JP2001024241A - Manufacture of thermoelectric power generation element - Google Patents

Manufacture of thermoelectric power generation element

Info

Publication number
JP2001024241A
JP2001024241A JP11193985A JP19398599A JP2001024241A JP 2001024241 A JP2001024241 A JP 2001024241A JP 11193985 A JP11193985 A JP 11193985A JP 19398599 A JP19398599 A JP 19398599A JP 2001024241 A JP2001024241 A JP 2001024241A
Authority
JP
Japan
Prior art keywords
type element
grooved
vertical
type
insulating spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11193985A
Other languages
Japanese (ja)
Inventor
Masao Kunida
雅夫 國田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP11193985A priority Critical patent/JP2001024241A/en
Publication of JP2001024241A publication Critical patent/JP2001024241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure an insulating property between adjacent elements even when a gap between a P-type element and an N-type element is very small by a method wherein an average gap between the N-type element and the P-type element which are adjacent to each other and in which longitudinal grooves are worked, the amount of surface irregularities in the N-type element in which the longitudinal groove is worked and the diameter of an insulating spacer which is mixed with an adhesive are set at specific requirements. SOLUTION: Longitudinal grooves are worked in a P-type element 16 and an N-type element 18 in such a way that the value of an amount A of surface irregularities and that of an amount B of surface irregularities are nearly identical. In addition, the diameter D of every insulating spacer 34 is set at three times the amount A of surface irregularities in a longitudinal-groove working face 12. One-third of the diameter D of every insulating spacer 34 is offset by the amount A of surface irregularities in the longitudinal-groove working face 14 of the P-type element 16, one - third of the diameter D of every insulating spacer 34 is offset by the amount B of surface irregularities in the longitudinal-groove working face 14 of the N-type element 18, one - third of the diameter D of every insulating spacer 34 is formed as a gap between the P-type element 16 and the N-type element 18, and the contact of the P-type element 16 with the N-type element 18 is prevented. In addition, a mean gap G is set at five times the amount A of surface irregularities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果を
利用した発電装置に用いる熱電発電素子、特に小型で多
数の熱電対で構成される熱電発電素子の製造方法の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for manufacturing a thermoelectric power generation element used for a power generation device utilizing the Seebeck effect, and in particular, to a thermoelectric power generation element formed of a small number of thermocouples.

【0002】[0002]

【従来の技術】従来の熱電発電素子の製造方法を工程順
に記す。第一工程は、P型熱電素子とN型熱電素子をそ
れぞれの素材から切り出す。第二工程は、P型熱電素子
とN型熱電素子に同じピッチで多数本の縦溝を加工す
る。第三工程は、P型素子の縦溝とN型素子の縦溝を互
いに嵌合させ、P型素子とN型素子の縦溝加工面が互い
に対向するように隣接併置する。第四工程は、P型素子
とN型素子の隙間にエポキシ系接着剤の表面張力を利用
して充填し、加熱硬化し、一体化する。第五工程は、縦
溝に直交する多数本の横溝を加工する。第六工程は、概
横溝をエポキシ系接着剤で充填し、加熱硬化する。第七
工程は、上下の不要部分を除去し、多数の角柱状のP型
素子とN型素子が剣山状にエポキシ系接着剤で固定され
た状態とする。第八工程は、隣接するP型素子とN型素
子とを接続し、全素子を直列に一本につなぐ。第九工程
は、全素子の開始点と終了点に取り出し電極を設け、熱
電発電素子として完成する。
2. Description of the Related Art A conventional method for manufacturing a thermoelectric power generating element will be described in the order of steps. In the first step, a P-type thermoelectric element and an N-type thermoelectric element are cut out from respective materials. In the second step, a number of vertical grooves are formed at the same pitch in the P-type thermoelectric element and the N-type thermoelectric element. In the third step, the longitudinal grooves of the P-type element and the longitudinal grooves of the N-type element are fitted to each other, and the P-type element and the N-type element are adjacently juxtaposed such that the longitudinal groove processing surfaces face each other. In the fourth step, the gap between the P-type element and the N-type element is filled using the surface tension of the epoxy-based adhesive, heat-cured, and integrated. In the fifth step, a number of horizontal grooves orthogonal to the vertical grooves are processed. In the sixth step, the substantially horizontal grooves are filled with an epoxy-based adhesive and cured by heating. In the seventh step, unnecessary portions on the upper and lower sides are removed, and a large number of prism-shaped P-type elements and N-type elements are fixed in a sword-like shape with an epoxy-based adhesive. In an eighth step, adjacent P-type and N-type elements are connected, and all elements are connected in series. In the ninth step, extraction electrodes are provided at the start point and the end point of all the elements to complete the thermoelectric power generation element.

【0003】更に、我々は第四工程において、P型素子
とN型素子の隙間に平均粒径8μmの絶縁性スペーサー
をエポキシ系接着剤に5重量%添加する事例を示してい
る。
Further, in the fourth step, an example is shown in which an insulating spacer having an average particle size of 8 μm is added to an epoxy-based adhesive in an amount of 5% by weight in a gap between a P-type element and an N-type element.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、腕時
計、特に小型である事が好まれる女性向け腕時計では熱
電発電素子も小型化が要求されるが、単純に小型化する
と隣接するP型素子とN型素子の隣接間でショートする
不都合が生じる。
However, in a wristwatch, in particular, a wristwatch for women, which is preferred to be small in size, the thermoelectric power generation element is also required to be downsized. The short circuit occurs between adjacent elements.

【0005】また、従来のP型素子とN型素子を組合せ
た後にエポキシ系接着剤を充填する製造方法において
は、P型素子とN型素子の組合せ時に両者が接触する可
能性があり、この場合にはエポキシ系接着剤を充填して
も素子間を確実に絶縁できない畏れがあり、高密度の熱
電発電素子の製造方法の開発が望まれている。
In a conventional manufacturing method in which a P-type element and an N-type element are combined and then an epoxy-based adhesive is filled, there is a possibility that the P-type element and the N-type element may come into contact when they are combined. In such a case, there is a fear that even if an epoxy-based adhesive is filled, the elements cannot be reliably insulated from each other. Therefore, development of a method for manufacturing a high-density thermoelectric power generation element is desired.

【0006】本発明の目的は、P型素子とN型素子の隙
間が微少であっても隣接素子間の絶縁性を確保できる高
密度の熱電発電素子の製造方法を提供する事にある。
An object of the present invention is to provide a method for manufacturing a high-density thermoelectric power generation element capable of securing insulation between adjacent elements even when a gap between a P-type element and an N-type element is very small.

【0007】[0007]

【課題を解決するための手段】前述した目的を達成する
ために、本発明のうちで請求項1記載の発明における熱
電発電素子の製造方法は、それぞれの厚さ方向の一部を
残して同一ピッチで複数本の縦溝が平行に形成された縦
溝加工N型素子及び縦溝加工P型素子を作成する工程
と、前記縦溝加工N型素子と前記縦溝加工P型素子とを
互いにその縦溝を形成した面が対抗するように嵌合させ
る工程と、互いに嵌合された前記縦溝加工N型素子と前
記縦溝加工P型素子との隙間に絶縁性スペーサを混入し
た接着剤を充填して固着しPN一体化素子を形成する工
程と、該PN一体化素子における前記縦溝加工N型素子
と前記縦溝加工P型素子とが互いに嵌合されている部分
以外の部分を除去して固定剣山状素子を形成する工程と
を有する熱電発電素子の製造方法において、互いに隣接
する前記縦溝加工N型素子と前記縦溝加工P型素子との
平均隙間G、前記縦溝加工N型素子の表面凹凸量A、前
記接着剤に混入する絶縁性スペーサの直径Dが、 G=5×A D=3×A の条件を満たすことを特徴とする。
In order to achieve the above-mentioned object, a method of manufacturing a thermoelectric power generation element according to the first aspect of the present invention is the same as that of the first aspect except that a part of each element in the thickness direction is left. Forming a vertical grooved N-type element and a vertical grooved P-type element in which a plurality of vertical grooves are formed in parallel at a pitch; and interchanging the vertical grooved N-type element and the vertical grooved P-type element with each other. A step of fitting so that the surfaces on which the vertical grooves are formed are opposed to each other; and an adhesive in which an insulating spacer is mixed in a gap between the vertically grooved N-type element and the vertically grooved P-type element fitted to each other. Filling and fixing to form a PN integrated element, and a portion of the PN integrated element other than a portion where the vertical grooved N-type element and the vertical grooved P-type element are fitted to each other. Removing to form a fixed blade element In the manufacturing method, the average gap G between the vertically grooved N-type element and the vertically grooved P-type element adjacent to each other, the surface irregularity A of the vertically grooved N-type element, the insulating property mixed in the adhesive The diameter D of the spacer satisfies the following condition: G = 5 × A D = 3 × A.

【0008】また請求項2記載の発明に係わる熱電発電
素子の製造方法は、それぞれの厚さ方向の一部を残して
同一ピッチで複数本の縦溝が平行に形成された縦溝加工
N型素子及び縦溝加工P型素子を作成する工程と、前記
縦溝加工N型素子及び前記縦溝加工P型素子のそれぞれ
の縦溝内に絶縁性スペーサを混入した接着剤を充填する
工程と、該接着剤が充填されている前記縦溝加工N型素
子と前記接着剤が充填されている前記縦溝加工P型素子
とを互いにその縦溝を形成した面が対抗するように嵌合
させ固着しPN一体化素子を形成する工程と、該PN一
体化素子における前記縦溝加工N型素子と前記縦溝加工
P型素子とが互いに嵌合されている部分以外の部分を除
去して固定剣山状素子を形成する工程とを有することを
特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a thermoelectric power generating element, wherein a plurality of vertical grooves are formed in parallel at the same pitch except for a part in the thickness direction. A step of forming an element and a longitudinally grooved P-type element, and a step of filling an adhesive mixed with an insulating spacer in each longitudinal groove of the longitudinally grooved N-type element and the longitudinally grooved P-type element, The vertical grooved N-type element filled with the adhesive and the vertical grooved P-type element filled with the adhesive are fitted and fixed so that the surfaces on which the vertical grooves are formed face each other. Forming a PN integrated element, and removing a portion of the PN integrated element other than a portion where the longitudinally grooved N-type element and the longitudinally grooved P-type element are fitted to each other. Forming a shape element.

【0009】また請求項3記載の発明に係わる熱電発電
素子の製造方法は、請求項2記載の熱電発電素子の製造
方法において、互いに隣接する前記縦溝加工N型素子と
前記縦溝加工P型素子との平均隙間G、前記縦溝加工N
型素子の表面凹凸量A、前記接着剤に混入する絶縁性ス
ペーサの直径Dが、 G=5×A D=3×A の条件を満たすことを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing a thermoelectric power generating element according to the second aspect, wherein the vertical grooved N-type element and the vertical grooved P-type adjacent to each other are adjacent to each other. Average gap G with element, vertical groove processing N
The surface element A of the mold element and the diameter D of the insulating spacer mixed into the adhesive satisfy the condition of G = 5 × A D = 3 × A.

【0010】[0010]

【発明の実施の形態】(第1の実施の形態)本実施形態
における熱電発電素子の製造方法は、複数本の縦溝が平
行に形成された縦溝加工N型素子及び縦溝加工P型素子
のそれぞれの縦溝内に絶縁性スペーサを混入した接着剤
を充填した後に、前記縦溝加工N型素子と前記縦溝加工
P型素子とを互いにその縦溝を形成した面が対抗するよ
うに嵌合させ固着させPN一体化素子を形成することを
特徴とする。また、互いに隣接する前記縦溝加工N型素
子と前記縦溝加工P型素子との平均隙間G、前記縦溝加
工N型素子の表面凹凸量A、前記接着剤に混入する絶縁
性スペーサの直径Dが、G=5×A、D=3×Aの条件
を満たすことを特徴とする。以下、本実施形態における
熱電発電素子の製造方法を、図1から図10を用いて、
工程順に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A method for manufacturing a thermoelectric power generation element according to the present embodiment includes a vertical grooved N-type element having a plurality of vertical grooves formed in parallel and a vertical grooved P-type element. After filling the vertical grooved N-type element and the vertical grooved P-type element with each other with the adhesive mixed with the insulating spacer in each of the vertical grooves of the element, the surfaces on which the vertical grooves are formed are opposed to each other. To form a PN integrated element. Further, an average gap G between the vertically grooved N-type element and the vertically grooved P-type element adjacent to each other, a surface irregularity A of the vertically grooved N-type element, and a diameter of an insulating spacer mixed in the adhesive D satisfies the conditions of G = 5 × A and D = 3 × A. Hereinafter, a method for manufacturing a thermoelectric power generation element according to the present embodiment will be described with reference to FIGS.
Description will be made in the order of steps.

【0011】第一工程は、P型熱電素子とN型熱電素子
の両者をそれぞれの素材から切り出す工程である。P型
熱電素子とN型熱電素子のそれぞれの原材料から直方体
の形状をなすP型熱電素子ブランクと、N型熱電素子ブ
ランクとを切り出す。
The first step is a step of cutting out both a P-type thermoelectric element and an N-type thermoelectric element from respective materials. From each raw material of the P-type thermoelectric element and the N-type thermoelectric element, a rectangular parallelepiped P-type thermoelectric element blank and an N-type thermoelectric element blank are cut out.

【0012】第二工程は、図1に示すように、P型熱電
素子ブランクとN型熱電素子ブランクの両者に同じピッ
チで多数本の縦溝17、19を加工する工程である。こ
れにより、図1(a)に示す縦溝加工N型素子18と図
1(b)に示す縦溝加工P型素子16とを形成する。前
記縦溝加工は、ワイヤーソー又は、マイクログラインダ
ーで加工する。
In the second step, as shown in FIG. 1, a large number of vertical grooves 17, 19 are formed on both the P-type thermoelectric element blank and the N-type thermoelectric element blank at the same pitch. Thus, a longitudinally grooved N-type element 18 shown in FIG. 1A and a longitudinally grooved P-type element 16 shown in FIG. 1B are formed. The flute processing is performed by a wire saw or a micro grinder.

【0013】第三工程は、縦溝加工P型素子16と縦溝
加工N型素子18とのそれぞれの縦溝17、19に、図
2に示すように絶縁性スペーサー34(図示せず)を混
入したエポキシ系接着剤36を流し込む工程である。図
2(a)は、縦溝加工N型素子18、図2(b)は、縦
溝加工P型素子16を示す。
In the third step, as shown in FIG. 2, an insulating spacer 34 (not shown) is provided in each of the vertical grooves 17, 19 of the vertical grooved P-type element 16 and the vertical grooved N-type element 18. This is a step of pouring the mixed epoxy adhesive 36. FIG. 2A shows a vertical grooved N-type element 18, and FIG. 2B shows a vertical grooved P-type element 16.

【0014】第四工程は、図3に示すように、縦溝加工
P型素子16の縦溝17と、縦溝加工N型素子18の縦
溝19とを、互いに嵌合させる工程である。縦溝加工P
型素子16と縦溝加工N型素子18とを隣接併置するよ
うに余剰エポキシ系接着剤36を押し出しながら嵌合さ
せる。溢れ出たエポキシ系接着剤36は拭い去り、加熱
硬化する。これにより、縦溝加工P型素子16と縦溝加
工N型素子18を一体化したPN一体化素子32を形成
する。
In the fourth step, as shown in FIG. 3, the vertical groove 17 of the vertical grooved P-type element 16 and the vertical groove 19 of the vertical grooved N-type element 18 are fitted to each other. Vertical groove processing P
The excess epoxy adhesive 36 is pushed out and fitted so that the mold element 16 and the longitudinal grooved N-type element 18 are juxtaposed and juxtaposed. The overflowing epoxy-based adhesive 36 is wiped off and cured by heating. Thus, a PN integrated element 32 in which the longitudinally grooved P-type element 16 and the longitudinally grooved N-type element 18 are integrated is formed.

【0015】図4に、図3の縦断面の部分拡大図を示
す。前記絶縁性スペーサー34とエポキシ系接着剤36
を介して、縦溝加工P型素子16と縦溝加工N型素子1
8が嵌合され、PN一体化素子32となっている。
FIG. 4 shows a partially enlarged view of the longitudinal section of FIG. The insulating spacer 34 and the epoxy adhesive 36
Through the vertical grooved P-type element 16 and the vertical grooved N-type element 1
8 are fitted to form a PN integrated element 32.

【0016】更に図5に、図4の部分拡大図を示す。図
5(a)は、縦溝加工面12,14に表面凹凸量A,B
が有っても絶縁性スペーサ34により縦溝加工P型素子
16と縦溝加工N型素子18の接触を防止する状態を示
す。図5(b)は、縦溝加工P型素子16と縦溝加工N
型素子18と絶縁性スペーサー34とが噛み合うこと無
く、円滑な組合せが可能となる状態を示す。
FIG. 5 is a partially enlarged view of FIG. FIG. 5A shows the amount of surface irregularities A and B on the vertical grooved surfaces 12 and 14.
This shows a state in which the insulating spacer 34 prevents contact between the longitudinally grooved P-type element 16 and the longitudinally grooved N-type element 18. FIG. 5 (b) shows the vertical groove processing P-type element 16 and the vertical groove processing N
This shows a state where a smooth combination is possible without the mold element 18 and the insulating spacer 34 being engaged with each other.

【0017】図5に示すように本実施形態においては、
縦溝加工P型素子16と縦溝加工N型素子18とのそれ
ぞれの縦溝加工面12、14の表面凹凸量A、Bと、絶
縁性スペーサー34の直径Dと、隣接併置したP型素子
16とN型素子18との平均隙間Gとの関係を以下のよ
うに設定する。
As shown in FIG. 5, in this embodiment,
The surface irregularities A and B of the vertical grooved surfaces 12 and 14 of the vertical grooved P-type element 16 and the vertical grooved N-type element 18, the diameter D of the insulating spacer 34, and the adjacent P-type elements The relationship between the average gap G between the N-type element 16 and the N-type element 18 is set as follows.

【0018】本実施形態においては、表面凹凸量Aと、
表面凹凸量Bとの値がほぼ同じになるように、P型素子
16とN型素子18との縦溝加工を行う。また、絶縁性
スペーサー34の直径Dは、縦溝加工面12の表面凹凸
量Aの3倍とする。この場合、図5(a)に示すように
絶縁性スペーサー34の直径Dの3分の1は、P型素子
16における縦溝加工面12の表面凹凸量Aに相殺さ
れ、絶縁性スペーサー34の直径Dの3分の1は、N型
素子18におけるの縦溝加工面14の表面凹凸量Bに相
殺され、絶縁性スペーサー34の直径Dの残り3分の1
がP型素子16とN型素子18との隙間として形成さ
れ、P型素子16とN型素子18との接触を防止してい
る。
In this embodiment, the surface unevenness amount A and
Vertical groove processing is performed on the P-type element 16 and the N-type element 18 so that the value of the surface unevenness amount B becomes substantially the same. In addition, the diameter D of the insulating spacer 34 is set to be three times the surface unevenness amount A of the vertical groove processing surface 12. In this case, as shown in FIG. 5A, one-third of the diameter D of the insulating spacer 34 is offset by the surface irregularity A of the vertical grooved surface 12 in the P-type element 16, and the insulating spacer 34 One-third of the diameter D is offset by the surface irregularity B of the vertical grooved surface 14 in the N-type element 18, and the remaining one-third of the diameter D of the insulating spacer 34.
Are formed as gaps between the P-type element 16 and the N-type element 18 to prevent contact between the P-type element 16 and the N-type element 18.

【0019】また、図5(b)に示すように前記平均隙
間Gは、前記表面凹凸量Aの5倍に設定する。平均隙間
Gの5分の3は、絶縁性スペーサ34の直径Dで相殺さ
れ、平均隙間Gの5分の1は、P型素子または、N型素
子の表面凹凸量A或いはBで相殺されるが、平均隙間G
の5分の1が残存するので、縦溝加工P型素子16と縦
溝加工N型素子18と絶縁性スペーサー34とが噛み合
うこと無く、円滑な組合せが可能である。
Further, as shown in FIG. 5B, the average gap G is set to be five times the surface irregularity amount A. Three-fifths of the average gap G are offset by the diameter D of the insulating spacer 34, and one-fifth of the average gap G is offset by the surface irregularities A or B of the P-type element or the N-type element. Is the average gap G
Is left, so that the vertical grooved P-type element 16, the vertical grooved N-type element 18, and the insulating spacer 34 do not mesh with each other, and a smooth combination is possible.

【0020】第五工程は、図6に示すように、PN一体
化素子32にワイヤーソーまたはマイクログラインダー
を用い、縦溝に直交する多数本の横溝34を加工する工
程である。これにより、横溝加工素子42が出来上が
る。
The fifth step is, as shown in FIG. 6, a step of forming a large number of horizontal grooves 34 orthogonal to the vertical grooves by using a wire saw or a micro grinder for the PN integrated element 32. Thereby, the lateral groove processing element 42 is completed.

【0021】第六工程は、図7に示すように、横溝加工
素子42の多数本の横溝46の内に横溝用エポキシ系接
着剤44を充填し、加熱硬化する工程である。これによ
り横溝充填素子52が出来上がる。横溝用エポキシ系接
着剤44は、横溝46よりもやや小さい直径の絶縁性ビ
ーズを多量に含有させ、横溝用エポキシ系接着剤44の
硬化収縮量を緩和させることが好ましい。
The sixth step is, as shown in FIG. 7, a step of filling a lateral groove epoxy-based adhesive 44 into a large number of lateral grooves 46 of the lateral groove processing element 42 and heating and curing the same. Thereby, the lateral groove filling element 52 is completed. It is preferable that the epoxy adhesive 44 for a lateral groove contains a large amount of insulating beads having a diameter slightly smaller than that of the lateral groove 46 to reduce the amount of curing shrinkage of the epoxy adhesive 44 for a lateral groove.

【0022】第七工程は、図8に示すように、横溝充填
素子52の上下の不要部分54と不要部分56を研削加
工で除去する工程であり、多数の角柱状のP型素子57
とN型素子58が剣山状にエポキシ系接着剤で固定され
た状態となる。これにより、エポキシ固定剣山状素子6
2が出来上がる。
As shown in FIG. 8, the seventh step is a step of removing unnecessary portions 54 and unnecessary portions 56 above and below the lateral groove filling element 52 by grinding, and comprises a large number of prismatic P-type elements 57.
Then, the N-type element 58 is fixed in the shape of a sword with an epoxy-based adhesive. Thereby, the epoxy fixed sword mountain-shaped element 6
2 is completed.

【0023】第八工程は、図9に示すように、エポキシ
固定剣山状素子62の表裏面の隣接するP型素子57と
N型素子58を表裏で交互に接続し、全素子を直列に一
本に接続する工程である。具体的な方法としては、エポ
キシ固定剣山状素子62の表面に所定のパターンを形成
した金属マスクを所定位置に設定した後に、ニッケルや
クロムや銅等の導電性金属を蒸着し、接続パターン7
4、75、76、77、78を形成する。これにより、
表裏面接続素子72が出来上がる。
In an eighth step, as shown in FIG. 9, adjacent P-type elements 57 and N-type elements 58 on the front and back sides of the epoxy-fixed sword-shaped element 62 are alternately connected on the front and back sides, and all the elements are connected in series. This is the step of connecting to a book. As a specific method, a metal mask having a predetermined pattern formed on the surface of the epoxy-fixed sword mountain-shaped element 62 is set at a predetermined position, and then a conductive metal such as nickel, chromium, or copper is deposited.
4, 75, 76, 77, 78 are formed. This allows
The front and back connection element 72 is completed.

【0024】第九工程は、図10に示すように、表裏面
接続素子72の全素子の開始点と終了点に取り出し電極
部74、76を設ける工程である。これにより、熱電発
電素子完成体82となる。
The ninth step is, as shown in FIG. 10, a step of providing extraction electrode portions 74 and 76 at the start point and the end point of all the front and back connection elements 72. Thus, a thermoelectric power generation element completed body 82 is obtained.

【0025】次に、本実施形態における熱電発電時計の
製造方法の第2工程から第4工程について、具体的数値
を用いて説明する。その他の工程は、各実施例について
共通である。
Next, the second to fourth steps of the method for manufacturing a thermoelectric timepiece according to the present embodiment will be described using specific numerical values. Other steps are common to each embodiment.

【0026】(実施例1)第1工程で切り出された直方
体のP型熱電素子ブランク、及びN型熱電素子ブランク
に溝加工を行う第2工程には、通常の砥粒を用い、ワイ
ヤーソーで、通常の切り込み速度で加工する。これによ
り図5に示す縦溝加工面の表面凹凸量Aの値は、3μm
程度となる。
(Example 1) In the second step of forming grooves in the rectangular parallelepiped P-type thermoelectric element blank and the N-type thermoelectric element blank cut out in the first step, ordinary abrasive grains are used and a wire saw is used. , At a normal cutting speed. Thereby, the value of the surface unevenness amount A of the vertical groove processed surface shown in FIG.
About.

【0027】第3工程は、前記縦溝の加工表面の凹凸量
Aが3μm程度なので、直径Dの値がφ9μmの絶縁性
スペーサ34を5重量%混入したエポキシ系接着剤36
を図1に示す前記縦溝17、19に流し込む。
In the third step, since the unevenness amount A of the processed surface of the vertical groove is about 3 μm, the epoxy adhesive 36 containing 5% by weight of the insulating spacer 34 having a diameter D of φ9 μm is used.
Is poured into the vertical grooves 17 and 19 shown in FIG.

【0028】第四工程は、図4に示すように、縦溝加工
P型素子16の縦溝17と、縦溝加工N型素子18の縦
溝19とを、互いに組み合わせる工程であるが、エポキ
シ系接着剤36を混入した絶縁性スペーサー34の直径
Dの値φ9μmの内の3μmは、縦溝加工P型素子16
の加工面の表面凹凸量Aで相殺される。更に縦溝加工N
型素子18の加工面の表面凹凸Aにより3μmが相殺さ
れる。しかし、3μmが残るので、隣接する縦溝加工P
型素子16と縦溝加工N型素子18sが接触する事は無
い。
In the fourth step, as shown in FIG. 4, the vertical groove 17 of the vertical grooved P-type element 16 and the vertical groove 19 of the vertical grooved N-type element 18 are combined with each other. 3 μm out of the diameter φ of 9 μm of the insulating spacer 34 mixed with the system adhesive 36 is the vertical grooved P-type element 16.
Is offset by the surface irregularity amount A of the processed surface. Further vertical groove processing N
3 μm is offset by the surface irregularities A of the processing surface of the mold element 18. However, since 3 μm remains, the adjacent vertical groove processing P
There is no contact between the mold element 16 and the vertical grooved N-type element 18s.

【0029】次に、平均隙間Gが表面凹凸量Aの5倍と
する理由を数値を用いて述べる。隣接素子間の平均隙間
Gの値は、表面凹凸量A=3μmの5倍の15μmであ
る。隣接素子間の平均隙間G=15μmの5分の3は、
絶縁性スペーサー34のφ9μmで相殺され、5分の1
は表面凹凸量3μmで相殺される。しかし、隣接素子間
の平均隙間の5分の1の3μmが残存するので、縦溝加
工P型素子16と縦溝加工N型素子18と絶縁性スペー
サー34とが噛み合うこと無く、円滑な組合せが可能で
ある。
Next, the reason why the average gap G is five times the surface irregularity A will be described using numerical values. The value of the average gap G between adjacent elements is 15 μm, which is five times the surface irregularity amount A = 3 μm. Three-fifths of the average gap G between adjacent elements is 15 μm,
It is offset by φ9 μm of the insulating spacer 34 and is reduced to one fifth.
Are offset by a surface irregularity of 3 μm. However, since 3 μm, which is one fifth of the average gap between adjacent elements, remains, the vertical grooved P-type element 16, the vertical grooved N-type element 18, and the insulating spacer 34 do not engage with each other, and a smooth combination is achieved. It is possible.

【0030】(実施例2)実施例2としては、第2工程
で通常よりも微細な砥粒を用い、ワイヤーソーで、通常
よりも遅い切り込み速度で加工する。これにより縦溝加
工面の表面凹凸量Aの値は、2μm程度となる。
(Embodiment 2) In Embodiment 2, in the second step, finer than usual abrasive grains are used, and a wire saw is used for processing at a lower cutting speed than usual. Thereby, the value of the surface unevenness amount A of the vertical groove processing surface becomes about 2 μm.

【0031】第三工程では、加工表面の凹凸量Aが2μ
m程度なので、φ6μmの絶縁性スペーサー34を4重
量%混入したエポキシ系接着剤36を流し込む。
In the third step, the unevenness amount A of the processed surface is 2 μm.
m, the epoxy adhesive 36 containing 4% by weight of the insulating spacer 34 having a diameter of 6 μm is poured.

【0032】第四工程は、実施例1と同様で、縦溝加工
P型素子16と縦溝加工N型素子18が接触することは
無い。また、実施例2においては、加工表面の凹凸量が
2μm程度なので隣接素子間の平均隙間は10μmとす
る。
The fourth step is the same as that of the first embodiment, and the vertical grooved P-type element 16 and the vertical grooved N-type element 18 do not come into contact with each other. In Example 2, the average gap between adjacent elements is set to 10 μm since the amount of unevenness on the processed surface is about 2 μm.

【0033】(実施例3)第3実施例としては、第2工
程で、微細ダイヤモンド砥粒を埋め込んだ砥石を用い、
マイクログラインダーで加工する。これにより縦溝加工
面の表面凹凸量Aの値は、1μm程度となる。
(Embodiment 3) In a third embodiment, in the second step, a grindstone in which fine diamond abrasive grains are embedded is used.
Process with a micro grinder. Thereby, the value of the surface unevenness amount A of the vertical groove processing surface becomes about 1 μm.

【0034】第三工程では、加工表面の凹凸量Aの値が
1μm程度なので、φ3μmの絶縁性スペーサー34を
3重量%混入したエポキシ系接着剤36を流し込む。
In the third step, since the value of the unevenness amount A of the processed surface is about 1 μm, the epoxy adhesive 36 containing 3% by weight of the insulating spacer 34 of φ3 μm is poured.

【0035】第四工程は、実施例1と同様で、縦溝加工
P型素子16と縦溝加工N型素子18が接触することは
無い。また、実施例3においては、加工表面の凹凸量A
の値が1μm程度なので隣接素子間の平均隙間は5μm
とする。
The fourth step is the same as that of the first embodiment, and the vertical grooved P-type element 16 and the vertical grooved N-type element 18 do not come into contact with each other. Further, in Example 3, the unevenness amount A of the processed surface
Is about 1 μm, the average gap between adjacent elements is 5 μm.
And

【0036】以上のように、本実施形態における熱電発
電素子の製造方法よれば、本実施形態で設定された所定
の製造条件のもとで、縦溝加工N型素子及び縦溝加工P
型素子のそれぞれの縦溝内に絶縁性スペーサを混入した
接着剤を充填した後に、前記縦溝加工N型素子と前記縦
溝加工P型素子とを互いにその縦溝を形成した面が対抗
するように嵌合され固着されるために、互いに隣接する
素子間の隙間が微少な場合においても、隣接する素子間
の絶縁性が確保でき高密度の熱電発電素子を得ることが
出来た。
As described above, according to the method of manufacturing the thermoelectric power generating element of the present embodiment, the longitudinal grooved N-type element and the longitudinal grooved P-type element are formed under the predetermined production conditions set in this embodiment.
After filling an adhesive mixed with an insulating spacer in each of the vertical grooves of the die element, the vertical grooved N-type element and the vertical grooved P-type element are opposed to each other by the surfaces on which the vertical grooves are formed. Thus, even if the gap between the adjacent elements is very small, the insulation between the adjacent elements can be ensured, and a high-density thermoelectric power generation element can be obtained.

【0037】(第2の実施の形態)本実施形態における
熱電発電素子の製造方法は、複数本の縦溝が平行に形成
された縦溝加工N型素子と縦溝加工P型素子とを互いに
その縦溝を形成した面が対抗するように嵌合させた後
に、互いに嵌合された前記縦溝加工N型素子と前記縦溝
加工P型素子との隙間に絶縁性スペーサを混入した接着
剤を充填して固着しPN一体化素子を形成するととに、
互いに隣接する前記縦溝加工N型素子と前記縦溝加工P
型素子との平均隙間G、前記縦溝加工N型素子の表面凹
凸量A、前記接着剤に混入する絶縁性スペーサの直径D
が、G=5×A、D=3×A、の条件を満たすことを特
徴とする。以下、本実施形態における熱電発電素子の製
造方法を、図11から図12を用いて説明する。
(Second Embodiment) A method of manufacturing a thermoelectric power generation element according to the present embodiment is a method of manufacturing a vertical grooved N-type element having a plurality of vertical grooves formed in parallel with a vertical grooved P-type element. An adhesive in which an insulating spacer is mixed in a gap between the vertically grooved N-type element and the vertically grooved P-type element which are fitted to each other so that the surfaces on which the vertical grooves are formed face each other. And fixed to form a PN integrated element,
The flute N-type element and the flute P which are adjacent to each other
Average gap G with the mold element, amount of surface irregularity A of the vertical grooved N-type element, diameter D of the insulating spacer mixed into the adhesive
Satisfy the conditions of G = 5 × A and D = 3 × A. Hereinafter, a method for manufacturing the thermoelectric power generation element according to the present embodiment will be described with reference to FIGS.

【0038】第2の実施形態における第一工程と第二工
程は、第1の実施形態と同様であるため説明を省略す
る。
The first step and the second step in the second embodiment are the same as those in the first embodiment, and a description thereof will be omitted.

【0039】第三工程は、図11に示すように、縦溝加
工P型素子26の縦溝27と、縦溝加工N型素子28の
縦溝29とを互いに嵌合させる工程である。縦溝加工P
型素子26と縦溝加工N型素子28とを隣接併置するよ
うに嵌合させる。
In the third step, as shown in FIG. 11, the vertical groove 27 of the vertical grooved P-type element 26 and the vertical groove 29 of the vertical grooved N-type element 28 are fitted to each other. Vertical groove processing P
The mold element 26 and the longitudinal grooved N-type element 28 are fitted so as to be adjacently juxtaposed.

【0040】第四工程は、図12(a)に示すように、
互いに嵌合された前記縦溝加工N型素子28と前記縦溝
加工P型素子26との隙間に絶縁性スペーサ34を混入
したエポキシ系接着剤36をその表面張力を利用して充
填して固着し、PN一体化素子20を形成する。この
時、図12(b)に示すように、互いに隣接する前記縦
溝加工N型素子28と前記縦溝加工P型素子26との平
均隙間G、前記縦溝加工N型素子28の表面凹凸量A、
前記縦溝加工P型素子26の表面凹凸量B、前記接着剤
に混入する絶縁性スペーサ34の直径Dが、G=5×
A、D=3×A、B≒A、の条件を満たすように各工程
の加工条件を設定するが、その設定の詳細については、
第1の実施形態の場合と同様であるため、ここでは、説
明を省略する。
In the fourth step, as shown in FIG.
The gap between the vertically grooved N-type element 28 and the vertically grooved P-type element 26 fitted to each other is filled with an epoxy adhesive 36 mixed with an insulating spacer 34 by utilizing its surface tension and fixed. Then, the PN integrated element 20 is formed. At this time, as shown in FIG. 12B, the average gap G between the vertically grooved N-type element 28 and the vertically grooved P-type element 26 adjacent to each other, the surface irregularity of the vertically grooved N-type element 28, Quantity A,
The surface unevenness amount B of the vertical grooved P-type element 26 and the diameter D of the insulating spacer 34 mixed in the adhesive are G = 5 ×
The processing conditions of each process are set so as to satisfy the conditions of A, D = 3 × A, B ≒ A.
Since it is the same as that of the first embodiment, the description is omitted here.

【0041】第五工程から第九工程までは、第1の実施
形態と同様であるため、説明を省略する。
The fifth to ninth steps are the same as those in the first embodiment, and therefore will not be described.

【0042】以上のように、本実施形態における熱電発
電素子の製造方法よれば、互いに隣接する素子間の隙間
が微少な場合において、従来の工程と同様であっても、
本実施形態で設定された所定の製造条件のもとで、熱電
発電素子が製作されるために互いに隣接する素子間の隙
間が微少な場合でも絶縁性が確保でき高密度の熱電発電
素子を得ることが出来た。
As described above, according to the method for manufacturing a thermoelectric power generation element of the present embodiment, when the gap between adjacent elements is very small, even if it is the same as the conventional process,
Under the predetermined manufacturing conditions set in the present embodiment, the thermoelectric power generation element is manufactured, so that even when the gap between the adjacent elements is small, insulation can be secured and a high density thermoelectric power generation element is obtained. I was able to do it.

【0043】[0043]

【発明の効果】以上説明したように本発明における熱電
発電素子の製造方法よれば、素子の縦溝加工表面の表面
凹凸量、互いに隣接する素子間隙間、及び絶縁性スペー
サー径の関係を含む製造条件が最適に設定されるため、
P型素子とN型素子の隙間が微少な場合においても高い
絶縁性を確保できる。従って、小型で、高密度の熱電発
電素子を実現することが可能となる。この結果、熱電発
電素子を内蔵した小型腕時計を提供することができる。
As described above, according to the method for manufacturing a thermoelectric power generation element of the present invention, the manufacturing including the relationship among the surface unevenness of the vertical grooved surface of the element, the gap between adjacent elements, and the diameter of the insulating spacer. Since the conditions are set optimally,
High insulation can be ensured even when the gap between the P-type element and the N-type element is very small. Therefore, it is possible to realize a small and high-density thermoelectric generator. As a result, it is possible to provide a small wristwatch incorporating a thermoelectric power generation element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態におけるP型素子とN
型素子の縦溝加工工程を示す図。
FIG. 1 shows a P-type element and N according to a first embodiment of the present invention.
The figure which shows the vertical groove processing process of a type | mold element.

【図2】本発明の第1の実施形態におけるP型素子とN
型素子の縦溝内にエポキシ系接着剤を充填する工程を示
す図。
FIG. 2 shows a P-type element and N according to the first embodiment of the present invention.
The figure which shows the process of filling an epoxy adhesive in the vertical groove of a type | mold element.

【図3】本発明の第1の実施形態におけるP型素子とN
型素子を嵌合させ一体化する工程を示す図。
FIG. 3 shows a P-type element and N according to the first embodiment of the present invention.
The figure which shows the process of fitting and integrating a mold element.

【図4】本発明を第1実施形態における図3の縦断面部
分拡大図。
FIG. 4 is a partially enlarged longitudinal sectional view of FIG. 3 according to the first embodiment of the present invention.

【図5】本発明を第1実施形態における図4の部分拡大
図。
FIG. 5 is a partially enlarged view of FIG. 4 according to the first embodiment of the present invention.

【図6】本発明の第1の実施形態における熱電発電素子
の横溝加工工程を示す図。
FIG. 6 is a view showing a lateral groove processing step of the thermoelectric power generation element according to the first embodiment of the present invention.

【図7】本発明の第1の実施形態における熱電発電素子
の横溝内にエポキシ系接着剤を充填する工程を示す図。
FIG. 7 is a view showing a step of filling an epoxy-based adhesive in a lateral groove of the thermoelectric generator according to the first embodiment of the present invention.

【図8】本発明の第1の実施形態における熱電発電素子
の上下の不要部分を除去する工程を示す図。
FIG. 8 is a view showing a step of removing unnecessary portions above and below the thermoelectric generator according to the first embodiment of the present invention.

【図9】本発明の第1の実施形態における全素子を直列
に接続する工程を示す図。
FIG. 9 is a view showing a step of connecting all elements in series according to the first embodiment of the present invention.

【図10】本発明の第1の実施形態における熱電発電素
子完成体を示す図。
FIG. 10 is a diagram showing a completed thermoelectric generator according to the first embodiment of the present invention.

【図11】本発明の第2の実施形態におけるP型素子と
N型素子を嵌合させる工程を示す図。
FIG. 11 is a view showing a step of fitting a P-type element and an N-type element according to the second embodiment of the present invention.

【図12】本発明の第2の実施形態における嵌合された
P型素子とN型素子との隙間にエポキシ系接着剤を充填
する工程を示す図。
FIG. 12 is a view showing a step of filling an epoxy-based adhesive into a gap between a fitted P-type element and an N-type element according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12 縦溝加工P型素子の縦溝加工面 14 縦溝加工N型素子の縦溝加工面 16 縦溝加工P型素子 17 縦溝 18 縦溝加工N型素子 19 縦溝 32 PN一体化素子 34 絶縁性スペーサー 36 エポキシ系接着剤 42 横溝加工素子 44 横溝用エポキシ系接着剤 46 横溝 52 横溝充填素子 62 エポキシ固定剣山状素子 72 表裏面接続素子 82 熱電発電素子完成体 Reference Signs List 12 vertical groove processing surface of P-type element 14 vertical groove processing surface of N-type element 16 vertical groove processing P-type element 17 vertical groove 18 vertical groove processing N-type element 19 vertical groove 32 PN integrated element 34 Insulating spacer 36 Epoxy adhesive 42 Horizontal groove processing element 44 Epoxy adhesive for horizontal groove 46 Horizontal groove 52 Horizontal groove filling element 62 Epoxy fixed sword-shaped element 72 Front / back connection element 82 Thermoelectric generator completed

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれの厚さ方向の一部を残して同一
ピッチで複数本の縦溝が平行に形成された縦溝加工N型
素子及び縦溝加工P型素子を作成する工程と、前記縦溝
加工N型素子と前記縦溝加工P型素子とを互いにその縦
溝を形成した面が対抗するように嵌合させる工程と、互
いに嵌合された前記縦溝加工N型素子と前記縦溝加工P
型素子との隙間に絶縁性スペーサを混入した接着剤を充
填して固着しPN一体化素子を形成する工程と、該PN
一体化素子における前記縦溝加工N型素子と前記縦溝加
工P型素子とが互いに嵌合されている部分以外の部分を
除去して固定剣山状素子を形成する工程とを有する熱電
発電素子の製造方法において、 互いに隣接する前記縦溝加工N型素子と前記縦溝加工P
型素子との平均隙間G、前記縦溝加工N型素子の表面凹
凸量A、前記接着剤に混入する絶縁性スペーサの直径D
が、 G=5×A D=3×A の条件を満たすことを特徴とする熱電発電素子の製造方
法。
A step of forming a vertical grooved N-type element and a vertical grooved P-type element in which a plurality of vertical grooves are formed in parallel at the same pitch except for a part of each in the thickness direction; A step of fitting the longitudinal grooved N-type element and the longitudinal grooved P-type element so that the surfaces on which the longitudinal grooves are formed are opposed to each other; Groove processing P
Forming a PN integrated element by filling and fixing an adhesive mixed with an insulating spacer into a gap between the PN element and the mold element;
Removing a portion of the integrated element other than the part where the flute N-type element and the flute P-type element are fitted to each other to form a fixed sword-shaped element. In the manufacturing method, the vertical grooved N-type element and the vertical grooved P which are adjacent to each other are formed.
Average gap G with the mold element, amount of surface irregularity A of the vertical grooved N-type element, diameter D of the insulating spacer mixed into the adhesive
Satisfies the following condition: G = 5 × A D = 3 × A.
【請求項2】 それぞれの厚さ方向の一部を残して同一
ピッチで複数本の縦溝が平行に形成された縦溝加工N型
素子及び縦溝加工P型素子を作成する工程と、前記縦溝
加工N型素子及び前記縦溝加工P型素子のそれぞれの縦
溝内に絶縁性スペーサを混入した接着剤を充填する工程
と、該接着剤が充填されている前記縦溝加工N型素子と
前記接着剤が充填されている前記縦溝加工P型素子とを
互いにその縦溝を形成した面が対抗するように嵌合させ
固着しPN一体化素子を形成する工程と、該PN一体化
素子における前記縦溝加工N型素子と前記縦溝加工P型
素子とが互いに嵌合されている部分以外の部分を除去し
て固定剣山状素子を形成する工程とを有することを特徴
とする熱電発電素子の製造方法。
2. A step of forming a longitudinally grooved N-type element and a longitudinally grooved P-type element in which a plurality of vertical grooves are formed in parallel at the same pitch while leaving a part in each thickness direction; Filling an adhesive containing an insulating spacer into each of the vertical grooves of the vertical grooved N-type element and the vertical grooved P-type element, and the vertical grooved N-type element filled with the adhesive; Forming a PN integrated element by fitting and fixing the vertical grooved P-type element filled with the adhesive so that the surfaces on which the vertical grooves are formed oppose each other; Removing a part of the element other than the part where the flute N-type element and the flute P-type element are fitted to each other to form a fixed sword-shaped element. A method for manufacturing a power generating element.
【請求項3】 互いに隣接する前記縦溝加工N型素子と
前記縦溝加工P型素子との平均隙間G、前記縦溝加工N
型素子の表面凹凸量A、前記接着剤に混入する絶縁性ス
ペーサの直径Dが、 G=5×A D=3×A の条件を満たすことを特徴とする請求項2記載の熱電発
電素子の製造方法。
3. An average gap G between the longitudinally grooved N-type element and the longitudinally grooved P-type element adjacent to each other;
3. The thermoelectric generator according to claim 2, wherein the surface irregularity amount A of the mold element and the diameter D of the insulating spacer mixed into the adhesive satisfy the following condition: G = 5 × A D = 3 × A. Production method.
JP11193985A 1999-07-08 1999-07-08 Manufacture of thermoelectric power generation element Pending JP2001024241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11193985A JP2001024241A (en) 1999-07-08 1999-07-08 Manufacture of thermoelectric power generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11193985A JP2001024241A (en) 1999-07-08 1999-07-08 Manufacture of thermoelectric power generation element

Publications (1)

Publication Number Publication Date
JP2001024241A true JP2001024241A (en) 2001-01-26

Family

ID=16317061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11193985A Pending JP2001024241A (en) 1999-07-08 1999-07-08 Manufacture of thermoelectric power generation element

Country Status (1)

Country Link
JP (1) JP2001024241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039746A (en) * 2010-08-06 2012-02-23 Nissan Motor Co Ltd Magnet insertion method, rotor, and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039746A (en) * 2010-08-06 2012-02-23 Nissan Motor Co Ltd Magnet insertion method, rotor, and motor

Similar Documents

Publication Publication Date Title
DE69730822T2 (en) METHOD FOR PRODUCING A THERMIONIC ELEMENT
DE69511241T2 (en) METHOD FOR PRODUCING INTEGRATED CIRCUIT COMPONENTS
CN102791425B (en) Grinding/the abrasive working appts of polygonal column member and grinding/grinding method
KR101159697B1 (en) Fabrication method of invasive microelectode based on glass wafer
EP1003269A1 (en) Carbon commutator and method of producing the same
CN106233462A (en) Semiconductor device and the manufacture method of semiconductor device
CN101186082A (en) Method for using multi lane cutting machine to cut a plurality of thin silicon chip along radial direction once time
JP2009025654A (en) Diffraction optical element, die for molding diffraction optical element, and method of manufacturing die for molding diffraction optcial element
DE102006028962A1 (en) Integrated semiconductor circuit, semiconductor system and manufacturing method
KR20150013528A (en) Double layer interleaved p-n diode modulator
CN106876262A (en) One kind makes highly-efficient glass passivation chip technology
DE102013202902A1 (en) Optoelectronic component
CN101276801B (en) Wafer with through-wafer vias and manufacture method thereof
KR20130061744A (en) Method for producing a silicone foil, silicone foil, and optoelectronic semiconductor component comprising a silicone foil
JP2001024241A (en) Manufacture of thermoelectric power generation element
CN105382947B (en) A kind of secondary cut method of silicon chip
DE102004046792B4 (en) Thin film optoelectronic chip with integrated lens and method for its manufacture
CN1361437A (en) Strip polarized wave fibre and its producing method and its polarized wave optical fibre array
JP2013163256A (en) Apparatus and method for manufacturing wafer
AU2012344710B2 (en) Grinding tool and method for producing same
DE102018118762A1 (en) Laser component with a laser chip
CN111212706B (en) Ceramic bond superhard abrasive grinding wheel
CN103144202A (en) Spring-built-in-string bead type diamond rope saw and manufacturing method
CN203401608U (en) Diamond wire saw with springs arranged in strung beads
JP3189201B2 (en) Solar cell manufacturing apparatus and solar cell manufacturing method using the same