JP2001025791A - Waste water treatment - Google Patents

Waste water treatment

Info

Publication number
JP2001025791A
JP2001025791A JP11198708A JP19870899A JP2001025791A JP 2001025791 A JP2001025791 A JP 2001025791A JP 11198708 A JP11198708 A JP 11198708A JP 19870899 A JP19870899 A JP 19870899A JP 2001025791 A JP2001025791 A JP 2001025791A
Authority
JP
Japan
Prior art keywords
tank
mlss
water temperature
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11198708A
Other languages
Japanese (ja)
Inventor
Masashi Beppu
雅志 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP11198708A priority Critical patent/JP2001025791A/en
Publication of JP2001025791A publication Critical patent/JP2001025791A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To improve separation performance such as treated water quality by controlling a suspending solid material (MLSS) in accordance with water temp. in an aeration tank in a membrane separation activated sludge method. SOLUTION: In the method for purifying waste water by biologically treating water water in the aeration tank 2 and separating the suspending solid material (MLSS) by a membrane separation device 4, quantity of MLSS in the aeration tank 2 is controlled in accordance with the water temp. in the aeration tank to keep filtration performance of the membrane separating device 4 to a prescribed one or to be >=95% in BOD removing ratio in the purified water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は膜分離活性汚泥法を
使用した排水処理方法に関し、し尿、下水、生活排水等
の浄化処理に使用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method using a membrane separation activated sludge method, which is used for purification treatment of human waste, sewage, domestic wastewater and the like.

【0002】[0002]

【従来の技術】近来、伝統的な活性汚泥法に代え膜分離
活性汚泥法が普及されつつある。周知の通り、伝統的な
活性汚泥法(沈殿分離活性汚泥法と称する)では、ばっ
き槽内で汚水中の有機物を活性汚泥フロックに収着・摂
取させ、その摂取有機物を活性汚泥フロックの微生物の
酸化触媒作用で分解させると共に微生物を増殖させ、こ
のばっき槽内液を沈殿槽に移流させて浮遊性固形物を沈
降分離させ、上澄液を放出すると共に沈殿分離した固形
物(活性汚泥)の一部をばっき槽に返送して微生物を補
給している。この沈殿分離活性汚泥法に対し、膜分離活
性汚泥法ではばっき槽で生物学的に処理した液を膜分離
装置で濾過分離している。
2. Description of the Related Art In recent years, a membrane separation activated sludge method has been widely used in place of the traditional activated sludge method. As is well known, in the conventional activated sludge method (referred to as sedimentation separation activated sludge method), organic matter in sewage is sorbed and ingested by activated sludge floc in a tank, and the ingested organic matter is converted into microorganisms of activated sludge floc. Decompose by the oxidation catalysis of microorganisms and grow microorganisms. The solution in the tank is transferred to a sedimentation tank to separate and separate suspended solids. The supernatant is discharged and the solids separated and precipitated (activated sludge). ) Is returned to the tank to replenish the microorganisms. In contrast to the sedimentation activated sludge method, in the membrane separation activated sludge method, a liquid biologically treated in a tank is filtered and separated by a membrane separation device.

【0003】上記の沈殿分離活性汚泥法では、ばっき槽
内の混合液浮遊性固形物(MLSS)の濃度を高くして
処理するとばっき槽の容積を小さくし得るが、MLSS
を高くすると沈殿槽での沈降速度がそれだけ低くなって
沈殿槽の水面積を広くする必要があるので、通常ばっき
槽内MLSSを2000〜6000mg/リットルを標
準にして設定している。而るに、膜分離活性汚泥法で
は、かかる制約がなく、ばっき槽内のMLSSを200
00mg/リットル程度まで高めることが可能であり、
ばっき槽の容積を沈殿分離活性汚泥法でのばっき槽の1
/10〜1/3程度に小さくでき、しかも沈殿槽が不要
であるので、設置スペ−スの飛躍的な縮小が可能であ
る。
[0003] In the above-mentioned sedimentation-separation activated sludge method, when the concentration of the mixed liquid suspended solids (MLSS) in the tank is increased, the volume of the tank can be reduced.
When the value of is increased, the sedimentation velocity in the sedimentation tank becomes lower and the water area of the sedimentation tank needs to be increased. Therefore, the MLSS in the tank is usually set at 2000 to 6000 mg / liter as a standard. However, the membrane separation activated sludge method does not have such a restriction, and the MLSS in the tank is reduced by 200%.
It can be increased to about 00mg / liter,
Decrease the volume of the tank by the sedimentation separation activated sludge method.
Since the size can be reduced to about 10〜 to 1 / and a sedimentation tank is not required, the installation space can be drastically reduced.

【0004】周知の通り、沈殿分離活性汚泥法では活性
汚泥がバルキングすると、自然沈降による分離が不可と
なって活性汚泥が流出し、沈殿槽からばっき槽への種活
性汚泥の返送が不可となり処理の不安定化がますます助
長されるに至る。しかし、膜分離活性汚泥法では沈降分
離によることなく膜分離で汚泥を分離しているから、上
記バルキングが発生するような処理条件のもとでも、沈
殿分離活性汚泥法に較べ浄化水の水質、例えばBOD除
去率を一段と高くできる。而して、膜分離活性汚泥法の
利点として、沈殿分離活性汚泥法に対する浄化水質及び
操作性の飛躍的な向上が一般に高く評価され、従来、膜
分離活性汚泥法では、酸素供給量一定のもとで、MLS
Sをばっき槽の容積に応じ5000〜20000mg/
リットルの範囲内でほぼ一定として運転している。
As is well known, when activated sludge is bulked in the sedimentation-separation activated sludge method, separation by natural sedimentation becomes impossible and activated sludge flows out, so that the seed activated sludge cannot be returned from the sedimentation tank to the tank. Processing instability has been further promoted. However, in the membrane separation activated sludge method, sludge is separated by membrane separation without sedimentation separation. For example, the BOD removal rate can be further increased. Thus, as an advantage of the membrane separation activated sludge method, a dramatic improvement in purified water quality and operability over the precipitation separation activated sludge method is generally highly evaluated. And MLS
S is 5000 to 20000 mg / depending on the volume of the tank.
It is almost constant within the liter range.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、膜分離
活性汚泥法についての本発明者の検討結果によれば、M
LSS一定の条件では浄化水質を年間を通じて高い品質
に維持し難い。その理由としては、冬期ではばっき槽内
水温が低下しMLSS単位量当たりの酸素消費速度の低
下により有機物分解能が低くなってBOD除去率が低下
し、分解されずに蓄積される有機物量が増加すると共に
嫌気性菌が増殖して液粘度が高くなることが生じ得、ま
た夏期ではばっき槽内水温が高いために溶存酸素量を充
分に確保できず活性汚泥の酸素吸収を満足に行わせ得ず
にBOD除去率が低下し、未分解のまま蓄積される有機
物量が増加する共に嫌気性菌が増殖して液粘度が高くな
ることが生じ得、結局膜面へのケ−キ層の形成による膜
性能の低下が招来されることが推定される。
However, according to the present inventors' examination results on the membrane separation activated sludge method, it was found that M
Under constant LSS conditions, it is difficult to maintain high quality purified water throughout the year. The reason is that in winter, the water temperature in the tank decreases, and the oxygen consumption rate per unit of MLSS decreases. As a result, the resolution of organic substances decreases, the BOD removal rate decreases, and the amount of organic substances accumulated without decomposition increases. At the same time, the anaerobic bacteria may grow and the liquid viscosity may increase, and in summer, the temperature of the water in the tank is high, so the dissolved oxygen amount cannot be secured sufficiently and the oxygen absorption of the activated sludge is performed satisfactorily. Without this, the BOD removal rate decreases, the amount of organic matter accumulated undegraded increases, and at the same time, the anaerobic bacteria grow and the viscosity of the solution may increase, resulting in the formation of a cake layer on the membrane surface. It is presumed that the film performance is lowered by the formation.

【0006】このように膜分離活性汚泥法において、汚
泥管理の簡易化のためにばっき槽内MLSSを一定にし
て操作しても、沈殿分離活性汚泥法に較べると処理水の
品質を相当に改善できるが、膜分離性能を合理的に利用
しているとはいい難く、まだ処理水品質等の浄化性能を
改善する余地がある。
[0006] As described above, in the membrane separation activated sludge method, even if the MLSS in the separation tank is operated at a constant level to simplify the sludge management, the quality of the treated water is considerably higher as compared with the sedimentation separation activated sludge method. Although it can be improved, it is difficult to say that the membrane separation performance is rationally used, and there is still room for improving the purification performance such as the quality of treated water.

【0007】本発明の目的は、膜分離活性汚泥法につい
ての上記検討結果に基づき、ばっき槽内水温に応じてM
LSSを調整して処理水品質等の分離性能の向上を図る
ことにある。
[0007] An object of the present invention is to provide a method for controlling the temperature of water in a tank based on the results of the above study on the membrane separation activated sludge method.
The purpose of the present invention is to improve the separation performance such as the quality of treated water by adjusting the LSS.

【0008】[0008]

【課題を解決するための手段】本発明に係る排水処理方
法は、排水をばっき槽内で生物学的に処理してそのばっ
き槽内の浮遊性固形物(MLSS)を膜分離装置により
分離処理して排水を浄化する方法において、膜分離装置
の濾過性能を所定性能に保持するように、若しくは浄化
水のBOD除去率を95%以上とするように、ばっき槽
内のMLSS量をばっき槽内水温に応じて調節すること
を特徴とする構成であり、水温30℃以上でのMLSS
量を100として、水温25℃以上で30℃未満でのM
LSS量を120〜160、水温20℃以上で25℃未
満でのMLSS量を160〜200、水温15℃以上で
20℃未満でのMLSS量を200〜280、水温10
℃以上で15℃未満でのMLSS量を280〜360、
水温10℃以下でのMLSS量を360〜420とする
ことができる。
According to the present invention, there is provided a wastewater treatment method, wherein wastewater is biologically treated in a tank, and suspended solids (MLSS) in the tank are separated by a membrane separator. In the method of purifying wastewater by separation treatment, the amount of MLSS in the tank is controlled so that the filtration performance of the membrane separation device is maintained at a predetermined performance or the BOD removal rate of purified water is 95% or more. MLSS at a water temperature of 30 ° C or higher, characterized in that it is adjusted according to the water temperature in the tank.
M at a water temperature of 25 ° C. or higher and lower than 30 ° C.
LSS amount is 120 to 160, MLSS amount at water temperature 20 ° C or higher and lower than 25 ° C is 160 to 200, MLSS amount at water temperature 15 ° C or higher and lower than 20 ° C is 200 to 280, water temperature 10
The MLSS amount at 15 ° C. or higher at 280 to 360 ° C. or higher,
The MLSS amount at a water temperature of 10 ° C. or less can be 360 to 420.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は本発明において使
用する膜分離排水処理装置の一例を示している。図1に
おいて、1は原水槽である。2はばっき槽、3はばっき
槽に原水を送入するための液送ポンプである。4はばっ
き槽2内に浸漬設置した膜分離装置であり、膜には通常
精密濾過膜、限外濾過膜等が用いられる。この膜分離装
置4には、平膜型、キャピタリ−型、チュ−ブラ−型、
回転ディスク型等を使用できる。5は膜分離装置4の濾
過側を減圧するための吸引ポンプ、6は濾過水槽(処理
水槽)である。7は散気管、8は散気管7に空気を送る
ためのブロアである。9は汚泥抜取り管、10は汚泥抜
取りポンプである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a membrane separation wastewater treatment apparatus used in the present invention. In FIG. 1, reference numeral 1 denotes a raw water tank. Reference numeral 2 denotes a tank, and reference numeral 3 denotes a liquid feed pump for feeding raw water into the tank. Reference numeral 4 denotes a membrane separation device immersed and installed in the tank 2, and a microfiltration membrane, an ultrafiltration membrane, or the like is usually used as the membrane. The membrane separation device 4 includes a flat membrane type, a capital type, a tuber type,
A rotating disk type or the like can be used. Reference numeral 5 denotes a suction pump for reducing the pressure on the filtration side of the membrane separation device 4, and reference numeral 6 denotes a filtration water tank (treatment water tank). Reference numeral 7 denotes an air diffuser, and reference numeral 8 denotes a blower for sending air to the air diffuser 7. 9 is a sludge extraction pipe, and 10 is a sludge extraction pump.

【0010】この膜分離排水処理装置の運転において
は、散気管7からの空気噴出によりばっき槽2内の膜分
離装置4の膜面が洗浄される。また、ばっき槽2内液中
に浮遊するMLSSフロックに有機物が摂取され、呼吸
作用によりフロック内に吸収された酸素の存在下、前記
有機物がフロック中の微生物を酸化触媒として分解され
ると共に微生物の増殖により活性汚泥が増えていく。し
かしながら、散気管7からの酸素供給とフロック内微生
物による酸素消費と液の酸素溶解性との間にアンバラン
スが生じると溶存酸素量(DO)の変動が避けられず、
而して、ばっき槽2内水温の上昇によりばっき槽2内液
の酸素溶解性が低くなったり、液単位体積当たりのML
SSが多くなって酸素消費量が過剰になったりして溶存
酸素(DO)が減少し嫌気状態になると、活性汚泥フロ
ック中の微生物群が活性を失ったり死滅してバルキング
の発生原因の一つである糸状菌の増殖が生じ、またフロ
ック中に吸収された前記有機物が分解されずに蓄積され
てフロックが高粘性化される結果、ばっき槽内液の性状
悪化が惹起されるに至る。
In operation of this membrane separation wastewater treatment apparatus, the membrane surface of the membrane separation apparatus 4 in the tank 2 is washed by blowing air from the air diffuser 7. In addition, an organic substance is ingested into the MLSS floc floating in the liquid in the tank 2, and in the presence of oxygen absorbed in the floc by respiration, the organic substance is decomposed by using the microorganisms in the floc as an oxidation catalyst and the microorganisms are removed. Activated sludge increases due to the proliferation of However, if there is an imbalance between the oxygen supply from the air diffuser 7 and the oxygen consumption by the microorganisms in the flocks and the oxygen solubility of the liquid, the fluctuation of the dissolved oxygen amount (DO) cannot be avoided,
Therefore, the oxygen solubility of the solution in the tank 2 decreases due to the rise in the water temperature in the tank 2, or the ML per unit volume of the liquid is reduced.
When dissolved oxygen (DO) decreases due to an increase in SS and oxygen consumption becomes excessive and the dissolved oxygen (DO) decreases and becomes anaerobic, microorganisms in the activated sludge floc lose their activity or die and are one of the causes of bulking As a result, the organic matter absorbed in the floc is accumulated without being decomposed, and the floc is made highly viscous. As a result, the properties of the liquid in the tank are deteriorated.

【0011】かかるばっき槽内液の性状悪化は膜分離装
置4の膜面のケ−キ層形成を促し、膜分離装置における
膜間差圧一定のもとでの濾過流速の低下や濾過流速一定
のもとでの膜間差圧の増加をもたらし、分離効率の低
下、膜洗浄頻度の増加が避けられない。
[0011] The deterioration of the properties of the solution in the tank promotes the formation of a cake layer on the membrane surface of the membrane separation device 4. This leads to an increase in the transmembrane pressure difference under certain conditions, and inevitably decreases the separation efficiency and increases the frequency of membrane washing.

【0012】而るに、本発明に係る排水処理方法におい
ては、ばっき槽2内水温変化に伴う活性汚泥(MLS
S)の酸素消費量の変化(水温が上昇するほどMLSS
単位量当たりの酸素消費量が増加)及びばっき槽内水温
変化に伴う酸素溶解量の変化(水温が上昇するほど溶解
度が減少)のために、水温が上昇するほどばっき槽の溶
存酸素(DO)が少なくなり嫌気状態に近づくことを考
慮し、水温が高いときには、ばっき槽内液単位量当たり
の活性汚泥量を少なくし酸素消費量を小にしてDOを充
分に高く保持し、またばっき槽内水温が相当に低くなる
とDOが大きくなり過ぎて過剰酸素状態になることを考
慮し、水温が低いときには、ばっき槽内液単位量当たり
の活性汚泥量を増やしているので、溶存酸素を全体とし
て活性汚泥による有機物の分解に有効に利用できる。
Thus, in the wastewater treatment method according to the present invention, the activated sludge (MLS
S) Change in oxygen consumption (MLSS increases as water temperature rises)
Due to the increase in oxygen consumption per unit amount) and the change in the amount of dissolved oxygen due to the change in the water temperature in the tank (the solubility decreases as the water temperature increases), the dissolved oxygen in the tank increases as the water temperature increases. DO) decreases and approaches an anaerobic state, and when the water temperature is high, the amount of activated sludge per unit volume of liquid in the tank is reduced, the oxygen consumption is reduced, and DO is kept sufficiently high. Considering that when the water temperature in the tank becomes extremely low, the DO becomes too large to cause an excess oxygen state, and when the water temperature is low, the amount of activated sludge per unit volume of the tank in the tank is increased. Oxygen can be effectively used as a whole for the decomposition of organic matter by activated sludge.

【0013】活性汚泥処理では、既述した通りばっき槽
内のMLSSは微生物の増殖により経時的に増加してい
くために原水槽からの送入液のMLSSよりも多くな
り、活性汚泥抜取りポンプからの抜取りMLSS量を
V、原水槽からの送入MLSS量をv、汚水の送入量と
活性汚泥抜取り量の同量のもとでのその流量をfとすれ
ば、ばっき槽内MLSSの減少量はf(V−v)で与え
られ、他方増殖によるMLSSの増加量をPとすれば、
ばっき槽内MLSSは〔f(V−v)−P〕で把握で
き、通常流量fの調節によりばっき槽内MLSSを調整
できる。
In the activated sludge treatment, as described above, the MLSS in the storage tank increases with time due to the growth of microorganisms, so that it becomes larger than the MLSS of the liquid supplied from the raw water tank. If the amount of MLSS extracted from the tank is V, the amount of MLSS sent from the raw water tank is v, and the flow rate under the same amount of the amount of wastewater and the amount of activated sludge withdrawn is f, the MLSS in the tank Is given by f (V−v), while P is the increase in MLSS due to proliferation,
The MLSS in the tank can be grasped by [f (V−v) −P], and the MLSS in the tank can be adjusted by adjusting the normal flow rate f.

【0014】本発明に係る排水処理方法は、膜分離装置
の分離性能を所定性能に保持するように、例えば膜分離
装置の膜間差圧ほぼ一定のもとで一定量の濾過流速を安
定に確保するように、あるいは高品質(例えばBOD除
去率95%以上)の濾過液水質を確保するように、ばっ
き槽内水温に応じてばっき槽内液のMLSSを上記流量
fの調節により調整することにより実施でき、その調整
は水温30℃以上でのMLSS量を100として、水温
25℃以上で30℃未満でのMLSS量を120〜16
0、水温20℃以上で25℃未満でのMLSS量を16
0〜200、水温15℃以上で20℃未満でのMLSS
量を200〜280、水温10℃以上で15℃未満での
MLSS量を280〜360、水温10℃以下でのML
SS量を400として行うことが好ましい。
In the wastewater treatment method according to the present invention, for example, a constant amount of filtration flow rate can be stably maintained under a substantially constant pressure difference between the membranes of the membrane separation device so as to maintain the separation performance of the membrane separation device at a predetermined performance. The MLSS of the solution in the tank is adjusted by adjusting the flow rate f according to the water temperature in the tank so as to ensure the quality of the filtrate solution of high quality (for example, a BOD removal rate of 95% or more). The adjustment can be performed by setting the MLSS amount at a water temperature of 30 ° C. or higher as 100 and the MLSS amount at a water temperature of 25 ° C. or higher and lower than 30 ° C. as 120 to 16%.
0, the MLSS amount at a water temperature of 20 ° C or higher and lower than 25 ° C is 16
MLSS at 0 to 200, water temperature 15 ° C or higher and lower than 20 ° C
The amount of MLSS at a water temperature of 10 ° C or higher and lower than 15 ° C is 280 to 360, and the ML at a water temperature of 10 ° C or lower.
It is preferable to set the SS amount to 400.

【0015】本発明によれば、非分解有機物の蓄積、活
性微生物の死滅や嫌気性条件に強い糸状菌の増殖に起因
するばっき槽内液の高粘性化や性状悪化を防止でき、膜
分離装置の膜面でのケ−キ層の形成をよく抑制でき、後
述の実施例からも明らかなように高品質の浄化水を安定
な分離状態で得ることができる。
According to the present invention, it is possible to prevent the liquid in the tank from becoming highly viscous or deteriorating due to the accumulation of non-decomposed organic substances, the death of active microorganisms, or the growth of filamentous fungi resistant to anaerobic conditions. The formation of a cake layer on the membrane surface of the apparatus can be suppressed well, and high-quality purified water can be obtained in a stable separated state, as will be apparent from the examples described later.

【0016】なお、上記実施例で使用した膜分離装置で
は、膜間差圧を得るために膜の濾過側を吸引ポンプで減
圧しているが、ばっき槽を濾過液槽よりも高所に設置し
てばっき槽内液面と濾過液槽内液面との間の水頭圧力で
膜間差圧を得ること、ばっき槽内液面と膜内からの濾過
液取出し管の最上部との間の水頭を大きくして水頭圧力
で膜間差圧を得ることも可能である。
In the membrane separation device used in the above embodiment, the filtration side of the membrane is depressurized by a suction pump in order to obtain a transmembrane pressure difference. However, the tank is located higher than the filtrate tank. Install to obtain the transmembrane pressure by the head pressure between the liquid level in the tank and the liquid level in the filtrate tank, and the top of the liquid level in the tank and the top of the filtrate discharge pipe from inside the membrane. It is also possible to obtain a transmembrane pressure difference by increasing the water head during the period.

【0017】また、膜分離排水処理装置には、図2に示
すように膜分離装置40をばっき槽2の外部に設置し、
ばっき槽内液を加圧液送ポンプ41で膜分離装置40に
加圧下で送入し、濾過液を濾過液水槽6に取り出し、非
濾過液をばっき槽2内に戻す構成のものを使用すること
もできる。図2において、図1における符号と同一の符
号は同一の構成要素を示している。
Further, in the membrane separation wastewater treatment apparatus, as shown in FIG. 2, a membrane separation apparatus 40 is installed outside the tank 2,
The tank in the tank is fed under pressure to the membrane separation device 40 by the pressurized liquid sending pump 41, the filtrate is taken out to the filtrate tank 6, and the non-filtrate is returned to the tank 2. Can also be used. 2, the same reference numerals as those in FIG. 1 indicate the same components.

【0018】[0018]

【実施例】〔実施例〕膜分離排水処理装置に図1に示す
構成のものを使用し、膜分離装置の平膜にはポリオレフ
ィン系限外濾過膜を用い、8分間運転・2分間停止を1
サイクルとする間歇運転で平均濾過流速を0.5m/
・dayとするように吸引ポンプを駆動し、ばっき槽内
のMLSSをばっき槽内水温30℃以上に対し5,00
0〜6,000mg/リットル、ばっき槽内水温25℃
〜30℃に対し6,000〜8,000mg/リット
ル、ばっき槽内水温20℃〜25℃に対し8,000〜
10,000mg/リットル、ばっき槽内水温15℃〜
20℃に対し10,000〜14,000mg/リット
ル、ばっき槽内水温10℃〜15℃に対し14,000
〜18,000mg/リットル、ばっき槽内水温10℃
未満に対し18,000〜20,000mg/リットル
とするように調整しつつ1年間運転した。その運転中で
のばっき槽内水温(℃)、ばっき槽単位容積当たりのB
OD容積負荷(Kg/m・d)、吸引ポンプの吸引圧力(kP
a)、ばっき槽内DO(mg/リットル)、処理水のBOD
除去率(%)を測定したところ(何れも平均値、以下同
じ)、表1の通りであった。
[Example] [Example] A membrane separation wastewater treatment apparatus having the structure shown in Fig. 1 was used, and a polyolefin ultrafiltration membrane was used for a flat membrane of the membrane separation apparatus. 1
The average filtration flow rate is 0.5m 3 /
The suction pump is driven so as to set m 2 · day, and the MLSS in the tank is reduced to 5,000 when the water temperature in the tank is 30 ° C. or more.
0-6,000mg / l, water temperature in the tank is 25 ℃
6,000 to 8,000 mg / liter for ~ 30 ° C, 8,000 ~ for water temperature in the tank of 20 to 25 ° C
10,000mg / L, water temperature in the tank is 15 ℃ ~
10,000 to 14,000 mg / liter for 20 ° C, 14,000 for water temperature in the tank of 10 to 15 ° C.
~ 18,000mg / l, water temperature in the tank 10 ℃
It was operated for one year while adjusting to 18,000 to 20,000 mg / liter. Water temperature in the tank during operation (℃), B per unit volume of the tank
OD volume loading (Kg / m 3 · d) , the suction pressure of the suction pump (kP
a), DO (mg / liter) in the tank, BOD of treated water
Table 1 shows the results of measurement of the removal rate (%) (all of them are average values, the same applies hereinafter).

【0019】[0019]

【表1】 [Table 1]

【0020】〔比較例1〕ばっき槽内MLSSを従来の
膜分離活性汚泥法での通常値(10,000〜14,0
00mg/リットル)とし、特にばっき槽内水温との関
係での調整を行わなかった以外、実施例と同じとした。
その運転中でのばっき槽内水温(℃)、ばっき槽単位容
積当たりのBOD容積負荷(Kg/m・d)は実施例に実質
的に共通とし実施例と並行して運転した。運転中での吸
引ポンプの吸引圧力(kPa)、ばっき槽内DO(mg/リット
ル)、処理水のBOD除去率(%)を測定したところ
(何れも平均値)、表1の通りであり、12月に濾過抵
抗の著しい増加のために運転続行が事実上不可となっ
た。
[Comparative Example 1] The MLSS in the stripping tank was adjusted to a normal value (10,000 to 14,0) according to a conventional membrane separation activated sludge method.
00 mg / liter), and was the same as the example except that adjustment was not made particularly in relation to the water temperature in the tank.
During the operation, the water temperature in the tank (° C.) and the BOD volume load per unit volume of the tank (Kg / m 3 · d) were substantially common to the examples and operated in parallel with the examples. The suction pressure (kPa) of the suction pump during operation, the DO (mg / liter) in the tank, and the BOD removal rate (%) of the treated water were measured (all are average values). In December, continued operation was virtually impossible due to a significant increase in filtration resistance.

【0021】〔比較例2〕膜分離装置に代え沈殿槽を設
け、ばっき槽の容積を実施例と同じとして沈殿分離活性
汚泥法を、ばっき槽内のMLSSをばっき槽内水温30
℃以上に対し1,600mg/リットル、ばっき槽内水
温25℃〜30℃に対し2,000〜2,700mg/
リットル、ばっき槽内水温20℃〜25℃に対し2,7
00〜3,400mg/リットル、ばっき槽内水温15
℃〜20℃に対し3,400〜4,700mg/リット
ル、ばっき槽内水温10℃〜15℃に対し4,700〜
6,000mg/リットル、ばっき槽内水温10℃未満
に対し6,000〜8,000mg/リットルとするよ
うに調整しつつ1年間運転した。運転中でのばっき槽内
DO(mg/リットル)、処理水のBOD除去率(%)を
測定したところ(何れも平均値)、表1の通りであっ
た。
[Comparative Example 2] A sedimentation tank was provided in place of the membrane separation apparatus. The volume of the tank was the same as that of the embodiment, and the sedimentation separation activated sludge method was used.
1,600mg / L for water temperature of ℃ or more, 2,000-2,700mg / liter for water temperature in the tank of 25 ℃ -30 ℃
Liter, 2,7 for water temperature of 20 ℃ ~ 25 ℃
00-3,400mg / liter, water temperature in the tank 15
3,400-4,700mg / L for ℃ -20 ℃, 4,700〜10 ℃ for water temperature in the tank
The operation was carried out for one year while adjusting to 6,000 mg / liter and 6,000 to 8,000 mg / liter for a water temperature in the tank of less than 10 ° C. The DO (mg / liter) in the tank and the BOD removal rate (%) of the treated water during operation were measured (all were average values).

【0022】表1から明らかな通り、比較例1の膜分離
活性汚泥法では、ばっき槽内が高水温のほぼ5月〜9月
にばっき槽内のDOが低くなると共に吸引ポンプの吸引
圧力が増加し、かつ処理水のBOD除去率が低くなって
いることから、ばっき槽内の酸素不足による活性分解作
用の減退、非分解有機物の蓄積によるばっき槽内液の高
粘性化等に起因しての膜面ケ−キ層の形成に基づく分離
性能の低下が明かである。しかしながら、実施例におい
ては、吸引圧力が安定であり、処理水質も高くて安定で
ある。また、比較例2と実施例との対比から、ばっき槽
内のMLSS調整を行ってバルキングを防止した沈殿分
離活性汚泥法よりも、本発明によれば、高品質の浄化処
理が可能であることも明かである。
As is apparent from Table 1, in the membrane separation activated sludge method of Comparative Example 1, the DO in the tank became low in about 5 to September when the tank temperature was high and the suction pump sucked. As the pressure increases and the BOD removal rate of the treated water decreases, the active decomposition effect decreases due to lack of oxygen in the tank, and the viscosity of the tank in the tank increases due to accumulation of non-decomposed organic substances. It is clear that the separation performance is deteriorated due to the formation of the film surface cake layer. However, in the embodiment, the suction pressure is stable, and the quality of the treated water is high and stable. In addition, from the comparison between Comparative Example 2 and Example, according to the present invention, higher-quality purification treatment is possible than in the sedimentation-separation activated sludge method in which the MLSS in the tank is adjusted to prevent bulking. It is clear that.

【0023】[0023]

【発明の効果】本発明に係る排水処理方法は、膜分離活
性汚泥法についてもばっき槽内水温に応じてMLSSを
調整することにより分離性能をより効果的を発現させて
処理水質の一層の安定化・品質向上を図り得ることを実
験的に確認のうえばっき槽内のMLSS量をばっき槽内
水温に応じて調節しつつ運転しており、し尿処理、中水
道処理、生活排水処理、産業排水処理等を設置スペ−ス
の飛躍的な縮小のもとで高度の浄化水質、安定運転にて
行うことができる。
According to the wastewater treatment method of the present invention, the membrane separation activated sludge method is further improved in the separation performance by adjusting the MLSS in accordance with the water temperature in the tank so as to further improve the treated water quality. It has been experimentally confirmed that stabilization and quality improvement can be achieved. The operation is performed while adjusting the amount of MLSS in the tank in accordance with the water temperature in the tank. In addition, industrial wastewater treatment and the like can be performed with high purified water quality and stable operation under drastic reduction of installation space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する膜分離排水処理装置の
一例を示す図面である。
FIG. 1 is a drawing showing an example of a membrane separation wastewater treatment apparatus used in the present invention.

【図2】本発明において使用する膜分離排水処理装置の
別例を示す図面である。
FIG. 2 is a drawing showing another example of a membrane separation wastewater treatment device used in the present invention.

【符号の説明】[Explanation of symbols]

1 原水槽 2 ばっき槽 4 膜分離装置 40 膜分離装置 5 吸引ポンプ 6 処理水槽 7 散気管 8 ブロワ DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Deposition tank 4 Membrane separation apparatus 40 Membrane separation apparatus 5 Suction pump 6 Treatment water tank 7 Air diffuser 8 Blower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】排水をばっき槽内で生物学的に処理してそ
のばっき槽内の浮遊性固形物(MLSS)を膜分離装置
により分離処理して排水を浄化する方法において、膜分
離装置の濾過性能を所定性能に保持するように、ばっき
槽内のMLSS量をばっき槽内水温に応じて調節するこ
とを特徴とする排水処理方法。
1. A method for purifying wastewater by biologically treating wastewater in a tank and separating floating solids (MLSS) in the tank by a membrane separator. A wastewater treatment method comprising adjusting the amount of MLSS in a tank according to the temperature of water in a tank so that the filtration performance of the apparatus is maintained at a predetermined level.
【請求項2】排水をばっき槽内で生物学的に処理してそ
のばっき槽内の浮遊性固形物(MLSS)を膜分離装置
により分離処理して排水を浄化する方法において、浄化
水のBOD除去率を95%以上とするように、ばっき槽
内のMLSS量をばっき槽内水温に応じて調節すること
を特徴とする排水処理方法。
2. A method for purifying wastewater by biologically treating the wastewater in a tank and separating the suspended solids (MLSS) in the tank by a membrane separator to purify the wastewater. Wastewater treatment method, wherein the amount of MLSS in the tank is adjusted in accordance with the water temperature in the tank so that the BOD removal rate is 95% or more.
【請求項3】水温30℃以上でのMLSS量を100と
して、水温25℃以上で30℃未満でのMLSS量を1
20〜160、水温20℃以上で25℃未満でのMLS
S量を160〜200、水温15℃以上で20℃未満で
のMLSS量を200〜280、水温10℃以上で15
℃未満でのMLSS量を280〜360、水温10℃以
下でのMLSS量を360〜420とする請求項1また
は2記載の排水処理方法。
3. The amount of MLSS at a water temperature of 25 ° C. or higher and lower than 30 ° C. is set to 1 assuming that the MLSS amount at a water temperature of 30 ° C. or higher is 100.
MLS at 20-160, water temperature 20 ° C or higher and lower than 25 ° C
The S amount is 160 to 200, the MLSS amount at a water temperature of 15 ° C. or higher and lower than 20 ° C. is 200 to 280, and the water temperature is 10 ° C. or higher.
The wastewater treatment method according to claim 1 or 2, wherein the MLSS amount at a temperature lower than 10C is 280 to 360, and the MLSS amount at a water temperature of 10C or lower is 360 to 420.
JP11198708A 1999-07-13 1999-07-13 Waste water treatment Pending JP2001025791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11198708A JP2001025791A (en) 1999-07-13 1999-07-13 Waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11198708A JP2001025791A (en) 1999-07-13 1999-07-13 Waste water treatment

Publications (1)

Publication Number Publication Date
JP2001025791A true JP2001025791A (en) 2001-01-30

Family

ID=16395702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11198708A Pending JP2001025791A (en) 1999-07-13 1999-07-13 Waste water treatment

Country Status (1)

Country Link
JP (1) JP2001025791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system
JP2013176710A (en) * 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system
JP2015009214A (en) * 2013-06-28 2015-01-19 パナソニックIpマネジメント株式会社 Hydrogen peroxide-containing effluent treatment apparatus and treatment method
CN113651417A (en) * 2021-08-27 2021-11-16 艾萍 Sewage treatment system and method for environmental engineering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system
JP2013176710A (en) * 2012-02-28 2013-09-09 Kubota Corp Membrane separation activated sludge treatment method and system
JP2015009214A (en) * 2013-06-28 2015-01-19 パナソニックIpマネジメント株式会社 Hydrogen peroxide-containing effluent treatment apparatus and treatment method
CN113651417A (en) * 2021-08-27 2021-11-16 艾萍 Sewage treatment system and method for environmental engineering

Similar Documents

Publication Publication Date Title
US10160678B2 (en) Process for operating an upflow continuous backwash filter
JPH0724489A (en) Biological treatment device and water treatment using this device
JP2008212878A (en) Waste water treatment apparatus
JP3491122B2 (en) Water treatment equipment
EP2319808A2 (en) Method for treatment of water
JP2001025791A (en) Waste water treatment
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
JP4090218B2 (en) Sewage treatment apparatus and operation method thereof
KR20180031085A (en) Method and device for biologically treating organic wastewater
JPH11104698A (en) Drainage treatment method
JP3972406B2 (en) 厨 芥 Processing device
JP2001025769A (en) Wastewater treating method
KR19980019270A (en) Treatment method of waste water using separate-type septic tank
JPH05285490A (en) Method for highly treating organic waste water
JP2005013937A (en) Organic waste water treatment method
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JPS61185400A (en) Apparatus for treating excretion sewage
US11097966B2 (en) Method of operating an upflow backwash filter
JP2005177628A (en) Wastewater treatment method and wastewater treatment apparatus
JPH105762A (en) Activated sludge process and device therefor
JP2000197892A (en) Purification tank and its operation method
JP2004237222A (en) Operation starting-up method for membrane separation type activated sludge treatment apparatus
KR20020089255A (en) Intermittent operating phase submerged membrane bioreactor waste water treatment system
JPH04354592A (en) Sewage treating device
JPH06335696A (en) Waste water treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915