequences having a phase angle of 90 ° apart from each other are extracted. In each of the two data sequences, a negative-phase component vector based on the normal-phase component is obtained, and the two negative-phase component vectors are added to obtain a corrected negative-phase component vector. Analysis method for reversed phase components.
JP2000186320A 2000-01-01 2000-06-21 Method for analyzing inverse-phase component in power system Pending JP2001033501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186320A JP2001033501A (en) 2000-01-01 2000-06-21 Method for analyzing inverse-phase component in power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186320A JP2001033501A (en) 2000-01-01 2000-06-21 Method for analyzing inverse-phase component in power system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04342040A Division JP3099562B2 (en) 1992-12-22 1992-12-22 Analysis method of harmonic components in power system

Publications (1)

Publication Number Publication Date
JP2001033501A true JP2001033501A (en) 2001-02-09

Family

ID=18686503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186320A Pending JP2001033501A (en) 2000-01-01 2000-06-21 Method for analyzing inverse-phase component in power system

Country Status (1)

Country Link
JP (1) JP2001033501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074548B1 (en) * 2008-12-31 2011-10-17 엘에스산전 주식회사 Motor protection relay
CN106124882A (en) * 2016-06-12 2016-11-16 中国舰船研究设计中心 A kind of adjustable notch filter network and electrical network interference signal-testing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074548B1 (en) * 2008-12-31 2011-10-17 엘에스산전 주식회사 Motor protection relay
CN106124882A (en) * 2016-06-12 2016-11-16 中国舰船研究设计中心 A kind of adjustable notch filter network and electrical network interference signal-testing apparatus

Similar Documents

Publication Publication Date Title
Bucci et al. On-line digital measurement for the quality analysis of power systems under nonsinusoidal conditions
EP2325668A1 (en) Digital NMR signal processing systems and methods
JP5669290B2 (en) Test and measurement equipment and signal data identification method
CN105203860A (en) Phase noise correction system for discrete time signal processing
JP2010096750A (en) Resolver interface, method for monitoring input signal from resolver, and differential position sensor interface
US20030128021A1 (en) Signal acquisition method and apparatus using integrated phase locked loop
WO2002076008A2 (en) Apparatus for and method of measuring jitter
JP2008232807A (en) Signal analyzer
EP1478145B1 (en) Method for detecting quadrature modulator carrier leak adjusting point by geometrical analysis/calculation method, carrier leak adjusting method, and quadrature modulation apparatus
JP2001033501A (en) Method for analyzing inverse-phase component in power system
JP2003098202A (en) Phase delay characteristic measuring device and measuring method
JP3099562B2 (en) Analysis method of harmonic components in power system
JP2000180484A (en) Apparatus for measuring harmonic wave
JP3974880B2 (en) Jitter transfer characteristic measuring device
JP2007003458A (en) Digital orthogonal lock-in detecting method and device
JP4225651B2 (en) Phase error correction method for circuit element measuring instrument
JP2011149915A (en) Synchronization detecting apparatus
JP3114955B2 (en) Nuclear magnetic resonance equipment
JP2000055952A (en) Apparatus for measuring circuit element
JPH0464059A (en) Processing device of analysis data
Liguori et al. Implementing uncertainty auto-evaluation capabilities on an intelligent FFT analyzer
JP2002090397A (en) Voltage measuring device for power line
JP2833877B2 (en) Modulation error measurement device
JP2000055953A (en) Apparatus for measuring circuit element
JPS63302841A (en) Measuring data error compensating method of nuclear magnetic resonance imaging apparatus