JP2001031406A - Production of anhydrous sodium polysulfide - Google Patents

Production of anhydrous sodium polysulfide

Info

Publication number
JP2001031406A
JP2001031406A JP11204051A JP20405199A JP2001031406A JP 2001031406 A JP2001031406 A JP 2001031406A JP 11204051 A JP11204051 A JP 11204051A JP 20405199 A JP20405199 A JP 20405199A JP 2001031406 A JP2001031406 A JP 2001031406A
Authority
JP
Japan
Prior art keywords
anhydrous sodium
sodium polysulfide
sulfur
metal
polysulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11204051A
Other languages
Japanese (ja)
Inventor
Yukio Sasagawa
幸雄 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP11204051A priority Critical patent/JP2001031406A/en
Publication of JP2001031406A publication Critical patent/JP2001031406A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously produce high grade anhydrous sodium polysulfide by reacting metal sodium with sulfur, while recovering energy generated on the reaction as electric energy by the use of a solid electrolyte. SOLUTION: A metal vessel charged with melted sulfur is used as an anode chamber 4, and the inside of a cylindrical beta-alumina solid electrolyte 6 set at the center is used as a cathode chamber 5 in which metal sodium is charged. A metal spiral partition plate 15 is preferably set between both the vessels to produce the anhydrous sodium polysulfide so that raw materials gradually flow from the upper portion to the lower portion. An extraction U-shaped pipe 12 is attached to the lower portion of the anode chamber 4, and a branching pipe is disposed in the middle way of the pipe 12 for connecting to the outer space of the anode chamber 4, thus introducing the produced anhydrous sodium polysulfide into a receiving tank 3. The value of an electric current discharged from the battery with the production of the anhydrous sodium polysulfide is read from an ammeter 9, and on the basis of the value the continuous constant rate charging of the metal sodium is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高品位の無水多硫化ソ
ーダを製造する方法に関する。
The present invention relates to a method for producing high-quality anhydrous sodium polysulfide.

【0002】[0002]

【従来の技術】無水多硫化ソーダ製造法としては、トル
エン溶媒で金属ナトリウムのデスパージョンを造り、そ
こに硫黄を添加して無水多硫化ソーダを造る方法があ
る。この方法は、有機溶媒を使用する煩雑さに加え、反
応時間が長い欠点がある。一方、ナトリウムアルコラー
ト溶液に硫化水素ガスを吹き込んで、無水硫化ソーダを
生成させる方法もあるが、原料費が高くつく欠点等を有
する。また、これらの問題を解決するために、溶融した
無水多硫化ソータ゛中で反応させる方法が提案されている
(特許第2644030号公報)。しかし、この方法
は、高温条件で激しく攪拌することが必要であり、設備
的に不利であるばかりでなく、反応が急激に進行し、危
険を伴うことがあった。
2. Description of the Related Art As a method for producing anhydrous sodium polysulfide, there is a method in which a metallic sodium dispersion is prepared with a toluene solvent, and sulfur is added thereto to prepare anhydrous sodium polysulfide. This method has the disadvantage that the reaction time is long in addition to the complexity of using an organic solvent. On the other hand, there is a method in which hydrogen sulfide gas is blown into a sodium alcoholate solution to produce anhydrous sodium sulfide, but this method has a disadvantage that the raw material cost is high. In order to solve these problems, a method has been proposed in which a reaction is carried out in a molten anhydrous polysulfide sorter (Japanese Patent No. 2644030). However, this method requires vigorous stirring under high temperature conditions, which is not only disadvantageous in terms of equipment, but also has a risk that the reaction proceeds rapidly and involves danger.

【0003】[0003]

【発明が解決しようとする課題】金属ナトリウムと硫黄
をマイルドに反応させ、しかも高品位の無水多硫化ソー
ダを、連続的に製造する方法の提供を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for continuously producing high-grade anhydrous sodium polysulfide by mildly reacting metallic sodium and sulfur.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく、鋭意研究を重ねた結果、本発明を完成し
た。即ち、本発明は金属ナトリウムと硫黄とを、その際
発生する生成エネルギーを、固体電解質を使用して電気
エネルギーとして回収しながら、反応させることを特徴
とする無水多硫化ソーダの製造方法である。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, completed the present invention. That is, the present invention is a method for producing anhydrous sodium polysulfide, characterized in that metallic sodium and sulfur are reacted while the generated energy generated at that time is recovered as electric energy using a solid electrolyte.

【0005】[0005]

【発明の実施の形態】本発明で使用される固体電解質及
び製造装置の基本的構造は、ナトリウムー硫黄電池と同
じものが使用できる。即ち、電池放電時に、負極室とし
て働くセラミックス製の円筒形ベータ・アルミナの内部
には、溶融状態の金属ナトリウムが、仕込まれている。
その中には、外部と電気を出し入れする金属製のリード
線が、挿入されている。ベータ・アルミナの外側には、
ひとまわり大きな硫黄容器があり、ベータ・アルミナ全
体を包み込んでいる。ベータ・アルミナの外側には、溶
融状態の硫黄等が詰められている正極室がある。その中
に、黒鉛フェルト等の安定な材料でできた電極材が挿入
されていて、外部への電気の出し入れに使用される。外
部の正極室の外側は、加熱保温されていて、この装置全
体を、300〜350℃程度に保持されている。
BEST MODE FOR CARRYING OUT THE INVENTION The basic structure of a solid electrolyte and a manufacturing apparatus used in the present invention can be the same as that of a sodium-sulfur battery. That is, when the battery is discharged, molten metallic sodium is charged inside the ceramic cylindrical beta-alumina serving as the negative electrode chamber.
A metal lead wire for taking electricity in and out of the outside is inserted therein. Outside of beta alumina,
There's a bigger sulfur container around the entire beta alumina. Outside the beta-alumina is a cathode chamber filled with molten sulfur and the like. An electrode material made of a stable material such as graphite felt is inserted therein, and is used for taking electricity in and out. The outside of the external positive electrode chamber is heated and kept warm, and the entire apparatus is kept at about 300 to 350 ° C.

【0006】無水多硫化ソーダの生成に消費した金属ナ
トリウムを連続的に補充するため、無水多硫化ソーダの
生成とともに電池放電する電流値を、電池の外部回路に
セットした電流計から読取り、その値から金属ナトリウ
ムを連続定量仕込みを行う。その仕込量は、電流計の電
流値をiアンペアーとすれば、金属ナトリウムの必要流
量 Q1(g/min.) は、ファラデーの法則から次式で求め
られる。 Q1 =( Naの原子量/96,485)×i× 60 秒 ここでNaの原子量を22.99として計算すれば Q1 = 0.
0143×iとして、表される。金属ナトリウムを連続定量
仕込みを行うポンプとしては、電磁ポンプあるいはプラ
ンジャー型のポンプ等が適当である。硫黄の仕込みも、
プランジャー型ポンプで対応できるが、その仕込み量
は、金属ナトリウムの仕込み量と生成する無水多硫化ソ
ーダの組成から計算できる。Na2Snで示される無水多硫
化ソーダのn=3のものを得る場合の各原料の仕込重量比
は、次の反応式から求めることができる。 反応式; 2Na + 3S → Na2S3 分子量; 22.99×2 32.07×3 142.18 理論仕込量 および生成量; 32.3g 67.7g 100g 従って、硫黄仕込量 Q2(g/min.)は、次式で計算でき
る。 Q2 =( 67.7/32.3)×Q1 = 0.030×i 生成した無水多硫化ソーダの連続排出法は、正極室の下
部に抜出し管を取付け、それをU字状に曲げて正極室外
壁に沿って立上げ、正極室の上部空間部につなぐ。この
立上げ配管の途中で、正極室内の硫黄が充填されている
レベルより少し低めに分岐管を取付け、生成した無水多
硫化ソーダを受槽へ導入する。これらの配管はいずれも
加熱保温して、約350℃程度に保持して、生成物の固化
防止をはかる。このようにして取付けた抜出し管によっ
て、新たに生成した量だけ、自動的に抜き出す。こうし
て排出される生成物が、常に一定の組成に保つため (1)金属ナトリウムと硫黄の仕込み比を、一定に保
つ。 (2)正極室内で液の対流が生じないように、下層より
上層を常に温度を高くする。このため、正極室の加熱保
温に際しては、下部より上部に電気容量の大きいヒータ
ーを取付ける。 (3)正極室内に、スパイラル状の仕切を上から下に向
けて取付ける。これによって、上部から注入された原料
が、ショートパスすることなしに徐々に下部へ流れ、そ
の間に無水多硫化ソーダが生成してゆく。これら等の方
法を取ることにより、安定した品質の無水多硫化ソーダ
を連続して回収することができる。こうして、溶融状態
で受槽に回収した無水多硫化ソーダは、フレーカー等を
使用してフレーク状の製品等に加工されて出荷される
が、終始大気中の水分と接触させないようにして、吸湿
の防止をはかる必要がある。
In order to continuously replenish metallic sodium consumed for the production of anhydrous sodium polysulfide, a current value discharged from the battery along with the production of anhydrous sodium polysulfide is read from an ammeter set in an external circuit of the battery, and the value is read. To perform a continuous metered charge of metallic sodium. If the current value of the ammeter is i ampere, the required flow rate Q 1 (g / min.) Of the metallic sodium can be obtained by the following equation from Faraday's law. Q 1 = (atomic weight of Na / 96,485) × i × 60 seconds Here, if the atomic weight of Na is calculated as 22.99, Q 1 = 0.
[0143] It is expressed as x143i. An electromagnetic pump or a plunger type pump is suitable as a pump for continuously charging metal sodium. As for the preparation of sulfur,
A plunger type pump can be used, but the charged amount can be calculated from the charged amount of metallic sodium and the composition of the anhydrous sodium polysulfide formed. Charged weight ratio of each raw material in obtaining those n = 3 of anhydrous sodium polysulfide represented by Na 2 S n can be determined from the following reaction formula. Reaction formula; 2Na + 3S → Na 2 S 3 molecular weight; 22.99 × 2 32.07 × 3 142.18 Theoretical charge and production amount; 32.3g 67.7g 100g Therefore, the sulfur charge Q 2 (g / min.) Can be calculated. Q 2 = (67.7 / 32.3) × Q 1 = 0.030 × i In the continuous discharge method of the generated anhydrous sodium polysulfide, a draw-out tube is attached to the lower part of the positive electrode chamber, and it is bent in a U-shape to follow the outer wall of the positive electrode chamber And connect it to the upper space of the positive electrode compartment. In the middle of the start-up pipe, a branch pipe is attached slightly lower than the level filled with sulfur in the positive electrode chamber, and the produced anhydrous sodium polysulfide is introduced into a receiving tank. Each of these pipes is heated and kept at a temperature of about 350 ° C. to prevent solidification of the product. By the extraction pipe attached in this way, the newly generated amount is automatically extracted. In order to keep the product thus discharged at a constant composition, (1) the charging ratio of metallic sodium to sulfur is kept constant. (2) The temperature of the upper layer is always higher than that of the lower layer so that liquid convection does not occur in the positive electrode chamber. For this reason, when heating and maintaining the temperature of the positive electrode chamber, a heater having a large electric capacity is mounted above the lower part. (3) A spiral partition is installed in the positive electrode chamber from top to bottom. As a result, the raw material injected from the upper portion gradually flows to the lower portion without making a short pass, and during that time, anhydrous sodium polysulfide is generated. By employing these methods, it is possible to continuously recover anhydrous sodium polysulfide of stable quality. Thus, the anhydrous sodium polysulfide recovered in the receiving tank in a molten state is processed into flake-like products using a flaker, etc., and shipped. Need to be measured.

【0007】[0007]

【実施例】以下に実施例をあげて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
The present invention will be described below with reference to examples.
The present invention is not limited by these examples.

【0008】1)実験装置 円筒状のベータ・アルミナ製の固体電解質[6]の内側
を負極室[5]とし、その中に金属ナトリウムが仕込ま
れる。その固体電解質よりひとまわり大きい金属製円筒
容器を正極室[4]とする。その正極室の中央部に、固
体電解質[6]をセットする。その両容器の間に、金属
製のスパイラル状の仕切板[15]をセットし、液が上
部から下部に徐々に流れるようにする。その際、仕切板
を両容器と接触させ隙間をあけない方が望ましい。正極
室の底に抜出しU字管[12]を取付け、正極室に沿っ
て立上げ、同容器の上面に接続して、連通させる。立上
げ配管の途中、正極室の70%レベル当りに分岐管を取付
け、受器に接続する。正極室および配管を、電熱ヒータ
ーと保温材を使用して、加熱保温する。その際、温度管
理をしやすくするために、正極室と配管の電気系統は別
々とし、それぞれに取付けた温度コントローラーで、温
度制御を行う。また、正極室に対しては、ヒーター容量
を、下層部より上層部に2割大きいものを使用した。一
方、全体を電池としての機能を働かせるために、負極室
内にステンレス製の導電棒を入れ外部電気回路に接続す
る。対する正極室の中には、グラファイトフェルトを入
れ、それを外部電気回路端子に接続する。外部電気回路
には、電流計[9]、可変抵抗器[10]およびスイッ
チ[11]を接続する。負極室上部の蓋には、二本のノ
ズルが取付けられており、そのうちの1本には加熱保温
トレースが施されていて、上部にある金属ナトリウム溶
融槽[1]の底部に連結されている。その途中には、ス
テンレス製のニードルバルブを取付け、金属ナトリウム
の流量調整を行う。流量調整は、本来電磁流量計を使用
することによって、容易に制御できるが、本実験では取
扱量が少ないため、それを使用せず、金属ナトリウム溶
融槽にレベル計を取付け、手動で制御した。仕込量は、
電流計から読取った電流値から必要金属ナトリウム量を
換算して求めた。もう一本のノズルは、金属ナトリウム
溶融槽上層部とつないで、窒素ガスシールを連結した。
硫黄の仕込みは、金属ナトリウムと同様の方法で行っ
た。生成した無水多硫化ソーダは、正極室の底部に取付
けたU字管から、受槽[3]へ連続的にヘッド差で抜出
す。尚、受槽、正極室、硫黄溶融槽[2]は、いずれも
窒素ガスシールされていて、連通管でつないである。
又、装置全体において、必要個所には、電気絶縁処置を
施した。
1) Experimental Apparatus The inside of a cylindrical beta-alumina solid electrolyte [6] is used as a negative electrode chamber [5], into which metallic sodium is charged. A metal cylindrical container slightly larger than the solid electrolyte is defined as a positive electrode chamber [4]. A solid electrolyte [6] is set at the center of the positive electrode chamber. A metal spiral partition plate [15] is set between the two containers so that the liquid gradually flows from the upper part to the lower part. At that time, it is desirable that the partition plate be in contact with both containers so that no gap is left. A draw-out U-shaped tube [12] is attached to the bottom of the positive electrode chamber, and it is set up along the positive electrode chamber, connected to the upper surface of the container, and communicated. At the middle of the start-up piping, install a branch pipe around 70% level of the positive electrode chamber and connect it to the receiver. The positive electrode chamber and the piping are heated and maintained using an electric heater and a heat insulating material. At this time, in order to facilitate temperature control, the positive electrode chamber and the electric system of the pipe are separated from each other, and the temperature is controlled by a temperature controller attached to each. For the positive electrode chamber, a heater capacity 20% larger in the upper layer than in the lower layer was used. On the other hand, a stainless steel conductive rod is inserted into the negative electrode chamber and connected to an external electric circuit so that the whole functions as a battery. A graphite felt is placed in the positive electrode chamber, and is connected to an external electric circuit terminal. An ammeter [9], a variable resistor [10] and a switch [11] are connected to the external electric circuit. Two nozzles are attached to the lid at the top of the negative electrode chamber, and one of them is provided with a heat-insulating trace, and is connected to the bottom of the metal sodium melting tank [1] at the top. . On the way, a stainless steel needle valve is attached to adjust the flow rate of metallic sodium. The flow rate adjustment can be easily controlled by using an electromagnetic flow meter, but in this experiment, the handling amount was small, so a level meter was attached to the metal sodium melting tank without using it, and the flow rate was manually controlled. The preparation amount is
The required amount of metallic sodium was converted from the current value read from the ammeter and found. The other nozzle was connected to the upper part of the metallic sodium melting tank and connected with a nitrogen gas seal.
Sulfur was charged in the same manner as for sodium metal. The produced anhydrous sodium polysulfide is continuously extracted from the U-shaped tube attached to the bottom of the positive electrode chamber to the receiving tank [3] with a head difference. The receiving tank, the positive electrode chamber, and the sulfur melting tank [2] are all sealed with a nitrogen gas and are connected by a communication pipe.
In addition, electrical insulation treatment was applied to necessary portions in the entire apparatus.

【0009】2)実験および結果 負極室に金属ナトリウムを300g、正極室に硫黄を630gと
Na2S3 770gをそれぞれ窒素ガスシール下で、溶融状態で
仕込んだ。温度はすべて約350℃に保持し、外部電気回
路の電流計の電流値がゼロであることを確認した後、ス
イッチを入れて外部回路を接続した。しばらくすると、
徐々に電流が流れ始め、15A(アンペア)当りで一定に
なった。その時点から、金属ナトリウムを13g/hr.、硫
黄を27g/hr.の割合で仕込み続けた。これらの仕込みを
始めてしばらくして、受槽に製品が流出始めた。30時間
継続して、原料仕込みを続けた。この間、電流値は、1A
前後変動することがあったが、ほぼ15Aで推移した。受
槽に流出している液を、最初と12, 24, 30時間後にサン
プリングして分析し、表1の結果を得た。この結果か
ら、金属ナトリウムおよび硫黄仕込み始めた後、流出液
の硫黄組成がいったん下がるが、後で元の組成に戻って
いることがわかった。
2) Experiments and Results 300 g of metallic sodium in the negative electrode chamber and 630 g of sulfur in the positive electrode chamber
770 g of Na 2 S 3 was charged in a molten state under a nitrogen gas seal. The temperature was maintained at about 350 ° C., and after confirming that the current value of the ammeter of the external electric circuit was zero, the switch was turned on and the external circuit was connected. After a short time,
The current began to flow gradually and became constant at around 15A (ampere). From that point on, the metal sodium was continuously charged at a rate of 13 g / hr. And the sulfur at a rate of 27 g / hr. Some time after starting these preparations, the product began to flow into the receiving tank. Feeding was continued for 30 hours. During this time, the current value is 1A
Although it fluctuated back and forth, it remained at around 15A. The liquid flowing into the receiving tank was sampled at the beginning and after 12, 24, and 30 hours and analyzed, and the results shown in Table 1 were obtained. From these results, it was found that the sulfur composition of the effluent once decreased after the start of the charging of metallic sodium and sulfur, but later returned to the original composition.

【表1】 [Table 1]

【0010】[0010]

【発明の効果】本発明によれば、有機溶媒等の他の化合
物を媒体等として使用することなく、マイルドな条件で
高純度な無水多硫化ソーダを製造することができる。更
に本発明の製造法は、電力回収の可能性もある。
According to the present invention, high-purity anhydrous sodium polysulfide can be produced under mild conditions without using other compounds such as an organic solvent as a medium or the like. Furthermore, the manufacturing method of the present invention has a possibility of power recovery.

【0011】[0011]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で用いた装置のフローチャートである。FIG. 1 is a flowchart of an apparatus used in an embodiment.

【符号の説明】[Explanation of symbols]

1……金属ナトリウム溶融槽、2……硫黄溶融槽、3…
…受槽、4……正極室 5……負極室、6……β―アルミナ製固体電解質、7…
…負極導電棒、 8……正極導電棒、9……電流計、1
0……可変抵抗器、11……スイッチ、 12……抜出
しU字管、13……金属ナトリウム抜出し管、 14…
…硫黄抜出し管 15……スパイラル状仕切板
1 ... metal sodium melting tank, 2 ... sulfur melting tank, 3 ...
... Receiving tank, 4 ... Positive electrode chamber 5 ... Negative electrode chamber, 6 ... Solid electrolyte made of β-alumina, 7 ...
... Anode conductive rod, 8 ... Positive electrode rod, 9 ... Ammeter, 1
0: Variable resistor, 11: Switch, 12: U-shaped extraction tube, 13: Metal sodium extraction tube, 14:
... Sulfur extraction tube 15 ... Spiral-shaped partition plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属ナトリウムと硫黄とを、その際発生す
る生成エネルギーを、固体電解質を使用して電気エネル
ギーとして回収しながら、反応させることを特徴とする
無水多硫化ソーダの製造方法。
1. A method for producing anhydrous sodium polysulfide, characterized in that sodium metal and sulfur are reacted while the generated energy generated at that time is recovered as electric energy using a solid electrolyte.
【請求項2】金属ナトリウムおよび硫黄を連続的に仕込
み、無水多硫化ソーダを連続的に生成させ、かつ連続取
出しできることを特徴とする、請求項1記載の無水多硫
化ソーダの製造方法。
2. The method for producing anhydrous sodium polysulfide according to claim 1, wherein sodium sodium and sulfur can be continuously charged, and anhydrous sodium polysulfide can be continuously produced and continuously taken out.
【請求項3】反応槽内の温度分布を均一にするか、もし
くは、上層部温度を高めに保持することで、液対流の防
止をはかることを特徴とする請求項1記載の無水多硫化
ソーダの製造方法。
3. The anhydrous sodium polysulfide according to claim 1, wherein the liquid convection is prevented by making the temperature distribution in the reaction tank uniform or keeping the temperature of the upper layer high. Manufacturing method.
【請求項4】反応槽内にスパイラル状の仕切板を設置す
ることを特徴とする請求項1記載の無水多硫化ソーダの
製造方法。
4. The method for producing anhydrous sodium polysulfide according to claim 1, wherein a spiral partition plate is provided in the reaction tank.
JP11204051A 1999-07-19 1999-07-19 Production of anhydrous sodium polysulfide Withdrawn JP2001031406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11204051A JP2001031406A (en) 1999-07-19 1999-07-19 Production of anhydrous sodium polysulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11204051A JP2001031406A (en) 1999-07-19 1999-07-19 Production of anhydrous sodium polysulfide

Publications (1)

Publication Number Publication Date
JP2001031406A true JP2001031406A (en) 2001-02-06

Family

ID=16483945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11204051A Withdrawn JP2001031406A (en) 1999-07-19 1999-07-19 Production of anhydrous sodium polysulfide

Country Status (1)

Country Link
JP (1) JP2001031406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132901A (en) * 2021-11-17 2022-03-04 重庆长能环境科技有限公司 Method for preparing sodium sulfide from SDS desulfurization slag and product thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132901A (en) * 2021-11-17 2022-03-04 重庆长能环境科技有限公司 Method for preparing sodium sulfide from SDS desulfurization slag and product thereof

Similar Documents

Publication Publication Date Title
EP0162155B1 (en) Production of titanium metal sponge and apparatus therefor
KR100625726B1 (en) Niobium Powder and a Process for the Production of Niobium and/or Tantalum Powders
US6821495B2 (en) Method for the continuous production of silicon oxide powder
US3729397A (en) Method for the recovery of rare earth metal alloys
US3847667A (en) Alkali metal-porous conductive carbon battery having a molten alkali metal chloraluminate electrolyte
JP5469042B2 (en) Method for electrically producing alkali metal from alkali metal amalgam
US20020159941A1 (en) Silicon oxide powder and making method
CN107532317B (en) Method for producing an aluminium-scandium alloy and reactor for carrying out said method
CA1054671A (en) Alkali metal/sulfur cell with gas fuel cell electrode
KR20020003867A (en) Device and method for producing molten salts and use thereof
JP2001031406A (en) Production of anhydrous sodium polysulfide
US4214897A (en) Process for the extraction of non-ferrous metals from slags and other metallurgical by-products
CN110106526A (en) The method for preparing lithium metal based on solid electrolyte
US3192138A (en) Process for the production of hydrides and/or halogenated hydrides of the elements boron and silicon
US3273212A (en) Method of operating an electric furnace
WO2004007808A1 (en) Method and apparatus for producing niobium powder or tantalum powder
US3616438A (en) Production of aluminum and aluminum alloys from aluminum chloride
JPS5974617A (en) Porous tantalum condenser electrode and electrically platingmethod of producing same electrode
IL29545A (en) Continuous process for the electrolytic production of aluminium and apparatus therefor
CN101724898A (en) Method for preparing solar grade polycrystalline silicon material
US3284325A (en) Production of alkaline earth metals
JPH01152226A (en) Manufacture of metallic lithium
US2690421A (en) Electrolytic production of uranium powder
US3616439A (en) Continuous process for the electrolytic production of aluminum and apparatus therefor
JPS5942060B2 (en) Method for producing metal Ti

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003