JP2001028124A - Magnetic transferring method and magnetic transferring device - Google Patents

Magnetic transferring method and magnetic transferring device

Info

Publication number
JP2001028124A
JP2001028124A JP2000093293A JP2000093293A JP2001028124A JP 2001028124 A JP2001028124 A JP 2001028124A JP 2000093293 A JP2000093293 A JP 2000093293A JP 2000093293 A JP2000093293 A JP 2000093293A JP 2001028124 A JP2001028124 A JP 2001028124A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
transfer
slave medium
track direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093293A
Other languages
Japanese (ja)
Inventor
Kazunori Komatsu
和則 小松
Makoto Nagao
信 長尾
Shoichi Nishikawa
正一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2000093293A priority Critical patent/JP2001028124A/en
Publication of JP2001028124A publication Critical patent/JP2001028124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To transfer a high grade transfer pattern by magnetic transfer from its master carrier to a slave medium without depending on a position of a magnetic pattern. SOLUTION: The magnetic transferring method is such that a pair of electromagnets 8a-8b, 8c-8d are arranged in two pairs, each consisting of two single electromagnets having a magnetic field symmetrically in respect to an axis of a magnetic pole, with the like-poles faced oppositely, with a slave medium 4 held in between and with the axis of the magnetic pole positioned perpendicular to the slave medium 4 face; that the two pairs of electromagnets 8a-8b, 8c-8d are arranged in the manner that the polarity is different between the adjacent electromagnets; that, by rotating the slave medium 4 or two pairs of the electromagnets 8a-8d in a track direction and by applying a magnetic field in the track direction of the slave medium face, after the slave medium magnetization is preliminarily initial-DC-magnetized in the track direction, a magnetic transfer master carrier and the initial DC magnetized slave medium 4 are closely stuck together; and that magnetic transfer is performed by applying the transfer magnetic field in the track direction opposite to the initial-DC-magnetizing direction of the slave medium 4 face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に多
くの情報を一度に記録する方法に関し、とくに大容量、
高記録密度の磁気記録媒体への記録情報の転写方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recording a large amount of information at a time on a magnetic recording medium,
The present invention relates to a method for transferring recorded information to a magnetic recording medium having a high recording density.

【0002】[0002]

【従来の技術】デジタル画像の利用の進展等で、パソコ
ン等で取り扱う情報量が飛躍的に増加している。情報量
の増加によって、情報を記録する大容量で安価で、しか
も記録、読み出し時間の短い磁気記録媒体が求められて
いる。ハードディスク等の高密度記録媒体や、ZIP
(アイオメガ社)に代表される高密度のフロッピー(登
録商標)ディスク型の磁気記録媒体では、一般のフロッ
ピーディスクに比べて情報記録領域は狭トラックで構成
されており、狭いトラック幅を正確に磁気ヘッドを走査
し、信号の記録と再生を高S/N比で行うためには、ト
ラッキングサーボ技術を用いて正確な走査を行うことが
必要である。
2. Description of the Related Art The amount of information handled by personal computers and the like has been dramatically increased due to the progress of use of digital images and the like. Due to the increase in the amount of information, there is a demand for a large-capacity, inexpensive magnetic recording medium for recording information and a short recording and reading time. High-density recording media such as hard disks, ZIP
In a high-density floppy (registered trademark) disk-type magnetic recording medium represented by (Iomega Co., Ltd.), the information recording area is composed of narrow tracks as compared with a general floppy disk. In order to scan the head and perform signal recording and reproduction at a high S / N ratio, it is necessary to perform accurate scanning using tracking servo technology.

【0003】そこで、ハードディスク、リムーバル型の
磁気記録媒体のような大容量の磁気記録媒体では、ディ
スクの1周のなかである間隔でトラッキング用のサーボ
信号やアドレス情報信号、再生クロック信号等が記録さ
れた、いわゆるプリフォーマットがなされている。磁気
ヘッドはこのプリフォーマットの信号を読みとって自分
の位置を修正することで正確にトラック上を走行するこ
とが可能となっている。
Therefore, in a large-capacity magnetic recording medium such as a hard disk or a removable magnetic recording medium, a tracking servo signal, an address information signal, a reproduction clock signal, and the like are recorded at intervals within one rotation of the disk. The so-called pre-format has been done. The magnetic head can read the preformatted signal and correct its own position to accurately travel on the track.

【0004】現在のプリフォーマットはディスクを専用
のサーボ記録装置を用いて、1枚ずつ、1トラックずつ
記録して作製される。サーボ記録装置は高価であるこ
と、プリフォーマット作製に長時間を要するために製造
に長時間を要し、製造コストにも影響を及ぼすという問
題があった。
The current preformat is manufactured by recording disks one by one and one track by using a dedicated servo recording device. There is a problem that the servo recording device is expensive, and it takes a long time to manufacture the preformat, so that it takes a long time to manufacture, which also affects the manufacturing cost.

【0005】また、1トラックずつプリフォーマットを
行わずに磁気転写で行う方式も提案されている。例え
ば、特開昭63−183623号公報、特開平10−4
0544号公報、および特開平10−269566号公
報に転写技術が紹介されている。しかしながら、磁気転
写方法において転写時に印加する磁界の条件およびその
磁界を発生するための具体的な手段をはじめとして、実
際に即した提案は行われてこなかった。
There has also been proposed a method of performing magnetic transfer without preformatting one track at a time. For example, JP-A-63-183623, JP-A-10-4
Japanese Patent No. 0544 and Japanese Patent Application Laid-Open No. 10-269566 introduce a transfer technique. However, in the magnetic transfer method, no practical proposal has been made, including the conditions of the magnetic field applied during transfer and specific means for generating the magnetic field.

【0006】また、こうした従来の問題点を解決する記
録方法として、特開昭63−183623号公報や特開
平10−40544号公報において、基体の表面に情報
信号に対応する凹凸形状が形成され、凹凸形状の少なく
とも凸部表面に強磁性薄膜が形成された磁気転写用マス
ター担体の表面を、強磁性薄膜あるいは強磁性粉塗布層
が形成されたシート状もしくはディスク状磁気記録媒体
の表面に接触、あるいはさらに交流バイアス磁界、ある
いは直流磁界を印加して凸部表面を構成する強磁性材料
を励磁することによって、凹凸形状に対応する磁化パタ
ーンを磁気記録媒体に記録する方法が提案されている。
As a recording method for solving such a conventional problem, Japanese Unexamined Patent Publication (Kokai) No. 63-183623 and Japanese Patent Laid-Open Publication No. 10-45544 disclose a method of forming a concavo-convex shape corresponding to an information signal on the surface of a substrate. The surface of the magnetic transfer master carrier in which the ferromagnetic thin film is formed on at least the convex surface of the uneven shape is brought into contact with the surface of the sheet-shaped or disk-shaped magnetic recording medium on which the ferromagnetic thin film or the ferromagnetic powder coating layer is formed, Alternatively, a method has been proposed in which an AC bias magnetic field or a DC magnetic field is applied to excite a ferromagnetic material forming the surface of a convex portion, thereby recording a magnetization pattern corresponding to the uneven shape on a magnetic recording medium.

【0007】この方法では、磁気転写用マスター担体の
凸部表面をプリフォーマットすべき磁気記録媒体、すな
わちスレーブ媒体に密着させて同時に凸部を構成する強
磁性材料を励磁することにより、スレーブ媒体に所定の
フォーマットを形成する転写による方法であり、磁気転
写用マスター担体とスレーブ媒体との相対的な位置を変
化させることなく静的に記録を行うことができ、正確な
プリフォーマット記録が可能であるという特徴を有して
いる。しかも記録に要する時間も極めて短時間であると
いう特徴を有している。すなわち、前述した磁気ヘッド
から記録する方法では、通常数分から数十分は必要であ
り、且つ記録容量に比例して転写に要する時間はさらに
長くなるという問題があったが、この磁気転写法である
と、記録容量や記録密度に関係なく1秒以下で転写を完
了させることができると言う特徴と有している。
According to this method, the surface of the convex portion of the magnetic transfer master carrier is brought into close contact with a magnetic recording medium to be preformatted, that is, a slave medium, and at the same time, the ferromagnetic material constituting the convex portion is excited to form the slave medium. This is a method by transfer to form a predetermined format. Recording can be performed statically without changing the relative position between the magnetic transfer master carrier and the slave medium, and accurate preformat recording is possible. It has the feature of. In addition, the time required for recording is very short. That is, in the method of recording from the above-described magnetic head, there is a problem that usually several minutes to several tens of minutes are required, and the time required for transfer becomes longer in proportion to the recording capacity. In this case, the transfer can be completed in one second or less regardless of the recording capacity and the recording density.

【0008】図1を参照して、磁気転写用マスター担体
におけるプリフォーマット用のパターンの転写を説明す
る。図1(A)は磁気転写用マスター担体の磁性層面を
模式的に説明した平面図であり、図1(B)は転写過程
を説明する断面図である。磁気転写用マスター担体1の
トラックの所定の領域に、転写すべきトラッキング用の
サーボ信号やアドレス信号のパターンを形成したプリフ
ォーマット領域2とデータ領域3が形成されており、磁
気転写用マスター担体1とスレーブ媒体4とを密着させ
てトラック方向5の転写用外部磁界6を加えることによ
ってプリフォーマット情報をスレーブ媒体側に記録情報
7として転写することができるので、効率的にスレーブ
媒体を製造することができるものである。ところが、こ
のよう方法によって転写を行った場合には、情報信号品
位が悪いものが生じることがあり、サーボ動作が不正確
となるものが生じる場合があることが明かとなった。
Referring to FIG. 1, transfer of a preformat pattern on a magnetic transfer master carrier will be described. FIG. 1A is a plan view schematically illustrating a magnetic layer surface of a magnetic transfer master carrier, and FIG. 1B is a cross-sectional view illustrating a transfer process. In a predetermined area of a track of the magnetic transfer master carrier 1, a preformat area 2 and a data area 3 in which patterns of a tracking servo signal and an address signal to be transferred are formed are formed. The preformat information can be transferred as recording information 7 to the slave medium side by applying a transfer external magnetic field 6 in the track direction 5 by bringing the slave medium 4 into close contact with the slave medium 4, so that the slave medium can be manufactured efficiently. Can be done. However, it has been clarified that when the transfer is performed by such a method, the information signal quality may be poor, and the servo operation may be inaccurate in some cases.

【0009】[0009]

【発明が解決しようとする課題】本発明は、磁気転写用
マスター担体とスレーブ媒体とを密着させて外部磁界を
印加してプリフォーマットパターンの転写によって作製
したスレーブ媒体のサーボ動作が不正確となることを防
止して安定的な転写方法および装置を提供することを課
題とするものである。
SUMMARY OF THE INVENTION According to the present invention, the servo operation of a slave medium manufactured by transferring a preformat pattern by applying an external magnetic field while closely adhering a magnetic transfer master carrier and a slave medium becomes inaccurate. It is an object of the present invention to provide a stable transfer method and apparatus by preventing such a situation.

【0010】[0010]

【課題を解決するための手段】本発明は、基板の表面の
情報信号に対応する部分に磁性層が形成された磁気転写
用マスター担体と転写を受ける磁気記録媒体からなるス
レーブ媒体とを密着させて、転写用磁界を印加する磁気
転写方法において、磁極の軸に対称な磁界を有する単一
の電磁石を、磁極の軸をスレーブ媒体面に垂直にスレー
ブ媒体を挟んで同極同志を対向させて配置した一対の電
磁石を、隣接する電磁石の極性が異なるように二対を隣
接して配設し、スレーブ媒体あるいは二対の電磁石をト
ラック方向に回転させてスレーブ媒体面のトラック方向
に磁界を印加することにより、あらかじめスレーブ媒体
磁化をトラック方向に初期直流磁化した後、磁気転写用
マスター担体と上記初期直流磁化したスレーブ媒体とを
密着させ、スレーブ媒体面の初期直流磁化方向と逆向き
のトラック方向に転写用磁界を印加させ磁気転写を行う
磁気転写方法である。基板の表面の情報信号に対応する
部分に磁性層が形成された磁気転写用マスター担体と転
写を受ける磁気記録媒体からなるスレーブ媒体とを密着
させて、転写用磁界を印加する磁気転写方法において、
スレーブ媒体面のトラック方向に磁界を印加し、あらか
じめスレーブ媒体担体磁化をトラック方向に初期直流磁
化した後、磁極の軸に対称な磁界を有する単一の電磁石
を磁極の軸を磁気転写用マスター担体とスレーブ媒体を
密着した密着体面に垂直に密着体を挟んで同極同志を対
向させて配置した一対の電磁石を、隣接する電磁石の極
性が異なるように二対を隣接して配設し、二対の電磁石
あるいは磁気転写用マスター担体とスレーブ媒体の密着
体をトラック方向に回転させ、初期直流磁化方向と逆向
きのトラック方向の転写用磁界を印加させ磁気転写を行
う磁気転写方法である。
According to the present invention, a master carrier for magnetic transfer, in which a magnetic layer is formed at a portion corresponding to an information signal on the surface of a substrate, is brought into close contact with a slave medium comprising a magnetic recording medium to be transferred. In the magnetic transfer method of applying a transfer magnetic field, a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole is formed by opposing the same poles with the magnetic pole axis perpendicular to the slave medium surface with the slave medium interposed therebetween. Two pairs of the arranged electromagnets are arranged next to each other so that the adjacent electromagnets have different polarities, and the slave medium or the two pairs of electromagnets are rotated in the track direction to apply a magnetic field in the track direction on the slave medium surface. By performing the initial DC magnetization of the slave medium magnetization in the track direction in advance, the master carrier for magnetic transfer and the slave medium with the initial DC magnetization are brought into close contact with each other, and the A magnetic transfer method for performing magnetic transfer by applying a transfer magnetic field in the track direction of the initial DC magnetization opposite to the direction of the medium surface. A magnetic transfer method in which a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on the surface of the substrate and a slave medium made of a magnetic recording medium to be transferred are brought into close contact with each other, and a transfer magnetic field is applied.
A magnetic field is applied in the track direction of the slave medium surface, the magnetization of the slave medium carrier is initially DC-magnetized in the track direction, and then a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole is moved to the master carrier for magnetic transfer. And a pair of electromagnets having the same polarity facing each other with the contact body perpendicular to the surface of the contact body where the slave medium is in close contact with the slave medium. This is a magnetic transfer method in which a pair of electromagnets or a magnetic transfer master carrier and a close contact body of a slave medium are rotated in the track direction, and a transfer magnetic field in a track direction opposite to the initial DC magnetization direction is applied to perform magnetic transfer.

【0011】磁極の軸に対称な磁界を有する単一の電磁
石を磁極の軸を磁気転写用マスター担体とスレーブ媒体
の密着体面に垂直に密着体を挟んで同極同志を対向させ
て配置した一対の電磁石を、隣接する電磁石の極性が異
なるように二対を隣接して配設した時に発生する磁界の
トラック方向における磁界強度分布がスレーブ媒体の保
磁力Hcs以上の磁界強度部分をトラック方向位置で少な
くとも1カ所以上有する前記の磁気転写方法である。磁
極の軸に対称な磁界を有する単一の電磁石を磁極の軸を
スレーブ媒体面に垂直にスレーブ媒体を挟んで同極同志
を対向させて配置した一対の電磁石を、隣接する電磁石
の極性が異なるように二対を隣接して配設した時に発生
する磁界のトラック方向における磁界強度分布が、スレ
ーブ媒体の保磁力Hcs以上の磁界強度部分をトラック方
向位置で一方向のみで有しており、逆方向の磁界強度は
いずれのトラック方向位置でもスレーブ媒体の保磁力H
cs未満である前記の磁気転写方法である。
A pair of single electromagnets having a magnetic field symmetrical to the axis of the magnetic pole are arranged such that the axis of the magnetic pole is opposed to the poles of the magnetic transfer master carrier and the slave medium, with the poles perpendicular to the surface of the adhesive body. The magnetic field intensity distribution in the track direction of the magnetic field generated when two pairs of the electromagnets are arranged adjacent to each other so that the adjacent electromagnets have different polarities has a magnetic field intensity portion greater than the coercive force Hcs of the slave medium in the track direction position. Wherein the magnetic transfer method has at least one or more locations. A single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole, a pair of electromagnets with the axis of the magnetic pole perpendicular to the slave medium surface with the same poles facing each other with the slave medium interposed, and the polarity of adjacent electromagnets is different As described above, the magnetic field intensity distribution in the track direction of the magnetic field generated when two pairs are arranged adjacent to each other has a magnetic field intensity portion greater than the coercive force Hcs of the slave medium in only one direction at the track direction position, The magnetic field strength in the opposite direction is determined by the coercive force H of the slave medium at any position in the track direction.
The above magnetic transfer method, wherein the magnetic transfer method is less than cs .

【0012】磁極の軸に対称な磁界を有する単一の電磁
石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体を
挟んで同極同志を対向させて配置した一対の電磁石を、
隣接する電磁石の極性が異なるように二対を隣接して配
設した時に発生する磁界のトラック方向磁界強度分布に
おいて、最適転写磁界強度範囲の最大値を超える磁界強
度がいずれのトラック方向位置でも存在せず、最適転写
磁界強度範囲内の磁界強度となる部分が一つのトラック
方向で少なくとも1カ所以上存在し、これと逆向きのト
ラック方向の磁界強度がいずれのトラック方向位置にお
いても最適転写磁界強度範囲の最小値未満である前記の
磁気転写方法である。最適転写磁界強度が、スレーブ媒
体の保磁力Hcsに対して0.6×Hcs〜1.3×Hc
sである前記の磁気転写方法である。
A pair of electromagnets having a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same poles opposed to each other with the slave medium interposed therebetween,
In the track direction magnetic field strength distribution of the magnetic field generated when two pairs are arranged adjacently so that the polarities of adjacent electromagnets are different, a magnetic field strength exceeding the maximum value of the optimum transfer magnetic field strength range exists at any position in the track direction. However, there is at least one or more magnetic field strengths within the optimum transfer magnetic field strength range in one track direction, and the magnetic field strength in the opposite track direction is the optimum transfer magnetic field strength at any position in the track direction. The above magnetic transfer method, wherein the magnetic transfer method is less than the minimum value of the range. Optimal transfer magnetic field intensity, 0.6 × Hcs~1.3 × Hc respect coercivity H cs of the slave medium
s is the magnetic transfer method described above.

【0013】また、基板の表面の情報信号に対応する部
分に磁性層が形成された磁気転写用マスター担体と転写
を受ける磁気記録媒体からなるスレーブ媒体とを密着さ
せて転写用磁界を印加する磁気転写装置において、磁極
の軸に対称な磁界を有する単一の電磁石を磁極の軸をス
レーブ媒体面に垂直にスレーブ媒体を挟んで同極同志を
対向させて配置した一対の電磁石を、隣接する電磁石の
極性が異なるように二対を隣接して配設し、スレーブ媒
体あるいは二対の電磁石をトラック方向に回転させ、ス
レーブ媒体面のトラック方向に磁界を印加することによ
り、あらかじめスレーブ媒体磁化をトラック方向に初期
直流磁化する初期直流磁化手段、磁気転写用マスター担
体と上記初期直流磁化したスレーブ媒体とを密着させる
密着手段、スレーブ媒体面の初期直流磁化方向と逆向き
のトラック方向に転写用磁界を印加させる転写磁界印加
手段からなる磁気転写装置である。基板の表面の情報信
号に対応する部分に磁性層が形成された磁気転写用マス
ター担体と転写を受ける磁気記録媒体からなるスレーブ
媒体とを密着させて転写用磁界を印加する磁気転写装置
において、スレーブ媒体面のトラック方向に磁界を印加
しあらかじめスレーブ媒体磁化をトラック方向に初期直
流磁化する初期直流磁化手段、磁気転写用マスター担体
と上記初期直流磁化したスレーブ媒体を密着させる密着
手段、磁極の軸に対称な磁界を有する単一の電磁石を磁
極の軸をスレーブ媒体面に垂直にスレーブ媒体と磁気転
写用マスター担体との密着体を挟んで同極同志を対向さ
せて配置した一対の電磁石を、隣接する電磁石の極性が
異なるように二対を隣接して配設し、スレーブ媒体ある
いは二対の電磁石をトラック方向に回転させ、初期直流
磁化方向と逆向きのトラック方向の転写用磁界を印加さ
せる磁気転写手段を有する磁気転写装置である。
Also, a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on the surface of the substrate and a slave medium composed of a magnetic recording medium to be transferred are brought into close contact with each other to apply a transfer magnetic field. In the transfer device, a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole is formed by a pair of electromagnets arranged with the magnetic pole axis perpendicular to the slave medium surface with the same poles facing each other with the slave medium interposed therebetween. The two pairs of magnets are arranged adjacent to each other so that the polarities are different, and the slave medium or two pairs of electromagnets are rotated in the track direction, and a magnetic field is applied in the track direction of the slave medium surface, thereby preliminarily tracking the slave medium magnetization. Initial DC magnetizing means for initial DC magnetization in the direction, adhesion means for bringing the master medium for magnetic transfer into close contact with the slave medium having the initial DC magnetized, A magnetic transfer apparatus comprising a transfer magnetic field applying means for applying a transfer magnetic field to the initial DC magnetization opposite to the direction of the track direction of the medium surface. In a magnetic transfer apparatus for applying a transfer magnetic field by closely adhering a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on the surface of a substrate and a slave medium made of a magnetic recording medium to be transferred, Initial DC magnetizing means for applying a magnetic field in the track direction of the medium surface and initial DC magnetizing the slave medium magnetization in the track direction in advance, adhesion means for bringing the master medium for magnetic transfer into close contact with the initial DC magnetized slave medium, and a magnetic pole axis. A single electromagnet having a symmetric magnetic field and a pair of electromagnets arranged with the magnetic pole axis perpendicular to the slave medium surface and with the same poles facing each other with the close contact body of the slave medium and the magnetic transfer master carrier interposed, Two pairs are arranged adjacent to each other so that the polarity of the electromagnets to be driven is different, and the slave medium or the two pairs of electromagnets are rotated in the track direction, and A magnetic transfer apparatus having a magnetic transfer means for applying the track direction transfer magnetic field in the magnetization direction and opposite.

【0014】磁極の軸に対称な磁界を有する単一の電磁
石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体を
挟んで同極同志を対向させて配置した一対の電磁石を、
隣接する電磁石の極性が異なるように二対を隣接して配
設した時に発生する磁界のトラック方向における磁界強
度分布がスレーブ媒体の保磁力Hcs以上の磁界強度部分
をトラック方向位置で少なくとも1カ所以上有する前記
の磁気転写装置である。 磁極の軸に対称な磁界を有す
る単一の電磁石を磁極の軸をスレーブ媒体面に垂直にス
レーブ媒体と磁気転写用マスター担体の密着体を挟んで
同極同志を対向させて配置した一対の電磁石を、隣接す
る電磁石の極性が異なるように二対を隣接して配設した
時に発生する磁界のトラック方向における磁界強度分布
が、スレーブ媒体の保磁力Hcs以上の磁界強度部分をト
ラック方向位置で一方向のみで有しており、逆方向の磁
界強度はいずれのトラック方向位置でも、スレーブ媒体
の保磁力Hcs未満である前記の磁気転写装置である。
A pair of electromagnets having a single electromagnet having a magnetic field symmetrical with respect to the axis of the magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same polarity facing each other with the slave medium interposed therebetween are:
A magnetic field intensity distribution in the track direction of a magnetic field generated when two pairs are arranged adjacent to each other so that adjacent electromagnets have different polarities has at least one magnetic field intensity portion in the track direction at least equal to the coercive force Hcs of the slave medium. The above magnetic transfer apparatus has the above. A pair of electromagnets having a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole, with the axis of the magnetic pole perpendicular to the surface of the slave medium, and with the same poles facing each other with the close contact body between the slave medium and the master carrier for magnetic transfer The magnetic field strength distribution in the track direction of the magnetic field generated when two pairs are arranged adjacently so that the polarities of the adjacent electromagnets are different, the magnetic field strength part of the coercive force Hcs or more of the slave medium at the track direction position. In the above magnetic transfer device, the magnetic transfer device has only one direction, and the magnetic field intensity in the opposite direction is less than the coercive force Hcs of the slave medium at any position in the track direction.

【0015】磁極の軸に対称な磁界を有する単一の電磁
石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体を
挟んで同極同志を対向させて配置した一対の電磁石を、
隣接する電磁石の極性が異なるように二対を隣接して配
設した時に発生する磁界のトラック方向磁界強度分布に
おいて、最適転写磁界強度範囲の最大値を超える磁界強
度がいずれのトラック方向位置でも存在せず、最適転写
磁界強度範囲内の磁界強度となる部分が一つのトラック
方向で少なくとも1カ所以上存在し、これと逆向きのト
ラック方向の磁界強度がいずれのトラック方向位置にお
いても、最適転写磁界強度範囲最小値未満である前記の
磁気転写装置である。最適転写磁界強度がスレーブ媒体
の保磁力Hcsに対して0.6×Hcs〜1.3×Hcs
である前記の磁気転写装置である。
A pair of electromagnets having a single electromagnet having a magnetic field symmetrical with respect to the axis of the magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same polarity facing each other with the slave medium interposed therebetween,
In the track direction magnetic field strength distribution of the magnetic field generated when two pairs are arranged adjacently so that the polarities of adjacent electromagnets are different, a magnetic field strength exceeding the maximum value of the optimum transfer magnetic field strength range exists at any position in the track direction. However, at least one portion having a magnetic field strength within the optimum transfer magnetic field strength range exists in one track direction, and the magnetic field strength in the opposite track direction is the optimum transfer magnetic field strength in any track direction position. The magnetic transfer device according to the above, wherein the intensity is less than the minimum value of the intensity range. 0.6 × optimal transfer magnetic field intensity with respect to the coercive force H cs of the slave medium Hcs~1.3 × Hcs
The magnetic transfer device described above.

【0016】[0016]

【発明の実施の形態】本発明者らは、磁気転写用マスタ
ー担体とスレーブ媒体とを密着させて外部より転写用磁
界を印加した際に、転写が不安定で信号品位が低下した
部分が生じるのは、転写時に印加する磁界が適切でない
ために信号品位が低下することが原因であることを見い
だし本発明を想到したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have found that when a transfer magnetic field is applied from the outside while a magnetic transfer master carrier and a slave medium are brought into close contact with each other, a portion where transfer is unstable and signal quality is reduced is generated. The present inventors have found that the reason is that the signal quality is degraded due to an inappropriate magnetic field applied at the time of transfer, and have arrived at the present invention.

【0017】磁気転写用マスター担体からスレーブ担体
への磁気転写においては、スレーブ媒体の保持力Hcs
りも高い外部磁界を印加すると、スレーブの磁化状態が
すべて印加した方向に磁化し、このために本来転写すべ
きパターンの記録が行なわれないと一般には考えられて
いた。例えば、特開平10−40544号公報において
も、段落番号0064において、磁気記録媒体の保持力
と同程度以下とすることが好ましいことが記載されてい
る。しかしながら、本発明者等の検討によって本方式に
おける磁気転写の原理は図1に示す様に、磁気転写用マ
スター担体1のスレーブ媒体4に実質的に接触している
凸の磁性層部分では転写用外部磁界6は、その凸部分へ
吸収される磁界6aとなり、接触しているスレーブ媒体
4の磁性層では記録できる磁界強度とならないが、磁気
転写用マスター担体1のスレーブ媒体4に接触していな
い凹の部分に対応するスレーブ媒体4の磁性層では記録
できる磁界強度となり、図の7に示す様に転写用外部磁
界6の方向に磁化され、磁気転写用マスター担体1のプ
リフォーマット用パターンをスレーブ媒体4へ記録情報
7として転写することができるものであることが判明し
た。したがって、磁気転写用マスター担体からスレーブ
媒体への転写の際には、スレーブ媒体と接触している部
分は多くの磁界が磁気転写用マスター担体のパターン部
に入るために、スレーブ媒体には、保磁力Hcsよりも高
い転写磁界を印加しても反転しないものと考えられる。
そして、スレーブ媒体の保磁力Hcsと比較して特定の関
係の強度を有する転写用磁界を適用することによって信
号品位の高いスレーブ媒体を得ることができる。
In the magnetic transfer from the magnetic transfer master carrier to the slave carrier, when an external magnetic field higher than the coercive force Hcs of the slave medium is applied, all the magnetization states of the slave are magnetized in the applied direction. It was generally thought that a pattern to be originally transferred was not recorded. For example, Japanese Patent Application Laid-Open No. 10-45544 also describes in paragraph 0064 that it is preferable that the holding force be equal to or less than the coercive force of the magnetic recording medium. However, according to the study of the present inventors, the principle of magnetic transfer in this method is as shown in FIG. 1, in which the transfer magnetic layer portion of the magnetic transfer master carrier 1 substantially in contact with the slave medium 4 is used. The external magnetic field 6 becomes a magnetic field 6 a absorbed by the convex portion, and does not have a magnetic field strength that can be recorded in the magnetic layer of the slave medium 4 in contact, but does not contact the slave medium 4 of the magnetic transfer master carrier 1. The magnetic layer of the slave medium 4 corresponding to the concave portion has a recordable magnetic field intensity, and is magnetized in the direction of the transfer external magnetic field 6 as shown in FIG. It has been found that the information can be transferred to the medium 4 as the recording information 7. Therefore, during the transfer from the magnetic transfer master carrier to the slave medium, the portion in contact with the slave medium has a large amount of magnetic field entering the pattern portion of the magnetic transfer master carrier, so that the slave medium is not protected. It is considered that even if a transfer magnetic field higher than the magnetic force Hcs is applied, the transfer is not reversed.
Then, by applying a transfer magnetic field having a specific relationship strength as compared with the coercive force Hcs of the slave medium, a slave medium with high signal quality can be obtained.

【0018】明瞭な転写をいかなるパターンにおいても
実現するためには、スレーブ媒体をあらかじめ一方向に
十分大きな磁界で、保磁力Hcs以上、好ましくはHcs
1.2倍以上で初期直流磁化しておき、特定の強度の転
写用磁界、すなわち最適転写磁界強度範囲の磁界を印加
するものであり、好ましい転写用磁界は、 0.6×Hcs≦転写用磁界≦1.3×Hcs であり、その向きは初期直流磁化の向きと逆向きに印加
するものである。また、転写用磁界はより好ましくは
0.8〜1.2Hcsであり、さらに好ましくは1〜1.
1Hcsである。
In order to realize clear transfer in any pattern, the slave medium is subjected to initial DC magnetization with a sufficiently large magnetic field in one direction and a coercive force Hcs or more, preferably 1.2 times Hcs or more. A transfer magnetic field having a specific strength, that is, a magnetic field in an optimum transfer magnetic field strength range is applied. A preferable transfer magnetic field is 0.6 × H cs ≦ transfer magnetic field ≦ 1.3 × H cs . The direction is applied in a direction opposite to the direction of the initial DC magnetization. Also, transfer magnetic field is more preferably 0.8~1.2H cs, more preferably 1 to 1.
Is a 1H cs.

【0019】また、サーボ用のプリフォーマットを行う
磁気記録媒体は、円盤状の記録媒体であり、回転の中心
から同心円状に描かれたトラックに沿って情報を記録し
ている。このような円盤状磁気記録媒体において、放射
状のパターンを転写する磁界印加方法は、スレーブ媒体
面のトラック方向、すなわち任意のトラック方向位置で
円弧の接線方向に磁界を印加しあらかじめスレーブ媒体
磁化をトラック方向に初期直流磁化する。
The magnetic recording medium for performing servo preformatting is a disk-shaped recording medium in which information is recorded along tracks concentrically drawn from the center of rotation. In such a disk-shaped magnetic recording medium, a magnetic field application method of transferring a radial pattern is performed by applying a magnetic field in the track direction of the slave medium surface, that is, in the tangential direction of the circular arc at an arbitrary track direction position, and then preliminarily tracks the slave medium magnetization. Initial DC magnetization in the direction.

【0020】次いで、磁気転写用マスター担体と上記初
期直流磁化したスレーブ媒体を密着させスレーブ媒体面
のトラック方向に転写用磁界を印加させ磁気転写を行う
が、あらかじめスレーブ媒体にトラック方向磁界を印加
し初期直流磁化させた方向と磁気転写を行うために印加
する転写用磁界とがスレーブ媒体面において逆向きであ
ることが必要である。
Next, the master carrier for magnetic transfer is brought into close contact with the slave medium which has been subjected to the initial DC magnetization, and a transfer magnetic field is applied in the track direction on the surface of the slave medium to perform magnetic transfer. It is necessary that the direction of the initial DC magnetization and the transfer magnetic field applied for performing the magnetic transfer are opposite to each other on the slave medium surface.

【0021】したがって円盤状媒体の全面にわたって上
記印加磁界条件の磁界を印加するためには、スレーブ媒
体の保磁力Hcs以上の磁界強度部分をトラック方向位置
で少なくとも1カ所以上有する様な磁界強度分布の磁界
をトラック方向の一部分で発生させ、スレーブ媒体ある
いは磁界をトラック方向に1周の回転をさせることによ
り初期直流磁化を実現することができる。
Therefore, in order to apply a magnetic field under the above-mentioned applied magnetic field condition over the entire surface of the disk-shaped medium, a magnetic field intensity distribution such that at least one magnetic field intensity portion of the slave medium having a coercive force Hcs or more in the track direction position is provided. Is generated in a part of the track direction, and the slave medium or the magnetic field is rotated one turn in the track direction to realize the initial DC magnetization.

【0022】また、スレーブ媒体の保磁力Hcs以上の磁
界強度部分をトラック方向位置で一方向のみで有してお
り、逆方向の磁界強度はいずれのトラック方向位置でも
スレーブ媒体の保磁力Hcs未満である様な磁界強度分
布の磁界をトラック方向の一部分で発生させ、スレーブ
媒体あるいは磁界をトラック方向に1回転させることに
より、あらかじめスレーブ媒体磁化をトラック方向に初
期直流磁化するための磁界を印加することができる。
Further, the coercive force H cs or more field intensity portion of the slave medium in track direction position has in only one direction, the opposite direction of the magnetic field strength coercivity than Hcs of the slave medium at any track direction position By generating a magnetic field having a magnetic field intensity distribution as described above in a part of the track direction and rotating the slave medium or the magnetic field once in the track direction, a magnetic field for initial DC magnetization of the slave medium magnetization in the track direction is applied in advance. be able to.

【0023】そして、最適転写磁界強度範囲の最大値を
越える磁界強度がいずれのトラック方向位置でも存在せ
ず、最適転写磁界強度範囲内の磁界強度となる部分が一
つのトラック方向で少なくとも一カ所以上存在し、これ
と逆向きのトラック方向の磁界強度がいずれのトラック
方向位置においても最適転写磁界強度範囲の最小値未満
である様な磁界強度分布の磁界をトラック方向の一部分
で発生させ、磁気転写用マスター担体と初期直流磁化し
たスレーブ担体を密着させた状態でトラック方向に回転
させるかあるいは磁界をトラック方向に回転させること
により、スレーブ媒体面のトラック方向に転写用磁界を
印加することによっても実現できる。
There is no magnetic field strength exceeding the maximum value of the optimum transfer magnetic field strength range at any track direction position, and at least one portion having the magnetic field strength within the optimum transfer magnetic field strength range in one track direction is provided. A magnetic field having a magnetic field intensity distribution such that the magnetic field intensity in the opposite track direction is less than the minimum value of the optimum transfer magnetic field intensity range at any position in the track direction is generated in a part of the track direction. It can also be realized by applying a transfer magnetic field in the track direction of the slave medium surface by rotating the master carrier and the initial DC magnetized slave carrier in the track direction while keeping them close together, or by rotating the magnetic field in the track direction. it can.

【0024】また、初期直流磁化および磁気転写に用い
る電磁石は、スレーブ媒体の一端のトラックから他端の
トラックまでの距離と同程度の大きさ、もしくはその距
離よりも大きいものが好ましく、円盤状のスレーブ媒体
にあってはスレーブ媒体の最外周トラックから最内周ト
ラックまでの半径方向距離と同程度の大きさもしくはそ
の距離よりも大きいものが好まれる。このような大きさ
のものを用いることによってスレーブ媒体、スレーブ媒
体と磁気転写用マスター担体との密着体、もしくは電磁
石のいずれかをトラック全長にわたって一方向に移動さ
せるか1周の回転をするのみでスレーブ媒体面に均一な
磁界を与えることが可能となる。また、電磁石を用いて
印加する磁界強度は全トラック位置において均一なもの
が要求され、そのばらつきの大きさは全トラック位置で
±5%以内が好ましく、さらには±2.5%以内とする
ことがより好ましい。
The electromagnet used for initial DC magnetization and magnetic transfer preferably has a size approximately equal to or greater than the distance from one end track to the other end track of the slave medium. In the case of the slave medium, it is preferable that the slave medium has a size approximately equal to or larger than the radial distance from the outermost track to the innermost track of the slave medium. By using the one having such a size, only the slave medium, the close contact body between the slave medium and the master carrier for magnetic transfer, or the electromagnet is moved in one direction over the entire length of the track or rotated only once. It is possible to apply a uniform magnetic field to the slave medium surface. In addition, the intensity of the magnetic field applied by using an electromagnet is required to be uniform at all track positions, and the magnitude of the variation is preferably within ± 5% at all track positions, and more preferably within ± 2.5%. Is more preferred.

【0025】本発明の転写方法および転写装置において
は、磁石として電磁石を用いているので、初期直流磁化
あるいは転写磁界を作用させる際に、電磁石とスレーブ
媒体との距離、あるいはスレーブ媒体面に対する傾きの
調整に加えて電磁石へ供給する励磁電流値の調整によっ
てスレーブ媒体に作用する磁界の強度の調整が可能とな
り、様々な保磁力のスレーブ媒体、磁気転写用マスター
担体を用いた磁気転写を行うことが可能となる。
In the transfer method and the transfer apparatus of the present invention, since an electromagnet is used as a magnet, the distance between the electromagnet and the slave medium or the inclination of the slave medium with respect to the slave medium surface can be reduced when the initial DC magnetization or transfer magnetic field is applied. By adjusting the exciting current value supplied to the electromagnet in addition to the adjustment, the intensity of the magnetic field acting on the slave medium can be adjusted, and the magnetic transfer using the slave medium having various coercive forces and the magnetic transfer master carrier can be performed. It becomes possible.

【0026】以下に図面を参照して、転写方法および転
写装置について説明する。図2は、スレーブ媒体面に垂
直にスレーブ媒体を挟んで、二対の電磁石を隣接して配
設したた磁界の印加方法を説明する図である。図2
(A)は、スレーブ媒体4の上面および下面に、磁極の
軸に対して対称な磁界を有する一対の電磁石8a、8b
を同種の磁極を対向させて配置し、さらにこれに隣接
し、隣接する磁極が反対の極性となるように、さらに一
対の電磁石8c、8dを配置したものである。このよう
に配置した状態で、スレーブ媒体4を回転する例を示し
ており、それぞれ直流電源9a、9b、9c、9dから
電磁石8a、8b、8c、8dに直流の励磁電流が与え
られている。
A transfer method and a transfer device will be described below with reference to the drawings. FIG. 2 is a diagram illustrating a method of applying a magnetic field in which two pairs of electromagnets are arranged adjacent to each other with the slave medium interposed therebetween perpendicular to the slave medium surface. FIG.
(A) shows a pair of electromagnets 8a and 8b having a magnetic field symmetrical with respect to the axis of the magnetic pole on the upper and lower surfaces of the slave medium 4.
And a pair of electromagnets 8c and 8d are further arranged so that the same type of magnetic poles are opposed to each other, and the adjacent magnetic poles have the opposite polarity. An example in which the slave medium 4 is rotated in such a state is shown, and a DC exciting current is given to the electromagnets 8a, 8b, 8c, 8d from DC power supplies 9a, 9b, 9c, 9d, respectively.

【0027】スレーブ媒体4の上面および下面に単一の
電磁石8aおよび8bを同極同士を対向して配置したの
で、図2(B)に示すように、8aおよび8bの磁界は
相互に反撥をし、電磁石8aの磁界は隣接するもう一対
の電磁石のうちの電磁石8cへと向かい、また電磁石8
bの磁界は隣接するもう一対の電磁石のうち、電磁石8
dへと向かう磁界が生じ、スレーブ媒体4の面に対し
て、磁界10が与えられる。
Since the single electromagnets 8a and 8b are arranged on the upper and lower surfaces of the slave medium 4 with the same poles facing each other, the magnetic fields of 8a and 8b repel each other as shown in FIG. Then, the magnetic field of the electromagnet 8a is directed to the electromagnet 8c of the other pair of adjacent electromagnets.
The magnetic field b is the electromagnet 8 of the other pair of adjacent electromagnets.
A magnetic field toward d is generated, and a magnetic field 10 is applied to the surface of the slave medium 4.

【0028】図2(C)は、スレーブ媒体に与えられる
磁界強度を示す図である。スレーブ媒体に与えられる磁
界には、スレーブ媒体の保磁力Hcsを超えるピーク11
が存在しており、スレーブ媒体を回転させるかあるいは
電磁石を回転させることによってスレーブ媒体を初期直
流磁化をすることができる。隣接して配置された対向す
る電磁石の間の距離は、隣接する電磁石によって形成さ
れる磁界がスレーブ担体に対してスレーブ担体の保磁力
以上の強度の磁界を与えることが可能な距離に配置され
れば良い。
FIG. 2C is a diagram showing the magnetic field intensity applied to the slave medium. The magnetic field applied to the slave medium has a peak 11 exceeding the coercive force Hcs of the slave medium.
Exists, and the slave medium can be initially DC-magnetized by rotating the slave medium or rotating the electromagnet. The distance between the opposing electromagnets arranged adjacent to each other is set such that the magnetic field formed by the adjacent electromagnets can give the slave carrier a magnetic field having a strength equal to or higher than the coercive force of the slave carrier. Good.

【0029】図3は、磁気転写用マスター担体からスレ
ーブ媒体への転写方法を説明する図である。図3(A)
は、スレーブ媒体と磁気転写用マスター担体との密着体
への磁界の印加を説明する図であり、図3(B)は、図
3(A)の磁界の印加によって与えられる磁界の強度を
説明する図である。スレーブ媒体4を磁気転写用マスタ
ー担体1と密着させた密着体12の上面および下面に、
磁極の軸に対して対称な磁界を有する一対の電磁石8
a、8bを同種の磁極を対向させて配置し、さらにこれ
に隣接し、隣接する磁極が反対の極性となるように、電
磁石8c、8dを配置したものである。このように配置
した状態で、密着体12を回転する例を示している。
FIG. 3 is a diagram for explaining a method of transferring from a magnetic transfer master carrier to a slave medium. FIG. 3 (A)
FIG. 3B is a diagram for explaining the application of a magnetic field to the adhered body between the slave medium and the master carrier for magnetic transfer, and FIG. 3B illustrates the strength of the magnetic field given by the application of the magnetic field in FIG. FIG. On the upper and lower surfaces of the contact body 12 in which the slave medium 4 is in close contact with the magnetic transfer master carrier 1,
A pair of electromagnets 8 having a magnetic field symmetric with respect to the axis of the magnetic pole
a and 8b are arranged such that magnetic poles of the same type are opposed to each other, and electromagnets 8c and 8d are arranged adjacent thereto so that adjacent magnetic poles have opposite polarities. An example in which the close contact body 12 is rotated in such a state is shown.

【0030】密着体12の上面および下面に設けた単一
の電磁石8aおよび8bに同極同士を対向して配置した
ので、電磁石8aおよび8bの磁界は相互に反撥をし、
電磁石8aの磁界は隣接するもう一対の電磁石のうち、
電磁石8cへと向かい、また、電磁石8bの磁界は隣接
するもう一対の電磁石のうち、電磁石8dへと向かう磁
界が生じ密着体12に対して、転写磁界13が与えられ
る。
Since the same poles are arranged opposite to the single electromagnets 8a and 8b provided on the upper and lower surfaces of the contact body 12, the magnetic fields of the electromagnets 8a and 8b repel each other,
The magnetic field of the electromagnet 8a is, of the other pair of adjacent electromagnets,
The magnetic field of the electromagnet 8b is directed to the electromagnet 8c, and a magnetic field is directed to the electromagnet 8d of the other pair of adjacent electromagnets.

【0031】図3(B)は、磁気転写用マスター担体と
密着したスレーブ媒体に与えられる磁界強度を示す図で
ある。スレーブ媒体に与えられる磁界のうち強度の小さ
なピーク14は、最適転写磁界強度範囲に比べて遙かに
小さいので磁気転写用マスター担体からスレーブ媒体へ
のパターンの転写には何ら影響を与えず、強度の大きな
ピーク15のみが、磁気転写に寄与することとなる。ま
た、強度の大きなピーク15は、磁気転写用マスター担
体からスレーブ媒体への最適転写磁界強度範囲に含まれ
る磁界を与えることによってパターンの形状に係わらず
良好なパターンを形成することが可能となる。
FIG. 3B is a diagram showing the magnetic field intensity applied to the slave medium that is in close contact with the magnetic transfer master carrier. Since the peak 14 having a small intensity in the magnetic field applied to the slave medium is much smaller than the optimum transfer magnetic field intensity range, it does not affect the transfer of the pattern from the magnetic transfer master carrier to the slave medium. Only peak 15 having a large value contributes to magnetic transfer. In addition, it is possible to form a good pattern irrespective of the shape of the pattern by applying a magnetic field included in the optimum transfer magnetic field intensity range from the magnetic transfer master carrier to the slave medium at the peak 15 having a large intensity.

【0032】また、図2および図3で示した磁気転写方
法に用いる装置には、スレーブ媒体面と電磁石との距
離、および隣接する一対の電磁石の間の距離を任意に調
整し得る機構が設けられており、スレーブ媒体と電磁石
との間の距離、一対の電磁石間の距離を調整することに
より、スレーブ媒体面で所望の磁界強度が得られる。電
磁石の種類としては、空芯型ソレノイドコイルでも中心
部に鉄芯などのコアを有するもののいずれでも用いるこ
とができる。
The apparatus used in the magnetic transfer method shown in FIGS. 2 and 3 is provided with a mechanism capable of arbitrarily adjusting the distance between the slave medium surface and the electromagnet and the distance between a pair of adjacent electromagnets. By adjusting the distance between the slave medium and the electromagnet and the distance between the pair of electromagnets, a desired magnetic field strength can be obtained on the slave medium surface. As the type of the electromagnet, either an air-core type solenoid coil or a type having a core such as an iron core at the center can be used.

【0033】本発明の磁気転写に使用する磁気転写用マ
スター担体の製造方法について説明する。磁気転写用マ
スター担体用の基板としては、シリコン、石英板、ガラ
ス、アルミニウム等の非磁性金属または合金、セラミッ
クス、合成樹脂等の表面が平滑な板状体であり、エッチ
ング、成膜工程での温度等の処理環境に耐性を有するも
のを用いることができる。
The method for producing the magnetic transfer master carrier used in the magnetic transfer of the present invention will be described. As a substrate for a magnetic transfer master carrier, a non-magnetic metal or alloy such as silicon, quartz plate, glass, and aluminum, a ceramic, a synthetic resin, or the like is a plate-like body having a smooth surface, and is used in etching and film forming processes. What has resistance to processing environments, such as temperature, can be used.

【0034】表面が平滑な基板にフォトレジストを塗布
し、プリフォーマットのパターンに応じたフォトマスク
を用いて露光、現像したり、あるいはフォトレジストを
直接にけがく等の方法によってフォトレジストにプリフ
ォーマットの情報に応じたパターンを形成する。
A photoresist is coated on a substrate having a smooth surface, and is exposed and developed using a photomask corresponding to the pattern of the preformat, or the photoresist is preformatted by a method such as directly scribed. A pattern corresponding to the information is formed.

【0035】次いで、エッチング工程において、反応性
エツチング、アルゴンプラズマを用いた物理的エッチン
グ、液体を用いたエッチング等の基板に応じたエッチン
グ手段によって、パターンに応じて基板のエッチングを
行う。エッチングによって形成する穴の深さは、転写情
報記録部として形成する磁性層の厚さに相当する深さと
するが、20nm以上1000nm以下であることが好
ましい。厚すぎると磁界の広がり幅が大きくなるので望
ましくない。
Next, in the etching step, the substrate is etched according to the pattern by an etching means suitable for the substrate such as reactive etching, physical etching using argon plasma, etching using a liquid, or the like. The depth of the hole formed by etching is set to a depth corresponding to the thickness of the magnetic layer formed as the transfer information recording portion, and is preferably 20 nm or more and 1000 nm or less. If the thickness is too large, the spread width of the magnetic field increases, which is not desirable.

【0036】形成する穴は、底面が基板の表面に平行な
平面で形成されるような深さが均等な穴を形成すること
が好ましい。また、穴の形状は、面に垂直なトラック方
向の断面が長方形の形状であることが好ましい。
The hole to be formed is preferably a hole having a uniform depth such that the bottom surface is formed by a plane parallel to the surface of the substrate. The hole preferably has a rectangular cross section in the track direction perpendicular to the surface.

【0037】次いで、磁性材料を真空蒸着法、スパッタ
リング法、イオンプレーティング法等の真空成膜手段、
めっき法により形成した穴に対応した厚さで基板の表面
まで磁性材料を成膜する。転写情報記録部の磁気特性
は、抗磁力(Hc)は199kA/m(2500Oe)
以下、好ましくは0.4〜119kA/m(5〜150
0Oe)であり、飽和磁束密度(Bs)としては、0.
3T(テスラ)以上、好ましくは0.5T以上である。
次いで、フォトレジストをリフトオフ法で除去し、表面
を研磨して、ばりがある場合は取り除くとともに、表面
を平坦化する。
Next, the magnetic material is vacuum-deposited by vacuum deposition, sputtering, ion plating, or the like.
A magnetic material is formed up to the surface of the substrate with a thickness corresponding to the hole formed by the plating method. The magnetic characteristics of the transfer information recording section are as follows: the coercive force (Hc) is 199 kA / m (2500 Oe).
Hereinafter, preferably 0.4 to 119 kA / m (5 to 150 kA / m).
0 Oe), and the saturation magnetic flux density (Bs) is 0.
It is 3T (tesla) or more, preferably 0.5T or more.
Next, the photoresist is removed by a lift-off method, and the surface is polished to remove any flash, and the surface is planarized.

【0038】以上の説明では、基板に穴を形成し、形成
した穴に磁性材料を成膜する方法について述べたが、フ
ォトファブリーケション法によって基板上の所定の箇所
に、磁性材料を成膜して転写情報記録部の凸部を形成し
た後に、凸部の間に非磁性材料を成膜あるいは充填し、
転写情報記録部と非磁性材料部の表面を同一平面として
も良い。
In the above description, a method of forming a hole in a substrate and forming a magnetic material in the formed hole has been described. However, a magnetic material is formed in a predetermined position on the substrate by a photofabrication method. After forming the projections of the transfer information recording portion and, between the projections, a non-magnetic material is deposited or filled,
The surface of the transfer information recording section and the surface of the non-magnetic material section may be coplanar.

【0039】また、磁性層に用いることができる磁性材
料としては、磁束密度が大きなコバルト、鉄あるいはそ
れらの合金を用いることができる。具体的には、Co、
CoPtCr、CoCr、CoPtCrTa、CoPt
CrNbTa、CoCrB、CoNi、Fe、FeC
o、FePt等を挙げることができる。また、磁性層の
厚さとしては、20〜1000nmであり、好ましくは
30ないし500nmである。あまり厚いと記録分解能
が低下する。
As a magnetic material that can be used for the magnetic layer, cobalt, iron, or an alloy thereof having a high magnetic flux density can be used. Specifically, Co,
CoPtCr, CoCr, CoPtCrTa, CoPt
CrNbTa, CoCrB, CoNi, Fe, FeC
o, FePt and the like. The thickness of the magnetic layer is 20 to 1000 nm, preferably 30 to 500 nm. If it is too thick, the recording resolution decreases.

【0040】とくに、磁束密度が大きく、スレーブ媒体
と同じ方向、例えば面内記録の場合には面内方向、垂直
記録の場合には垂直方向の磁気異方性を有していること
が明瞭な転写が行うためには好ましい。磁性材料は、細
かな磁気粒子またはアモルファス構造を有していること
が鋭利なエッジが形成できる点からも好ましい。
In particular, it is clear that the magnetic flux density is high and the magnetic medium has magnetic anisotropy in the same direction as the slave medium, for example, in the in-plane direction for in-plane recording and in the perpendicular direction for perpendicular recording. It is preferable for the transfer to be performed. It is preferable that the magnetic material has fine magnetic particles or an amorphous structure in that a sharp edge can be formed.

【0041】また、磁気材料に磁気異方性を形成するた
めには、非磁性の下地層を設けることが好ましく、結晶
構造と格子常数を磁性層と同様のものとすることが必要
である。具体的には、そのような下地層としては、C
r、CrTi、CoCr、CrTa、CrMo、NiA
l、Ru等をスパッタリングによって成膜することがで
きる。
In order to form the magnetic material with magnetic anisotropy, it is preferable to provide a non-magnetic underlayer, and it is necessary that the crystal structure and lattice constant are the same as those of the magnetic layer. Specifically, as such an underlayer, C
r, CrTi, CoCr, CrTa, CrMo, NiA
1, Ru, or the like can be formed by sputtering.

【0042】また、磁性層の上にダイヤモンド状炭素膜
等の保護膜を設けても良く、潤滑剤を設けても良い。保
護膜として5〜30nmのダイヤモンド状炭素膜と潤滑
剤が存在することがさらに好ましい。その上に潤滑剤が
設けられていることが必要な理由は、スレーブとの接触
過程で生じるずれを補正する際に摩擦が生じ、潤滑剤層
がないと耐久性が不足するためである。
Further, a protective film such as a diamond-like carbon film may be provided on the magnetic layer, and a lubricant may be provided. More preferably, a 5 to 30 nm diamond-like carbon film and a lubricant are present as a protective film. The reason why it is necessary to provide a lubricant thereon is that friction occurs when correcting a displacement occurring in the process of contact with the slave, and durability is insufficient without a lubricant layer.

【0043】本発明の磁気転写用マスター担体は、ハー
ドディスク、大容量リムーバル型磁気記録媒体等のディ
スク型磁気記録媒体への磁気記録情報の転写のみではな
く、カード型磁気記録媒体、テープ型磁気記録媒体への
磁気記録情報の転写にも用いることができる。
The magnetic transfer master carrier of the present invention can be used not only for transferring magnetically recorded information to a disk-type magnetic recording medium such as a hard disk or a large-capacity removable magnetic recording medium, but also for a card-type magnetic recording medium or a tape-type magnetic recording medium. It can also be used to transfer magnetically recorded information to a medium.

【0044】[0044]

【実施例】以下に実施例を示し、本発明を説明する。 実施例1および比較例1 (磁気転写用マスター担体の作製)真空成膜装置におい
て、室温にて1.33×10-5Pa(10-7Torr)まで
減圧した後に、アルゴンを導入して0.4Pa(3×1
-3Torr)とした条件下で、シリコン基板上に厚さ20
0nmのFeCo膜を形成し、3.5型の円盤状の磁気
転写用マスター担体とした。保磁力Hcは8kA/m
(100Oe)、磁束密度Msは28.9T(2300
0Gauss)であった。円盤状パターンを円盤中心か
ら半径方向20mm〜40mmの位置までの幅10μの
等間隔の放射状ライン、ライン間隔は半径方向20mm
の最内周位置で10μm間隔とした。
The present invention will be described below with reference to examples. Example 1 and Comparative Example 1 (Preparation of Magnetic Transfer Master Carrier) In a vacuum film forming apparatus, the pressure was reduced to 1.33 × 10 −5 Pa (10 −7 Torr) at room temperature, and argon was introduced thereinto. 0.4 Pa (3 × 1
0 -3 Torr) on a silicon substrate.
An FeCo film having a thickness of 0 nm was formed to obtain a 3.5-type disk-shaped master carrier for magnetic transfer. Coercive force Hc is 8 kA / m
(100 Oe), and the magnetic flux density Ms is 28.9T (2300T).
0 Gauss). Radial lines of 10μ width from the center of the disk to the position of 20mm to 40mm in the radial direction from the center of the disk.
At the innermost peripheral position of 10 μm.

【0045】(スレーブ媒体の作製)真空成膜装置にお
いて、室温にて1.33×10-5Pa(10-7Torr)ま
で減圧した後に、アルゴンを導入して0.4Pa(3×
10-3Torr)とした条件下で、ガラス板を200℃に加
熱し、CoCrPt25nm,Ms:5.7T(450
0Gauss)、保磁力Hcs:199kA/m(250
0Oe)である3.5型の円盤状磁気記録媒体を作製し
た。
(Preparation of Slave Medium) In a vacuum film forming apparatus, the pressure was reduced to 1.33 × 10 −5 Pa (10 −7 Torr) at room temperature, and then argon was introduced to obtain 0.4 Pa (3 × 10 −5 Pa).
Under a condition of 10 −3 Torr, the glass plate was heated to 200 ° C., and CoCrPt 25 nm, Ms: 5.7 T (450
0Gauss), the coercive force H cs: 199kA / m (250
A 3.5-inch disk-shaped magnetic recording medium (0 Oe) was produced.

【0046】(初期直流磁化方法)ピーク磁界強度がス
レーブ媒体の表面において、スレーブ媒体の保磁力Hcs
の2倍の388kA/m(5000Oe)となるよう
に、図2で示したように電磁石を配置して、スレーブ媒
体の初期直流磁化を行った。
(Initial DC magnetization method) The coercive force Hcs of the slave medium is set such that the peak magnetic field intensity is at the surface of the slave medium.
The electromagnet was arranged as shown in FIG. 2 so as to be twice as high as 388 kA / m (5000 Oe), and the initial DC magnetization of the slave medium was performed.

【0047】(磁気転写試験方法)初期直流磁化したス
レーブ媒体と磁気転写用マスター担体とを密着させて、
図3に示した両面に電磁石を有する装置を用いてスレー
ブ媒体の磁化とは逆の方向に印加して磁気転写を行っ
た。また、磁気転写用マスター担体とスレーブ媒体の密
着は、ゴム板を挟んでアルミニウム板上から加圧した。
(Magnetic Transfer Test Method) The slave medium which was initially DC-magnetized and the magnetic transfer master carrier were brought into close contact with each other.
Using a device having electromagnets on both surfaces shown in FIG. 3, magnetic transfer was performed by applying a voltage in the direction opposite to the magnetization of the slave medium. The close contact between the master carrier for magnetic transfer and the slave medium was pressed from above the aluminum plate with the rubber plate interposed.

【0048】(電磁変換特性評価方法)電磁変換特性測
定装置(協同電子製 SS−60)によりスレーブ媒体
の転写信号の評価を行った。ヘッドには、再生ヘッドギ
ャップ:0.35μm、再生トラック幅:3.1μm、
記録ヘッドギャップ:0.4μm、記録トラック幅:
3.0μmであるMRヘッドを使用した。読込信号をス
ペクトロアナライザーで周波数分解し、1次信号のピー
ク強度(C)と外挿した媒体ノイズ(N)の差(C/
N)を測定した。各磁場強度でのC/Nのうち、最大値
を0dBとし、相対値(△C/N)で評価を行い、表1
に示した。なお、C/N値が−20dB以下の場合、磁
気転写の信号品位が実用レベルでないため*で示した。
(Electromagnetic Conversion Characteristic Evaluation Method) The transfer signal of the slave medium was evaluated by an electromagnetic conversion characteristic measuring device (SS-60 manufactured by Kyodo Electronics). In the head, a reproducing head gap: 0.35 μm, a reproducing track width: 3.1 μm,
Recording head gap: 0.4 μm, recording track width:
A 3.0 μm MR head was used. The read signal is frequency-decomposed by a spectroanalyzer, and the difference between the peak intensity (C) of the primary signal and the extrapolated medium noise (N) (C /
N) was measured. Of the C / N at each magnetic field strength, the maximum value was set to 0 dB, and the relative value (△ C / N) was evaluated.
It was shown to. When the C / N value is -20 dB or less, the signal quality of the magnetic transfer is not at a practical level, and is indicated by *.

【0049】[0049]

【表1】 スレーブ媒体のHcs 199kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 59.7 0.3 * 99.5 0.5 −16.8 119 0.6 −3.2 159 0.8 −1.5 179 0.9 −0.3 199 1.0 0.0 219 1.1 −0.1 239 1.2 −2.1 259 1.3 −3.8 279 1.4 −10.2 298 1.5 −19.9 318 1.6 * 398 2.0 *Table 1 H cs of slave medium 199 kA / m Ratio to peak intensity kA / m Hcs of transfer magnetic field ΔC / N (dB) 59.7 0.3 * 99.5 0.5 -16.8 119 0.6 -3.2 159 0.8 -1.5 179 0.9 -0.3 199 1.0 0.0 219 1.1 -0.1 239 1.2 -2.1 259 1.3 -3.8 279 1.4-10.2 298 1.5 -19.9 318 1.6 * 398 2.0 *

【0050】実施例2および比較例2 保磁力Hcsが199kA/m(2500Oe)のスレー
ブ媒体に、ピーク磁界強度が239kA/m(3000
Oe)、すなわちスレーブ媒体の保磁力のHcsの1.2
倍の磁界強度でスレーブ媒体の初期直流磁化を行い、次
に初期直流磁化したスレーブ媒体と磁気転写用マスター
担体とを密着させて磁気転写を行った点を除き実施例1
と同様にして磁気転写を行った後に、実施例1と同様に
して測定し、その結果を表2に示す。転写用磁界のピー
ク強度は、図3に示す磁界強度分布のピークを示す。
The slave medium of Example 2 and Comparative Example 2 coercivity H cs is 199kA / m (2500Oe), the peak magnetic field strength 239 kA / m (3000
Oe), that is, the coercive force Hcs of the slave medium is 1.2.
Example 1 except that the initial DC magnetization of the slave medium was performed at twice the magnetic field strength, and then the magnetic transfer was performed by closely contacting the initial DC-magnetized slave medium and the magnetic transfer master carrier.
After magnetic transfer was performed in the same manner as in Example 1, the measurement was performed in the same manner as in Example 1. The results are shown in Table 2. The peak intensity of the transfer magnetic field indicates the peak of the magnetic field intensity distribution shown in FIG.

【0051】[0051]

【表2】 スレーブ媒体のHcs 199kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 59.7 0.3 * 99.5 0.5 −10.6 119 0.6 −5.2 159 0.8 −1.2 179 0.9 0.0 199 1.0 −0.6 219 1.1 −0.7 239 1.2 −2.3 259 1.3 −2.9 279 1.4 −9.6 298 1.5 −18.4 318 1.6 * 398 2.0 *Table 2 H cs of slave medium 199 kA / m Ratio of peak intensity of transfer magnetic field to kA / m Hcs ΔC / N (dB) 59.7 0.3 * 99.5 0.5 -10.6 119 0.6-5.2 159 0.8-1.2 179 0.9 0.0 199 1.0-0.6 219 1.1-0.7 239 1.2-2.3 259 1.3 -2.9 279 1.4 -9.6 298 1.5 -18.4 318 1.6 * 398 * 2.0 *

【0052】比較例3 保磁力Hcsが199kA/m(2500Oe)のスレー
ブ媒体に、ピーク磁界強度が159kA/m(2000
Oe)、すなわちスレーブ媒体の保磁力のHcsの0.8
倍の磁界強度でスレーブ媒体の初期直流磁化を行い、次
に初期直流磁化したスレーブ媒体と磁気転写用マスター
担体とを密着させて磁気転写を行った点を除き実施例1
と同様にして磁気転写を行った後に、実施例1と同様に
して測定し、その結果を表3に示す。転写用磁界のピー
ク強度は、図3の磁界強度分布のピークを示す。
[0052] slave medium in Comparative Example 3 coercivity H cs is 199kA / m (2500Oe), the peak magnetic field strength 159 kA / m (2000
Oe), that is, 0.8 of the coercive force Hcs of the slave medium.
Example 1 except that the initial DC magnetization of the slave medium was performed at twice the magnetic field strength, and then the magnetic transfer was performed by closely contacting the initial DC-magnetized slave medium and the magnetic transfer master carrier.
After performing the magnetic transfer in the same manner as in Example 1, the measurement was performed in the same manner as in Example 1. The results are shown in Table 3. The peak intensity of the transfer magnetic field indicates the peak of the magnetic field intensity distribution in FIG.

【0053】[0053]

【表3】 スレーブ媒体のHcs 199kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 59.7 0.3 * 99.5 0.5 * 119 0.6 * 159 0.8 * 179 0.9 * 199 1.0 * 219 1.1 * 239 1.2 * 259 1.3 * 279 1.4 * 298 1.5 * 318 1.6 * 398 2.0 *[Table 3] H cs of slave medium 199 kA / m Ratio to peak intensity kA / m Hcs of transfer magnetic field ΔC / N (dB) 59.7 0.3 * 99.5 0.5 * 119 0.6 * 159 0.8 * 179 0.9 * 199 1.0 * 219 1.1 * 239 1.2 * 259 1.3 * 279 1.4 * 298 1.5 * 318 1.6 * 398 2.0 *

【0054】実施例3および比較例4 実施例1と同様にして作製した保磁力Hcsが159kA
/m(2000Oe)のスレーブ媒体に、ピーク磁界強
度が318kA/m(4000Oe)、すなわちスレー
ブ媒体の保磁力のHcsの2倍の磁界強度でスレーブ媒体
の初期直流磁化を行い、次に初期直流磁化したスレーブ
媒体と磁気転写用マスター担体とを密着させて図3に示
した装置を用いて磁気転写を行った点を除き実施例1と
同様にして磁気転写を行った後に、実施例1と同様にし
て測定し、その結果を表4に示す。転写用磁界のピーク
強度は、図3の磁界強度分布のピークを示す。
[0054] Example 3 and Comparative Example 4 Example 1 coercivity H cs which was prepared in the same manner as is 159kA
A slave medium / m (2000 Oe), the peak magnetic field strength 318 kA / m (4000 Oe), i.e. perform initial DC magnetization of the slave medium at twice the field strength of H cs coercivity of the slave medium, then initial DC The magnetic transfer was performed in the same manner as in Example 1 except that the magnetized slave medium and the master carrier for magnetic transfer were brought into close contact with each other, and magnetic transfer was performed using the apparatus shown in FIG. The measurement was performed in the same manner, and the results are shown in Table 4. The peak intensity of the transfer magnetic field indicates the peak of the magnetic field intensity distribution in FIG.

【0055】[0055]

【表4】 スレーブ媒体のHcs 159kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 47.7 0.3 * 79.6 0.5 −16.3 95.5 0.6 −2.6 127 0.8 −2.3 143 0.9 −0.2 159 1.0 0.0 175 1.1 −0.3 191 1.2 −0.9 207 1.3 −3.1 223 1.4 −12.3 239 1.5 −16.9 255 1.6 * 318 2.0 *TABLE 4 slave medium H cs 159 kA / m ratio of the peak intensity kA / m Hcs of transfer magnetic field △ C / N (dB) 47.7 0.3 * 79.6 0.5 -16.3 95 5.5 0.6 -2.6 127 0.8 -2.3 143 0.9 -0.2 159 1.0 0.0 175 1.1 -0.3 191 1.2 -0.9 207 1 0.3-3.1 223 1.4 -12.3 239 1.5 -16.9 255 1.6 1.6 * 318 2.0 *

【0056】実施例4および比較例5 保磁力Hcsが159kA/m(2000Oe)のスレー
ブ媒体にピーク磁界強度が191kA/m(2400O
e)、すなわちスレーブ媒体の保磁力のHcsの1.2倍
の磁界強度でスレーブ媒体の初期直流磁化を行った点を
除き、実施例4と同様に初期直流磁化したスレーブ媒体
と磁気転写用マスター担体とを密着させて磁気転写を行
った後に、実施例1と同様に測定し、その結果を表5に
示す。転写用磁界のピーク強度は、図3の磁界強度分布
のピークを示す。
[0056] peak magnetic field strength to the slave medium of Example 4 and Comparative Example 5 coercivity H cs is 159kA / m (2000Oe) is 191kA / m (2400O
e) In other words, the initial DC magnetization of the slave medium was performed in the same manner as in Example 4 except that the initial DC magnetization of the slave medium was performed at a magnetic field strength 1.2 times the coercive force Hcs of the slave medium. After magnetic transfer was performed with the master carrier in close contact with the master carrier, measurement was performed in the same manner as in Example 1. The results are shown in Table 5. The peak intensity of the transfer magnetic field indicates the peak of the magnetic field intensity distribution in FIG.

【0057】[0057]

【表5】 スレーブ媒体のHcs 159kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 47.7 0.3 * 79.6 0.5 −16.3 95.5 0.6 −2.2 127 0.8 −0.8 143 0.9 0.0 159 1.0 −0.2 175 1.1 −0.3 191 1.2 −3.8 207 1.3 −5.9 223 1.4 −9.6 239 1.5 −18.2 255 1.6 * 318 2.0 *Table 5 slave medium H cs 159 kA / m ratio of the peak intensity kA / m Hcs of transfer magnetic field △ C / N (dB) 47.7 0.3 * 79.6 0.5 -16.3 95 5.5 0.6 -2.2 127 0.8 -0.8 143 0.9 0.0 159 1.0 -0.2 175 1.1 -0.3 191 1.2 -3.8 207 1 0.3-5.9 223 1.4-9.6 239 1.5-18.2 255 255 1.6 * 318 2.0 *

【0058】比較例6 実施例1と同様にして作製した保磁力Hcsが159kA
/m(2000Oe)のスレーブ媒体に、ピーク磁界強
度が127kA/m(1600Oe)、すなわちスレー
ブ媒体の保磁力のHcsの0.8倍の磁界強度でスレーブ
媒体の初期直流磁化を行い、次に初期直流磁化したスレ
ーブ媒体と磁気転写用マスター担体とを密着させて図3
に示した装置を用いて磁気転写を行った点を除き実施例
1と同様にして磁気転写を行った後に、実施例1と同様
に測定し、その結果を表6に示す。転写用磁界のピーク
強度は、図3の磁界強度分布のピークを示す。
[0058] Comparative Example 6 Example 1 coercivity H cs which was prepared in the same manner as is 159kA
A slave medium / m (2000 Oe), the peak magnetic field strength 127 kA / m (1600 Oe), i.e. perform initial DC magnetization of the slave medium at 0.8 times the magnetic field strength H cs coercivity of the slave medium, then Fig. 3 shows the initial DC magnetized slave medium and the magnetic transfer master carrier
After magnetic transfer was performed in the same manner as in Example 1 except that magnetic transfer was performed using the apparatus shown in Table 1, measurement was performed in the same manner as in Example 1, and the results are shown in Table 6. The peak intensity of the transfer magnetic field indicates the peak of the magnetic field intensity distribution in FIG.

【0059】[0059]

【表6】 スレーブ媒体のHcs 159kA/m 転写用磁界の ピーク強度kA/m Hcsとの比 △C/N(dB) 47.7 0.3 * 79.6 0.5 * 95.5 0.6 * 127 0.8 * 143 0.9 * 159 1.0 * 175 1.1 * 191 1.2 * 207 1.3 * 223 1.4 * 239 1.5 * 255 1.6 * 318 2.0 *[Table 6] slave medium H cs 159 kA / m magnetic field for transfer ratio of the peak intensity kA / m Hcs of △ C / N (dB) 47.7 0.3 * 79.6 0.5 * 95.5 0 6.6 * 127 0.8 * 143 0.9 * 159 1.0 * 175 1.1 * 191 1.2 * 207 1.3 * 2231.4 * 2391.5 * 2551.6 * 3182 0.0 *

【0060】[0060]

【発明の効果】磁気転写用マスター担体から、スレーブ
媒体への磁気転写において、スレーブ媒体のHcsに対し
て特定の強度の転写用磁界を与えることによってパター
ンの位置や形状によらずに高品位の転写パターンを有す
るスレーブ媒体を得ることができる。
According to the present invention, in magnetic transfer from a magnetic transfer master carrier to a slave medium, a high-quality transfer magnetic field having a specific strength is applied to Hcs of the slave medium, thereby achieving high quality regardless of the position and shape of the pattern. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、磁気転写用マスター担体におけるプリ
フォーマット用のパターンの転写を説明する図である。
FIG. 1 is a diagram for explaining transfer of a preformat pattern on a magnetic transfer master carrier.

【図2】図2は、スレーブ媒体面に垂直にスレーブ媒体
を挟んで、二対の電磁石を隣接して配設した電磁石を用
いた磁界の印加方法を説明する図である。
FIG. 2 is a diagram illustrating a method of applying a magnetic field using an electromagnet in which two pairs of electromagnets are arranged adjacent to each other with a slave medium interposed therebetween perpendicular to the slave medium surface.

【図3】図3は、磁気転写用マスター担体からスレーブ
媒体への転写方法を説明する図である。
FIG. 3 is a diagram for explaining a method of transferring from a magnetic transfer master carrier to a slave medium.

【符号の説明】[Explanation of symbols]

1…磁気転写用マスター担体、2…プリフォーマット領
域、3…データ領域、4…スレーブ媒体、5…トラック
方向、6…転写用外部磁界、6a…凸部分へ吸収される
磁界、7…記録情報、8a,8b、8c,8d…電磁
石、9a,9b、9c,9d…直流電源、10…磁界、
11…ピーク、12…密着体、13…転写磁界、14…
強度の小さなピーク、15…強度の大きなピーク
DESCRIPTION OF SYMBOLS 1 ... Master carrier for magnetic transfer, 2 ... Preformatted area, 3 ... Data area, 4 ... Slave medium, 5 ... Track direction, 6 ... External magnetic field for transfer, 6a ... Magnetic field absorbed by a convex part, 7 ... Recording information , 8a, 8b, 8c, 8d: electromagnets, 9a, 9b, 9c, 9d: DC power supply, 10: magnetic field,
11 ... peak, 12 ... adhered body, 13 ... transfer magnetic field, 14 ...
Small intensity peak, 15 ... High intensity peak

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 正一 神奈川県小田原市扇町2丁目12番1号 富 士写真フイルム株式会社内 Fターム(参考) 5D112 AA05 BB01 FA02  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shoichi Nishikawa 2-1-1, Ogimachi, Odawara-shi, Kanagawa Prefecture Fuji Photo Film Co., Ltd. F-term (reference) 5D112 AA05 BB01 FA02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面の情報信号に対応する部分に
磁性層が形成された磁気転写用マスター担体と転写を受
ける磁気記録媒体からなるスレーブ媒体とを密着させて
転写用磁界を印加する磁気転写方法において、磁極の軸
に対称な磁界を有する単一の電磁石を、磁極の軸をスレ
ーブ媒体面に垂直にスレーブ媒体を挟んで同極同志を対
向させて配置した一対の電磁石を、隣接する電磁石の極
性が異なるように二対を隣接して配設し、スレーブ媒体
あるいは二対の電磁石をトラック方向に回転させてスレ
ーブ媒体面のトラック方向に磁界を印加することによ
り、あらかじめスレーブ媒体磁化をトラック方向に初期
直流磁化した後、磁気転写用マスター担体と上記初期直
流磁化したスレーブ媒体とを密着させ、スレーブ媒体面
の初期直流磁化方向と逆向きのトラック方向に転写用磁
界を印加させ磁気転写を行うことを特徴とする磁気転写
方法。
1. A magnetic device for applying a transfer magnetic field by closely adhering a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on a surface of a substrate and a slave medium comprising a magnetic recording medium to be transferred. In the transfer method, a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole, a pair of electromagnets arranged with the magnetic pole axis perpendicular to the slave medium surface with the same poles facing each other across the slave medium, Two pairs are arranged adjacently so that the electromagnets have different polarities, and the slave medium or the two pairs of electromagnets are rotated in the track direction to apply a magnetic field in the track direction on the slave medium surface, thereby preliminarily setting the slave medium magnetization. After the initial DC magnetization in the track direction, the master medium for magnetic transfer and the slave medium with the initial DC magnetization are brought into close contact with each other, and the initial DC magnetization direction of the slave medium surface is A magnetic transfer method comprising: performing a magnetic transfer by applying a transfer magnetic field in a reverse track direction.
【請求項2】 基板の表面の情報信号に対応する部分に
磁性層が形成された磁気転写用マスター担体と転写を受
ける磁気記録媒体からなるスレーブ媒体とを密着させ
て、転写用磁界を印加する磁気転写方法において、スレ
ーブ媒体面のトラック方向に磁界を印加し、あらかじめ
スレーブ媒体担体磁化をトラック方向に初期直流磁化し
た後、磁極の軸に対称な磁界を有する単一の電磁石を磁
極の軸をマスター担体とスレーブ媒体を密着した密着体
面に垂直に密着体を挟んで同極同志を対向させて配置し
た一対の電磁石を、隣接する電磁石の極性が異なるよう
に二対を隣接して配設し、二対の電磁石あるいは磁気転
写用マスター担体とスレーブ媒体の密着体をトラック方
向に回転させ、初期直流磁化方向と逆向きのトラック方
向の転写用磁界を印加させ磁気転写を行うことを特徴と
する磁気転写方法。
2. A transfer magnetic field is applied by closely adhering a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on a surface of a substrate and a slave medium made of a magnetic recording medium to be transferred. In the magnetic transfer method, a magnetic field is applied in the track direction of the slave medium surface, and the slave medium carrier magnetization is initially DC-magnetized in the track direction in advance, and then a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole is moved to the axis of the magnetic pole. A pair of electromagnets arranged with the same poles facing each other with the contact body perpendicular to the contact body surface where the master carrier and the slave medium are in close contact with each other, and two pairs are arranged adjacent to each other so that the polarities of the adjacent electromagnets are different. A pair of electromagnets or a master body for magnetic transfer and a contact body of the slave medium are rotated in the track direction, and a transfer magnetic field in the track direction opposite to the initial DC magnetization direction is applied. And performing magnetic transfer.
【請求項3】 磁極の軸に対称な磁界を有する単一の電
磁石を磁極の軸を磁気転写用マスター担体とスレーブ媒
体の密着体面に垂直に密着体を挟んで同極同志を対向さ
せて配置した一対の電磁石を、隣接する電磁石の極性が
異なるように二対を隣接して配設した時に発生する磁界
のトラック方向における磁界強度分布がスレーブ媒体の
保磁力Hcs以上の磁界強度部分をトラック方向位置で少
なくとも1カ所以上有することを特徴とする請求項1に
記載の磁気転写方法。
3. A single electromagnet having a magnetic field symmetric with respect to the axis of the magnetic pole is disposed with the axis of the magnetic pole facing the same pole perpendicularly to the surfaces of the magnetic transfer master carrier and the slave medium with the contact body interposed therebetween. The magnetic field strength distribution in the track direction of a magnetic field generated when two pairs of the paired electromagnets are disposed adjacent to each other so that the polarities of the adjacent electromagnets are different from each other tracks the magnetic field strength portion greater than the coercive force Hcs of the slave medium. 2. The magnetic transfer method according to claim 1, wherein the magnetic transfer method has at least one position in the direction position.
【請求項4】 磁極の軸に対称な磁界を有する単一の電
磁石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体
を挟んで同極同志を対向させて配置した一対の電磁石
を、隣接する電磁石の極性が異なるように二対を隣接し
て配設した時に発生する磁界のトラック方向における磁
界強度分布が、スレーブ媒体の保磁力H cs以上の磁界強
度部分をトラック方向位置で一方向のみで有しており、
逆方向の磁界強度はいずれのトラック方向位置でもスレ
ーブ媒体の保磁力Hcs未満であることを特徴とする請求
項1に記載の磁気転写方法。
4. A single electrode having a magnetic field symmetrical about the axis of the pole.
The magnet is set so that the axis of the magnetic pole is perpendicular to the slave medium plane.
A pair of electromagnets with the same poles facing each other across
Two adjacent pairs so that the polarities of adjacent electromagnets are different
In the track direction of the magnetic field generated when
The field strength distribution is determined by the coercive force H of the slave medium. csMore magnetic field strength
It has a degree part only in one direction at the track direction position,
The magnetic field strength in the opposite direction is
Coercive force H of probe mediumcsLess than
Item 6. The magnetic transfer method according to Item 1.
【請求項5】 磁極の軸に対称な磁界を有する単一の電
磁石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体
を挟んで同極同志を対向させて配置した一対の電磁石
を、隣接する電磁石の極性が異なるように二対を隣接し
て配設した時に発生する磁界のトラック方向磁界強度分
布において、最適転写磁界強度範囲の最大値を超える磁
界強度がいずれのトラック方向位置でも存在せず、最適
転写磁界強度範囲内の磁界強度となる部分が一つのトラ
ック方向で少なくとも1カ所以上存在し、これと逆向き
のトラック方向の磁界強度がいずれのトラック方向位置
においても最適転写磁界強度範囲の最小値未満であるこ
とを特徴とする請求項2に記載の磁気転写方法。
5. A pair of electromagnets each having a single electromagnet having a magnetic field symmetric with respect to the axis of the magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same polarity facing each other with the slave medium interposed therebetween, In the track direction magnetic field strength distribution of the magnetic field generated when two pairs are arranged adjacently so that the electromagnets have different polarities, no magnetic field strength exceeding the maximum value of the optimum transfer magnetic field strength range exists at any track direction position. There is at least one or more magnetic field strengths within the optimum transfer magnetic field strength range in one track direction, and the magnetic field strength in the opposite track direction is the optimum transfer magnetic field strength range at any track direction position. 3. The magnetic transfer method according to claim 2, wherein the value is less than the minimum value.
【請求項6】 最適転写磁界強度が、スレーブ媒体の保
磁力Hcsに対して0.6×Hcs〜1.3×Hcsであ
ることを特徴とする請求項5に記載の磁気転写方法。
6. The optimum transfer magnetic field strength, magnetic transfer method according to claim 5, characterized in that a 0.6 × Hcs~1.3 × Hcs with respect to the coercive force H cs of the slave medium.
【請求項7】 基板の表面の情報信号に対応する部分に
磁性層が形成された磁気転写用マスター担体と転写を受
ける磁気記録媒体からなるスレーブ媒体とを密着させて
転写用磁界を印加する磁気転写装置において、磁極の軸
に対称な磁界を有する単一の電磁石を磁極の軸をスレー
ブ媒体面に垂直にスレーブ媒体を挟んで同極同志を対向
させて配置した一対の電磁石を、隣接する電磁石の極性
が異なるように二対を隣接して配設し、スレーブ媒体あ
るいは二対の電磁石をトラック方向に回転させ、スレー
ブ媒体面のトラック方向に磁界を印加することにより、
あらかじめスレーブ媒体磁化をトラック方向に初期直流
磁化する初期直流磁化手段、磁気転写用マスター担体と
上記初期直流磁化したスレーブ媒体とを密着させる密着
手段、スレーブ媒体面の初期直流磁化方向と逆向きのト
ラック方向に転写用磁界を印加させる転写磁界印加手段
からなることを特徴とする磁気転写装置。
7. A magnetic field for applying a transfer magnetic field by closely adhering a magnetic transfer master carrier having a magnetic layer formed at a portion corresponding to an information signal on a surface of a substrate and a slave medium comprising a magnetic recording medium to be transferred. In the transfer device, a single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole is formed by a pair of electromagnets arranged with the magnetic pole axis perpendicular to the slave medium surface with the same poles facing each other with the slave medium interposed therebetween. By disposing two pairs adjacent to each other with different polarities, rotating the slave medium or two pairs of electromagnets in the track direction, and applying a magnetic field in the track direction on the slave medium surface,
Initial DC magnetizing means for initial DC magnetization of the slave medium magnetization in the track direction in advance, adhesion means for bringing the master medium for magnetic transfer into close contact with the initial DC magnetized slave medium, and tracks opposite to the initial DC magnetization direction of the slave medium surface A magnetic transfer apparatus comprising a transfer magnetic field applying means for applying a transfer magnetic field in a direction.
【請求項8】 基板の表面の情報信号に対応する部分に
磁性層が形成された磁気転写用マスター担体と転写を受
ける磁気記録媒体からなるスレーブ媒体とを密着させて
転写用磁界を印加する磁気転写装置において、スレーブ
媒体面のトラック方向に磁界を印加しあらかじめスレー
ブ媒体磁化をトラック方向に初期直流磁化する初期直流
磁化手段、磁気転写用マスター担体と上記初期直流磁化
したスレーブ媒体を密着させる密着手段、磁極の軸に対
称な磁界を有する単一の電磁石を磁極の軸をスレーブ媒
体面に垂直にスレーブ媒体と磁気転写用マスター担体と
の密着体を挟んで同極同志を対向させて配置した一対の
電磁石を、隣接する電磁石の極性が異なるように二対を
隣接して配設し、スレーブ媒体あるいは二対の電磁石を
トラック方向に回転させ、初期直流磁化方向と逆向きの
トラック方向の転写用磁界を印加させる磁気転写手段を
有することを特徴とする磁気転写装置。
8. A magnetic field for applying a transfer magnetic field by closely adhering a magnetic transfer master carrier having a magnetic layer formed on a portion corresponding to an information signal on a surface of a substrate and a slave medium comprising a magnetic recording medium to be transferred. In the transfer device, an initial DC magnetizing means for applying a magnetic field in the track direction of the slave medium surface to initially DC magnetize the slave medium magnetization in the track direction in advance, and an adhesion means for bringing the master medium for magnetic transfer and the initial DC magnetized slave medium into close contact with each other. , A single electromagnet having a magnetic field symmetrical to the axis of the magnetic pole, and a pair of magnets arranged with the magnetic pole axis perpendicular to the slave medium surface with the same poles facing each other with the close contact body between the slave medium and the magnetic transfer master carrier interposed therebetween Two pairs of electromagnets are arranged next to each other so that adjacent electromagnets have different polarities, and the slave medium or two pairs of electromagnets are rotated in the track direction. And a magnetic transfer unit for applying a transfer magnetic field in a track direction opposite to the initial DC magnetization direction.
【請求項9】 磁極の軸に対称な磁界を有する単一の電
磁石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒体
を挟んで同極同志を対向させて配置した一対の電磁石
を、隣接する電磁石の極性が異なるように二対を隣接し
て配設した時に発生する磁界のトラック方向における磁
界強度分布がスレーブ媒体の保磁力Hcs以上の磁界強度
部分をトラック方向位置で少なくとも1カ所以上有する
ことを特徴とする請求項7に記載の磁気転写装置。
9. A pair of electromagnets each having a single electromagnet having a magnetic field symmetric with respect to the axis of the magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same polarity facing each other with the slave medium interposed therebetween, The magnetic field strength distribution in the track direction of the magnetic field generated when two pairs are arranged adjacently so that the polarities of the electromagnets are different has at least one magnetic field strength portion at the track direction position that is higher than the coercive force Hcs of the slave medium. The magnetic transfer apparatus according to claim 7, wherein:
【請求項10】 磁極の軸に対称な磁界を有する単一の
電磁石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒
体と磁気転写用マスター担体の密着体を挟んで同極同志
を対向させて配置した一対の電磁石を、隣接する電磁石
の極性が異なるように二対を隣接して配設した時に発生
する磁界のトラック方向における磁界強度分布が、スレ
ーブ媒体の保磁力Hcs以上の磁界強度部分をトラック方
向位置で一方向のみで有しており、逆方向の磁界強度は
いずれのトラック方向位置でも、スレーブ媒体の保磁力
cs未満であることを特徴とする請求項7に記載の磁気
転写装置。
10. A single electromagnet having a magnetic field symmetric with respect to the axis of a magnetic pole, with the axis of the magnetic pole perpendicular to the surface of the slave medium and with the same poles facing each other with the close contact body of the slave medium and the magnetic transfer master carrier interposed therebetween. A magnetic field intensity distribution in a track direction of a magnetic field generated when two pairs of the arranged electromagnets are arranged adjacent to each other so that the polarities of the adjacent electromagnets are different from each other has a magnetic field intensity portion larger than the coercive force Hcs of the slave medium. 8. The magnetic transfer according to claim 7, wherein the magnetic field intensity is less than the coercive force Hcs of the slave medium at any position in the track direction. apparatus.
【請求項11】 磁極の軸に対称な磁界を有する単一の
電磁石を磁極の軸をスレーブ媒体面に垂直にスレーブ媒
体を挟んで同極同志を対向させて配置した一対の電磁石
を、隣接する電磁石の極性が異なるように二対を隣接し
て配設した時に発生する磁界のトラック方向磁界強度分
布において、最適転写磁界強度範囲の最大値を超える磁
界強度がいずれのトラック方向位置でも存在せず、最適
転写磁界強度範囲内の磁界強度となる部分が一つのトラ
ック方向で少なくとも1カ所以上存在し、これと逆向き
のトラック方向の磁界強度がいずれのトラック方向位置
においても、最適転写磁界強度範囲最小値未満であるこ
とを特徴とする請求項8に記載の磁気転写装置。
11. A pair of electromagnets each having a single electromagnet having a magnetic field symmetric with respect to the axis of a magnetic pole and having the axis of the magnetic pole perpendicular to the surface of the slave medium and having the same polarity facing each other with the slave medium interposed therebetween, In the track direction magnetic field strength distribution of the magnetic field generated when two pairs are arranged adjacently so that the electromagnets have different polarities, no magnetic field strength exceeding the maximum value of the optimum transfer magnetic field strength range exists at any track direction position. The magnetic field intensity within the optimum transfer magnetic field strength range exists in at least one location in one track direction, and the magnetic field strength in the opposite track direction is the optimum transfer magnetic field strength range at any position in the track direction. 9. The magnetic transfer device according to claim 8, wherein the value is less than the minimum value.
【請求項12】 最適転写磁界強度がスレーブ媒体の保
磁力Hcsに対して0.6×Hcs〜1.3×Hcsであ
ることを特徴とする請求項11に記載の磁気転写装置。
12. The optimum transfer magnetic field strength is a magnetic transfer apparatus according to claim 11, characterized in that a 0.6 × Hcs~1.3 × Hcs with respect to the coercive force H cs of the slave medium.
JP2000093293A 1999-05-07 2000-03-30 Magnetic transferring method and magnetic transferring device Pending JP2001028124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093293A JP2001028124A (en) 1999-05-07 2000-03-30 Magnetic transferring method and magnetic transferring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12701499 1999-05-07
JP11-127014 1999-05-07
JP2000093293A JP2001028124A (en) 1999-05-07 2000-03-30 Magnetic transferring method and magnetic transferring device

Publications (1)

Publication Number Publication Date
JP2001028124A true JP2001028124A (en) 2001-01-30

Family

ID=26463067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093293A Pending JP2001028124A (en) 1999-05-07 2000-03-30 Magnetic transferring method and magnetic transferring device

Country Status (1)

Country Link
JP (1) JP2001028124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785070B2 (en) 2000-12-05 2004-08-31 Matsushita Electric Industrial Co., Ltd. Magnetic transcription device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785070B2 (en) 2000-12-05 2004-08-31 Matsushita Electric Industrial Co., Ltd. Magnetic transcription device

Similar Documents

Publication Publication Date Title
JP2001014667A (en) Magnetic transferring method and magnetic transferring device
US6636371B1 (en) Magnetic transfer method and system
KR100665001B1 (en) Method of magnetic transfer
JP2001155336A (en) Master carrier for magnetic transfer
US6731440B1 (en) Method and apparatus for magnetic transfer
US6602301B1 (en) Method and apparatus for magnetic transfer
US6577459B1 (en) Method and apparatus for magnetic transfer
US6570724B1 (en) Method and apparatus for magnetic transfer
JP2001143257A (en) Magnetic transfer method
EP1143422A2 (en) Magnetic transfer method and system
JP2001101657A (en) Magnetic transfer method and magnetic transfer device
US6643079B1 (en) Method and apparatus for magnetic transfer
JP2001028126A (en) Magnetic transferring method and its device
JP4046480B2 (en) Magnetic transfer method and magnetic transfer apparatus
JP2001028124A (en) Magnetic transferring method and magnetic transferring device
US6777073B2 (en) Magnetic recording medium
JP2001014671A (en) Magnetic transfer method and magnetic transfer device
EP1143423B1 (en) Method and apparatus for magnetic transfer
JP2001014673A (en) Magnetic transfer method and magnetic transfer device
JP2001067663A (en) Magnetic transferring method and magnetic transferring device
JP3986951B2 (en) Master carrier for magnetic transfer and magnetic transfer method
JP2001028123A (en) Magnetic transferring method and magnetic transferring device
JP2001014670A (en) Magnetic transfer method and magnetic transfer device
JP2001028125A (en) Magnetic transferring method and magnetic transferring device
JP2001014668A (en) Magnetic transfer method and magnetic transfer device