JP2001021860A - Half-value width variable liquid etalon - Google Patents

Half-value width variable liquid etalon

Info

Publication number
JP2001021860A
JP2001021860A JP11197975A JP19797599A JP2001021860A JP 2001021860 A JP2001021860 A JP 2001021860A JP 11197975 A JP11197975 A JP 11197975A JP 19797599 A JP19797599 A JP 19797599A JP 2001021860 A JP2001021860 A JP 2001021860A
Authority
JP
Japan
Prior art keywords
liquid crystal
etalon
reflective film
reflection
reflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11197975A
Other languages
Japanese (ja)
Inventor
Tomotaka Wakabayashi
知敬 若林
Yoshihiko Watanabe
嘉彦 渡辺
Masataka Shishido
正孝 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP11197975A priority Critical patent/JP2001021860A/en
Publication of JP2001021860A publication Critical patent/JP2001021860A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal etalon which is capable of changing a half-value width, is capable of dealing with a change in the number of channels and is small in size. SOLUTION: This liquid crystal etalon is constituted by oppositely arranging substrates, each formed by laminating transparent electrodes 4, a reflection film 3 and a liquid crystal alignment layer 8 on a glass substrate 2, in such a manner the reflection surfaces of the reflection films 3 are paralleled to each other and sealing liquid crystals between the substrates. The reflection films 3 of the half width variable liquid crystal etalon described above are constituted by arraying plural reflection film pieces 3a to 3c varying in reflectivity and the reflection film pieces 3a to 3c of the same reflectivity are arranged to face each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶エタロンに関
し、特に透過光の半値幅を変えることができ、WDM
(波長多重)光通信に好適な液晶エタロンに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal etalon, and more particularly to a liquid crystal etalon capable of changing a half-value width of transmitted light by using a WDM.
The present invention relates to a liquid crystal etalon suitable for (wavelength multiplexing) optical communication.

【0002】[0002]

【従来の技術】近年、情報通信の高速化や高容量化のた
めにWDM光通信方式が普及しつつある。このWDM光
通信方式では、送信側より光ファイバを通じて同時に複
数種の波長の光を用いて情報を伝送し、受信側で波長選
択フィルタにて特定波長の光を透過させて情報を選択的
に受信する。このような波長選択フィルタの1つに液晶
エタロンがある。図5に示されるように、この液晶エタ
ロン10は、ガラス基板11上に反射膜12、透明電極
13及び液晶配向膜14を順次形成した一対の基板を反
射膜12同士が平行するように対向配置し、それにより
形成される空間に液晶15を充填してスペーサ16及び
シール剤17により密封し、更にガラス基板11の他方
の面に無反射膜18を形成して概略構成される。光は一
方の基板の無反射膜18から入射し、液晶15を通った
後他方の基板の無反射膜18から出射される。その際、
透明電極間に電圧を印加することにより、液晶15の配
向状態を変化させて入射光に対する屈折率を変化させ、
透過光の選択を行う。
2. Description of the Related Art In recent years, WDM optical communication systems have become widespread in order to increase the speed and capacity of information communication. In this WDM optical communication system, information is simultaneously transmitted from a transmitting side through an optical fiber using light of a plurality of wavelengths, and the receiving side selectively receives information by transmitting light of a specific wavelength through a wavelength selection filter. I do. One such wavelength selection filter is a liquid crystal etalon. As shown in FIG. 5, the liquid crystal etalon 10 has a pair of substrates in which a reflection film 12, a transparent electrode 13, and a liquid crystal alignment film 14 are sequentially formed on a glass substrate 11 so that the reflection films 12 are parallel to each other. Then, a space formed thereby is filled with a liquid crystal 15, sealed with a spacer 16 and a sealant 17, and a non-reflective film 18 is formed on the other surface of the glass substrate 11. The light enters from the anti-reflection film 18 of one substrate, passes through the liquid crystal 15, and is emitted from the anti-reflection film 18 of the other substrate. that time,
By applying a voltage between the transparent electrodes, the orientation of the liquid crystal 15 is changed to change the refractive index for incident light,
Select the transmitted light.

【0003】一方で、一定の周波数範囲内で多重するチ
ャンネルの数(送信する光の波長間隔)を変更して伝送
する、所謂多チャンネル伝送化が図られているが、その
ためには半値幅の異なる光を用いる必要があり、同時に
波長選択フィルタにおいても透過光の半値幅を変更する
必要がある。しかしながら、従来の液晶エタロン10で
は反射膜12は均一厚さに形成されており、その反射率
は一定であることから、半値幅を変えることはできず、
多チャンネル伝送化に対応するためには、反射膜12の
反射率の異なる複数の液晶エタロン10を使用しなけれ
ばならない。また、送信側において光源の波長の精度や
安定度が高くない場合、波長選択フィルタに入射する光
の波長や強度にバラツキが生じるため、透過光の半値幅
をそれに応じて広くして透過光の強度を補償する必要が
ある。しかし、従来の液晶エタロンでは、上記した理由
によりこのような問題にも対応できない。
On the other hand, a so-called multi-channel transmission in which the number of channels to be multiplexed within a certain frequency range (the wavelength interval of light to be transmitted) is changed and transmitted is attempted. It is necessary to use different light, and at the same time, it is necessary to change the half value width of the transmitted light also in the wavelength selection filter. However, in the conventional liquid crystal etalon 10, the reflection film 12 is formed to have a uniform thickness, and its reflectance is constant. Therefore, the half width cannot be changed.
In order to support multi-channel transmission, a plurality of liquid crystal etalons 10 having different reflectivities of the reflection film 12 must be used. If the accuracy and stability of the wavelength of the light source on the transmitting side are not high, the wavelength and intensity of the light incident on the wavelength selection filter will vary. The strength needs to be compensated. However, the conventional liquid crystal etalon cannot cope with such a problem for the reasons described above.

【0004】透過光の半値幅を変更する技術として、例
えば特開昭51−94956号公報には、超音波と光の
相互作用を利用した音響光学効果のうち、入射光と回折
光の偏波面が互いに直交する異常ブラッグ回折を使用し
たフィルタが記載されている。この音響光学フィルタで
は、PbMoO4 等の音響光学素子に超音波を伝播させ
た状態で光を入射させる。その際、音響光学素子に伝播
させる超音波の周波数を変えることにより、入射光の回
折状態を変化させて回折角の異なる光を出射させる。こ
の時の回折角の違いが半値幅の違いに対応することか
ら、超音波の周波数により半値幅の制御が可能となる。
しかしながら、この音響光学フィルタでは、出射光毎に
その光軸が異なるため、光ファイバの光軸とのズレが生
じて伝送特性が大きく変化するという問題があり、実際
の使用には適さない。しかも、この音響光学フィルタで
は、レンズやスリット等の光学要素を音響光学素子から
離間させて配置しなければならず、装置が比較的大きく
なる。
As a technique for changing the half width of transmitted light, for example, Japanese Patent Laid-Open Publication No. Sho 51-94956 discloses an acousto-optic effect utilizing the interaction between ultrasonic waves and light. Describes a filter using anomalous Bragg diffraction in which are orthogonal to each other. In this acousto-optic filter, light is made incident on an acousto-optic element such as PbMoO 4 in a state where ultrasonic waves are propagated. At this time, by changing the frequency of the ultrasonic wave propagated to the acousto-optic element, the diffraction state of the incident light is changed to emit light having different diffraction angles. Since the difference in the diffraction angle at this time corresponds to the difference in the half width, the half width can be controlled by the frequency of the ultrasonic wave.
However, this acousto-optic filter has a problem that the optical axis is different for each outgoing light, and thus there is a problem that a deviation from the optical axis of the optical fiber occurs and the transmission characteristic is largely changed, which is not suitable for actual use. Moreover, in this acousto-optic filter, the optical elements such as the lens and the slit must be arranged apart from the acousto-optic element, and the device becomes relatively large.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の状況
に鑑みてなされたものであり、半値幅を変化させること
ができ、チャンネル数の変更に対応可能で、かつ小型の
液晶エタロンを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a small-sized liquid crystal etalon which can change the half width and can cope with a change in the number of channels. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ガラス基板上に透明電極、反射膜及び液晶
配向膜を積層してなる基板同士を前記反射膜の反射面同
士が平行になるように対向させて配置するとともに、基
板間に液晶を封止して構成される液晶エタロンであっ
て、前記反射膜が反射率の異なる複数の反射膜片を整列
して構成され、かつ同じ反射率の反射膜片同士が対向し
て配置されていることを特徴とする半値幅可変液晶エタ
ロンを提供する。
In order to achieve the above object, the present invention is directed to a method of forming a substrate comprising a glass substrate on which a transparent electrode, a reflective film and a liquid crystal alignment film are laminated, wherein the reflective surfaces of the reflective films are parallel to each other. And a liquid crystal etalon configured by sealing liquid crystal between the substrates, wherein the reflective film is configured by aligning a plurality of reflective film pieces having different reflectances, and Provided is a half-width variable liquid crystal etalon, wherein reflective film pieces having the same reflectance are arranged to face each other.

【0007】[0007]

【発明の実施の形態】以下、本発明に関して図面を参照
して詳細に説明する。図1に、本発明の液晶エタロンを
構成する一方の基板(以下、液晶エタロン片側基板と呼
ぶ)1を示す。図示されるように、この液晶エタロン片
側基板1は、ガラス基板2の一方の面上に透明電極4を
介して反射膜3及び液晶配向膜8を形成し、他方の面に
無反射膜6を形成して構成される。そして、この液晶エ
タロン片側基板1を一対、図5に示したように、反射膜
3の反射面同士が平行になるように対向させて配置し、
それにより形成された空間に液晶を充填してスペーサと
シール剤とを用いて封止して液晶エタロンが形成され
る。また、透明電極4には、図示は省略される外部接続
用のリード線が接続される。上記において、各部材を形
成する材料は何れも公知のもので構わず、例えばガラス
基板2として石英板を用いることができ、透明電極4は
ITO(インジウムスズ酸化物)の蒸着膜とすることが
できる。また、液晶はネマチック液晶が一般的である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 shows one substrate 1 (hereinafter referred to as a liquid crystal etalon one-sided substrate) 1 constituting the liquid crystal etalon of the present invention. As shown in the figure, the liquid crystal etalon one-sided substrate 1 has a reflection film 3 and a liquid crystal alignment film 8 formed on one surface of a glass substrate 2 via a transparent electrode 4 and a non-reflection film 6 on the other surface. It is formed and formed. Then, a pair of the liquid crystal etalon single-sided substrates 1 are arranged facing each other so that the reflection surfaces of the reflection films 3 are parallel to each other as shown in FIG.
The space formed by this is filled with liquid crystal and sealed with a spacer and a sealant to form a liquid crystal etalon. Further, a lead wire for external connection (not shown) is connected to the transparent electrode 4. In the above description, any material may be used for forming each member, for example, a quartz plate can be used as the glass substrate 2, and the transparent electrode 4 may be a deposited film of ITO (indium tin oxide). it can. The liquid crystal is generally a nematic liquid crystal.

【0008】本発明においては、上記反射膜3を反射率
の異なる複数の反射膜片を整列して構成することを特徴
とする。各反射膜片は、それぞれの反射率が異なる構成
であれば特に制限されるものではないが、例えば以下の
構成とすることができる。尚、説明のために、図1に示
すように、反射膜3は符号3a〜3cで表される3つの
反射膜片I、反射膜片II及び反射膜片III で構成される
ものとする。例えば、反射膜3を、同一材料からなり、
それぞれ膜厚の異なる3つの反射膜片3a〜3c(膜
厚:反射膜片I<反射膜片II<反射膜片III)で構成す
る。この反射膜片3a〜3cは、酸化シリコン等からな
る下地層5a〜5c上に、酸化チタンや酸化シリコン、
酸化タンタル等の誘電体材料からなる膜を、それぞれの
膜厚が異なるように蒸着して形成することができる。あ
るいは、これらの誘電体材料からなる薄膜を適宜組み合
わせ、更にその積層数を変えて積層した多層膜としても
よく、それにより各反射膜片3a〜3cの反射率をより
多様に変化させることが可能になる。但し、各反射膜片
3a〜3cの膜厚が異なっていると、液晶エタロンを組
み立てた際に対向する反射面同士が平行にならず、液晶
エタロン面内でのギャップ長(反射面間の距離)が同一
にならない。そこで、各反射膜片3a〜3cに対応する
各下地層5a〜5cの厚みを調整して、反射膜3を構成
する全ての反射膜片3a〜3cが同一高さとなるように
する。
The present invention is characterized in that the reflection film 3 is constituted by arranging a plurality of reflection film pieces having different reflectivities. Each reflective film piece is not particularly limited as long as it has a different reflectance, but may have the following configuration, for example. For the sake of explanation, as shown in FIG. 1, it is assumed that the reflection film 3 is composed of three reflection film pieces I, II and III indicated by reference numerals 3a to 3c. For example, the reflection film 3 is made of the same material,
It is composed of three reflective film pieces 3a to 3c having different thicknesses (thickness: reflective film piece I <reflective film piece II <reflective film piece III). The reflection film pieces 3a to 3c are provided on the underlayers 5a to 5c made of silicon oxide or the like, on which titanium oxide, silicon oxide,
A film made of a dielectric material such as tantalum oxide can be formed by vapor deposition so as to have different thicknesses. Alternatively, a thin film made of these dielectric materials may be appropriately combined, and the number of layers may be changed to form a multilayer film. The reflectivity of each of the reflective film pieces 3a to 3c can be changed more variously. become. However, if the thicknesses of the reflective film pieces 3a to 3c are different, the opposing reflecting surfaces will not be parallel when the liquid crystal etalon is assembled, and the gap length (the distance between the reflecting surfaces) in the liquid crystal etalon surface ) Are not the same. Therefore, the thickness of each of the base layers 5a to 5c corresponding to each of the reflection film pieces 3a to 3c is adjusted so that all the reflection film pieces 3a to 3c constituting the reflection film 3 have the same height.

【0009】また、各反射膜片3a〜3cの膜形成材
料、あるいは多層膜の場合は積層数を同一とし、その層
順序を変えることにより、同一膜厚でそれぞれの反射率
を変えることができる。この場合、下地層5a〜5cの
厚みを変化させる必要はなく、また下地層5a〜5cを
省略して透明電極4上に各反射膜片3a〜3cを直接形
成してもよい。尚、液晶エタロンの組み立てに際して、
対向する液晶エタロン片側基板1のそれぞれの反射膜片
3a〜3cは、同じ反射率のもの同士が対向するように
各液晶エタロン片側基板1の反射膜3の形成領域内に配
置される。
Further, the film forming material of each of the reflective film pieces 3a to 3c or, in the case of a multilayer film, the number of laminations is made the same, and by changing the order of the layers, the respective reflectances can be changed with the same film thickness. . In this case, it is not necessary to change the thickness of the underlayers 5a to 5c, and the respective reflective film pieces 3a to 3c may be formed directly on the transparent electrode 4 without the underlayers 5a to 5c. When assembling the liquid crystal etalon,
The respective reflective film pieces 3a to 3c of the opposing liquid crystal etalon one-sided substrate 1 are arranged in the formation region of the reflective film 3 of each liquid crystal etalon one-sided substrate 1 so that those having the same reflectance face each other.

【0010】液晶エタロンでは、通常、透明電極4と外
部接続用リード線との接続領域を作るために、基板同士
はその平面方向にずれて対向配置される。これに伴って
反射膜同士が重なる部分、即ち光の透過面積も狭くな
る。そこで、図2に示すように、液晶エタロンを構成す
る一方の液晶エタロン片側基板として、面積の広いガラ
ス基板2を用いて透明電極4の面積を拡大し、外部接続
用リード線との接続部を確保することが好ましい。反射
膜3は、図1に示したように、それぞれ反射率の異なる
3つの反射膜片3a〜3cで構成され、下地層5a〜5
cにより反射面が同一高さとなるように調整される。ま
た、反射膜3の上には液晶配向膜8が形成される。そし
て、図1に示した液晶エタロン片側基板と、この図2に
示した液晶エタロン片側基板とを、反射率が同じ反射膜
片同士が対向するように配置して液晶エタロンを構成す
る。このような構成によれば、基板同士をその平面方向
にずらす必要がなく、反射膜3の面積をそのまま透過面
積とすることができる。その際、透明電極4は、絶縁部
分7により反射膜3の形成領域を区画するとともに、こ
の領域外の透明電極部分にトランスファーを介して片方
の基板の反射膜形成領域がグランド電位になるようにし
て両基板上の透明電極間の電位差を設ける。
In the liquid crystal etalon, usually, substrates are arranged to be opposed to each other in a plane direction in order to form a connection region between the transparent electrode 4 and the lead wire for external connection. Along with this, the portion where the reflective films overlap, that is, the light transmission area is also reduced. Therefore, as shown in FIG. 2, the area of the transparent electrode 4 is enlarged using a glass substrate 2 having a large area as one liquid crystal etalon one-side substrate constituting the liquid crystal etalon, and the connection portion with the external connection lead wire is formed. It is preferable to secure them. As shown in FIG. 1, the reflection film 3 is composed of three reflection film pieces 3a to 3c having different reflectivities, and the base layers 5a to 5c.
c is adjusted so that the reflecting surfaces have the same height. A liquid crystal alignment film 8 is formed on the reflection film 3. Then, the liquid crystal etalon one-sided substrate shown in FIG. 1 and the liquid crystal etalon one-sided substrate shown in FIG. 2 are arranged so that the pieces of the reflective film having the same reflectance face each other to form a liquid crystal etalon. According to such a configuration, it is not necessary to shift the substrates in the plane direction, and the area of the reflection film 3 can be directly used as the transmission area. At this time, the transparent electrode 4 divides the formation region of the reflection film 3 by the insulating portion 7, and sets the reflection film formation region of one of the substrates to the ground potential via transfer to the transparent electrode portion outside this region. To provide a potential difference between the transparent electrodes on both substrates.

【0011】ところで、2枚の反射鏡を平行に配置した
ファブリ・ペロー共振器(エタロン)においては、透過
光の半値幅Δνは、反射鏡を構成している反射面の反射
率Rにより下記(1)式のように近似でき、Rが大きい
ほどΔνは小さくなることが知られている。
In a Fabry-Perot resonator (etalon) in which two reflecting mirrors are arranged in parallel, the half-width Δν of the transmitted light depends on the reflectance R of the reflecting surface constituting the reflecting mirror as follows: It is known that approximation can be made as in equation (1), and that Δν decreases as R increases.

【0012】[0012]

【数1】 (Equation 1)

【0013】尚、上記(1)式において、cは光速、L
はギャップ長(反射面間の距離)である。従って、上記
の如く反射率の異なる複数の反射膜片3a〜3cで反射
膜3を構成することにより、液晶エタロンに入射する光
に対して、反射膜3への入射位置、即ち反射膜片3a〜
3cに応じて透過光の半値幅を変化させることができる
ようになる。上記の原理により、本発明の液晶エタロン
によれば、透過光の半値幅を入射光の面内への入射位置
を変えることにより制御することができる。しかもその
際、従来のようにレンズやスリット等の他の光学要素を
用いる必要が無く、装置の大型化を招くこともない。
In the above equation (1), c is the speed of light, L
Is a gap length (distance between reflection surfaces). Therefore, by configuring the reflective film 3 with the plurality of reflective film pieces 3a to 3c having different reflectivities as described above, the incident position on the reflective film 3 with respect to the light incident on the liquid crystal etalon, that is, the reflective film piece 3a ~
The half width of the transmitted light can be changed according to 3c. According to the above principle, according to the liquid crystal etalon of the present invention, the half width of the transmitted light can be controlled by changing the incident position of the incident light in the plane. Moreover, at that time, there is no need to use other optical elements such as a lens and a slit as in the related art, and the apparatus does not increase in size.

【0014】以下に本発明の液晶エタロンの実施形態を
例示する。一辺が15mmの石英基板の一方の面に無反
射膜を形成し、他方の面上にITO透明電極を形成し、
その上に、酸化シリコンからなる下地層を介して酸化タ
ンタルと酸化シリコンとを交互に、その積層数を変えて
3種類の反射膜片I、II、III (膜厚:反射膜片I<反
射膜片II<反射膜片III)を形成した。その際、対応する
下地層の厚さを調整して反射膜片I、II、III の反射面
を同一高さとした。そして、反射膜片I、II、III から
なる反射膜の全面を覆うように液晶配向膜を形成して図
1に示した構成の第1の基板を作製した。各反射膜片
I、II、III について反射率を測定したところ、図3に
示す波長−反射率曲線を示した。図示されるように、膜
厚が厚くなるのに従って同一波長に対する反射率が高く
なり、例えば波長1520nm付近では、反射膜Iの反
射率は約97.5%であり、反射膜IIの反射率は約9
8.8%であり、反射膜III の反射率は約99.2%で
ある。また、短辺が20mm、長辺が25mmの石英基
板の一方の面に無反射膜を形成し、他方の面上にITO
透明電極を形成し、更に透明電極の反射膜が形成される
領域を絶縁部分で区画し、この反射膜の形成領域に上記
第1の基板と同様に下地層及び反射膜片I、II、III を
形成し、更に液晶配向膜を形成して図2に示した構成の
第2の基板を作製した。
An embodiment of the liquid crystal etalon of the present invention will be described below. Forming a non-reflective film on one side of a quartz substrate having a side of 15 mm, forming an ITO transparent electrode on the other side,
Tantalum oxide and silicon oxide are alternately arranged on the underlayer made of silicon oxide, and the number of laminated layers is changed to obtain three types of reflection film pieces I, II, and III (thickness: reflection film piece I <reflection). Film piece II <reflective film piece III) was formed. At that time, the thicknesses of the corresponding underlayers were adjusted so that the reflection surfaces of the reflection film pieces I, II, and III were at the same height. Then, a liquid crystal alignment film was formed so as to cover the entire surface of the reflection film composed of the reflection film pieces I, II, and III, thereby producing a first substrate having the configuration shown in FIG. When the reflectance was measured for each of the reflection film pieces I, II, and III, a wavelength-reflectance curve shown in FIG. 3 was shown. As shown in the figure, as the film thickness increases, the reflectance for the same wavelength increases. For example, around a wavelength of 1520 nm, the reflectance of the reflective film I is about 97.5%, and the reflectance of the reflective film II is about 97.5%. About 9
8.8%, and the reflectance of the reflective film III is about 99.2%. Further, a non-reflective film is formed on one surface of a quartz substrate having a short side of 20 mm and a long side of 25 mm, and ITO is formed on the other side.
A transparent electrode is formed, and a region where the reflective film of the transparent electrode is formed is partitioned by an insulating portion. The underlayer and the reflective film pieces I, II, and III are formed in the reflective film formation region in the same manner as the first substrate. Was formed, and further, a liquid crystal alignment film was formed to produce a second substrate having the configuration shown in FIG.

【0015】そして、上記第1の基板と第2の基板と
を、同じ反射率の反射膜片同士が平行に対向するように
配置し、ネマチック液晶を充填封止して液晶エタロンを
作製した。この液晶エタロンは、図4に示すように、波
長1550nmの入射光に対して、反射膜片Iに入射さ
せることにより2.31nmの半値幅の透過光を、反射
膜片IIに入射させることにより1.61nmの半値幅の
透過光を、また反射膜片III に入射させることにより
1.33nmの半値幅の透過光をそれぞれ得ることがで
きる。
Then, the first substrate and the second substrate were arranged such that pieces of the reflective film having the same reflectance faced in parallel, and filled and sealed with a nematic liquid crystal to produce a liquid crystal etalon. As shown in FIG. 4, the liquid crystal etalon is such that incident light having a wavelength of 1550 nm is made incident on the reflective film piece I, thereby transmitting transmitted light having a half value width of 2.31 nm to the reflective film piece II. The transmitted light having a half-value width of 1.61 nm and the transmitted light having a half-value width of 1.33 nm can be obtained by being incident on the reflection film piece III.

【0016】本発明の液晶エタロンは種々の変更が可能
である。例えば、ガラス基板2上の積層構造を、基板側
より順に下地層5a〜5c、反射膜3a〜3c、透明電
極4及び液晶配向膜8を積層した構造とすることもでき
る。
Various modifications can be made to the liquid crystal etalon of the present invention. For example, the laminated structure on the glass substrate 2 may be a structure in which the base layers 5a to 5c, the reflective films 3a to 3c, the transparent electrode 4, and the liquid crystal alignment film 8 are laminated in this order from the substrate side.

【0017】[0017]

【発明の効果】以上説明したように、本発明の液晶エタ
ロンは、透過光の半値幅を変えることができ、WDM光
通信におけるチャンネル数の変更に容易に対応できる。
しかも、その際従来のようにレンズやスリット等の他の
光学要素を必要とせず、装置の大型化を招くこともな
い。
As described above, the liquid crystal etalon of the present invention can change the half width of transmitted light, and can easily cope with the change in the number of channels in WDM optical communication.
In addition, at that time, other optical elements such as a lens and a slit are not required unlike the related art, and the apparatus does not become large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶エタロンを構成する液晶エタロン
片側基板を示す斜視図である。
FIG. 1 is a perspective view showing a liquid crystal etalon one-side substrate constituting a liquid crystal etalon of the present invention.

【図2】実施例の実施形態で用いた、図1に示した基板
と対をなす他方の液晶エタロン片側基板の斜視図であ
る。
FIG. 2 is a perspective view of a liquid crystal etalon one-sided substrate used as a pair with the substrate shown in FIG. 1 used in the embodiment of the present invention.

【図3】各反射膜片の波長と反射率との関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the wavelength and the reflectance of each reflective film piece.

【図4】各光透過部分の透過光の半値幅を示す図であ
る。
FIG. 4 is a diagram illustrating a half-value width of transmitted light of each light transmitting portion.

【図5】従来の液晶エタロンを示す断面図である。FIG. 5 is a sectional view showing a conventional liquid crystal etalon.

【符号の説明】[Explanation of symbols]

1 液晶エタロン片側基板 2 ガラス基板 3 反射膜 3a,3b,3c 反射膜片 4 透明電極 5a,5b,5c 下地層 6 無反射膜 7 絶縁部分 REFERENCE SIGNS LIST 1 liquid crystal etalon one side substrate 2 glass substrate 3 reflective film 3a, 3b, 3c reflective film piece 4 transparent electrode 5a, 5b, 5c underlayer 6 anti-reflective film 7 insulating part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宍戸 正孝 静岡県裾野市御宿1500 矢崎総業株式会社 内 Fターム(参考) 2H088 EA49 HA02 HA03 HA21 MA20 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masataka Shishido 1500 Onjuku, Susono-shi, Shizuoka Prefecture Yazaki Sogyo Co., Ltd. F-term (reference) 2H088 EA49 HA02 HA03 HA21 MA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に透明電極、反射膜及び液
晶配向膜を積層してなる基板同士を前記反射膜の反射面
同士が平行になるように対向させて配置するとともに、
基板間に液晶を封止して構成される液晶エタロンであっ
て、前記反射膜が反射率の異なる複数の反射膜片を整列
して構成され、かつ同じ反射率の反射膜片同士が対向し
て配置されていることを特徴とする半値幅可変液晶エタ
ロン。
1. A substrate comprising a glass substrate, on which a transparent electrode, a reflective film and a liquid crystal alignment film are laminated, are arranged facing each other such that the reflective surfaces of the reflective film are parallel to each other, and
A liquid crystal etalon configured by sealing liquid crystal between substrates, wherein the reflective film is configured by aligning a plurality of reflective film pieces having different reflectances, and the reflective film pieces having the same reflectance face each other. A half-width variable liquid crystal etalon characterized by being arranged in a vertical direction.
【請求項2】 前記各反射膜片は、同一材料からなり、
かつそれぞれの膜厚が異なることを特徴とする請求項1
記載の半値幅可変エタロン。
2. The method according to claim 1, wherein each of the reflection film pieces is made of the same material.
2. The method according to claim 1, wherein the film thicknesses are different.
The described half-width variable etalon.
【請求項3】 前記各反射膜片は、異種材料からなる薄
層を積層してなり、かつその積層数及び/または積層順
序が異なることを特徴とする請求項1記載の半値幅可変
液晶エタロン。
3. The half-width variable liquid crystal etalon according to claim 1, wherein each of the reflection film pieces is formed by laminating thin layers made of different kinds of materials, and the lamination number and / or lamination order are different. .
【請求項4】 前記各反射膜片は、同一膜厚の異種材料
からなることを特徴とする請求項1記載の半値幅可変液
晶エタロン。
4. The half value width variable liquid crystal etalon according to claim 1, wherein each of the reflection film pieces is made of a different material having the same thickness.
JP11197975A 1999-07-12 1999-07-12 Half-value width variable liquid etalon Pending JP2001021860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11197975A JP2001021860A (en) 1999-07-12 1999-07-12 Half-value width variable liquid etalon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11197975A JP2001021860A (en) 1999-07-12 1999-07-12 Half-value width variable liquid etalon

Publications (1)

Publication Number Publication Date
JP2001021860A true JP2001021860A (en) 2001-01-26

Family

ID=16383441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11197975A Pending JP2001021860A (en) 1999-07-12 1999-07-12 Half-value width variable liquid etalon

Country Status (1)

Country Link
JP (1) JP2001021860A (en)

Similar Documents

Publication Publication Date Title
US4786128A (en) Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US5119454A (en) Bulk optic wavelength division multiplexer
JP2925064B2 (en) Tunable wavelength filter
US5150236A (en) Tunable liquid crystal etalon filter
US6556338B2 (en) MEMS based variable optical attenuator (MBVOA)
US6666944B2 (en) Method of manufacturing optical filter
US7372608B2 (en) Light control device and light control system using the same
US9244266B2 (en) Tunable optical filter and method of manufacture thereof
EP1939655B1 (en) Polarization beam splitter and polarization conversion element
US6535257B2 (en) Liquid crystal cell for use in coherent beams
US5452127A (en) Etalon with optically polarizing field electrodes
JP2002365601A (en) Tunable optical filter
Lequime Tunable thin film filters: review and perspectives
JP2001021860A (en) Half-value width variable liquid etalon
US20030231688A1 (en) Wavelength selection device, wavelength selection laser, and tunable laser
JP2001021880A (en) Half-value width infinitely variable liquid etalon
JP2002311387A (en) Multistage reflection type faraday rotator
JP2888372B2 (en) Tunable wavelength filter module
JP4513258B2 (en) Tunable filter
JP3414982B2 (en) Tunable wavelength selection filter
WO2005036241A1 (en) Wavelength variable filter and production method therefor
JPH11326633A (en) Wavelength selecting element and optical device using the same
JP2001066457A (en) Half band width variable wavelength selection device
JP4639663B2 (en) Tunable mirror and tunable laser
JP3099851B2 (en) Variable wavelength filter device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324