JP2001021316A - Regular reflection type displacement gauge - Google Patents

Regular reflection type displacement gauge

Info

Publication number
JP2001021316A
JP2001021316A JP11194414A JP19441499A JP2001021316A JP 2001021316 A JP2001021316 A JP 2001021316A JP 11194414 A JP11194414 A JP 11194414A JP 19441499 A JP19441499 A JP 19441499A JP 2001021316 A JP2001021316 A JP 2001021316A
Authority
JP
Japan
Prior art keywords
optical system
measured
light
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11194414A
Other languages
Japanese (ja)
Inventor
Takeshi Nishimura
武司 西村
Hideo Morita
英夫 森田
Akira Sato
章 佐藤
Hiromitsu Furushima
宏光 古嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP11194414A priority Critical patent/JP2001021316A/en
Publication of JP2001021316A publication Critical patent/JP2001021316A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a regular reflection type displacement gauge which can reduce error due to inclination of a surface to be measured, by installing a biaxial optical system. SOLUTION: This displacement gauge is equipped with an optical system including a light irradiating means casting a light on an object to be measured and a light receiving element receiving a light reflected from the object, and an operation processing means processing an output signal from the light receiving element and obtaining position information of the object. Two sets of the optical systems having the same irradiation point of lights on the object are installed. A first optical system 10 and a second optical system 20 are installed in the position relation that at least a light entering a light receiving element 12 of the first optical system 10 and a light entering a light receiving element 22 of the second optical system 20 are displaced in the opposite direction when the object is inclined. The operation processing means corrects measurement error caused by the inclination of the object to be measured on the basis of at least an output signal of the element 12 of the first system 10 and an output signal of the element 22 of the second system 20, and obtains position information of the object to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正反射型変位計に
係り、特に、非接触で被測定面の変位を測定する光学式
の正反射型変位計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regular reflection type displacement meter, and more particularly to an optical regular reflection type displacement meter for measuring a displacement of a surface to be measured in a non-contact manner.

【0002】[0002]

【背景技術】図9に従来例を示す。同図において、被測
定面Sは、XYZ直交座標系のXY平面に平行に配置さ
れ、Z方向に変位するようになっている。光照射手段
(レーザ発信器)53は、被測定面Sに斜めにレーザ光
Lを入射し、反射光をその進行先に配置した受光素子5
1で受光する。受光素子51には入射光の変位を検出可
能なPSD(Position−Sensitive Detectors)が用い
られている。このような構成において、被測定面SがZ
方向へ変位すると、そのZ方向変位量に応じて受光素子
51に入射する光のスポット位置が変位するので、その
スポット位置の変位量を検出することにより、被測定面
SのZ方向変位量を検出することができる。
2. Description of the Related Art FIG. 9 shows a conventional example. In the figure, the surface to be measured S is arranged parallel to the XY plane of the XYZ orthogonal coordinate system, and is displaced in the Z direction. The light irradiating means (laser transmitter) 53 irradiates the laser light L obliquely to the surface S to be measured, and outputs the reflected light to the light receiving element 5 disposed at the destination.
The light is received at 1. As the light receiving element 51, a PSD (Position-Sensitive Detectors) capable of detecting displacement of incident light is used. In such a configuration, the measured surface S is Z
When the displacement is made in the direction, the spot position of the light incident on the light receiving element 51 is displaced in accordance with the displacement amount in the Z direction. Therefore, by detecting the displacement amount of the spot position, the displacement amount in the Z direction of the measured surface S is detected. Can be detected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっては、被測定面Sが傾いた場合、レーザ光L
の反射方向がずれるので、測定誤差を生じるという不都
合がある。つまり、図10に示すように、被測定面Sが
傾いた場合、レーザ光Lの反射方向が図10の点線のよ
うにずれるので、測定誤差を生じるという不都合があ
る。
However, in the above conventional example, when the surface S to be measured is inclined, the laser light L
Is reflected, the measurement direction is inconvenient. That is, as shown in FIG. 10, when the surface to be measured S is tilted, the reflection direction of the laser light L is shifted as shown by the dotted line in FIG. 10, so that there is a disadvantage that a measurement error occurs.

【0004】また、図11に示すように、被測定物52
がガラス等の透明体の場合、被測定面Sからの反射光だ
けでなく、その透明体を透過しその裏面Nで反射した光
もノイズとして加わるため、測定誤差の要因となる。こ
の理由は、PSDを用いた変位計では、素子の特性上、
受光した光の重心を被測定面Sの位置として検出するた
め、図12に示すように、被測定面Sからの反射光54
に、透明体の裏面Nからの反射光55が加わることによ
って、重心がずれるからである。
[0006] As shown in FIG.
Is a transparent body such as glass, not only reflected light from the surface to be measured S, but also light transmitted through the transparent body and reflected on the back surface N is added as noise, which causes a measurement error. The reason for this is that in the displacement meter using the PSD, due to the characteristics of the element,
In order to detect the center of gravity of the received light as the position of the surface S to be measured, as shown in FIG.
In addition, the reflected light 55 from the back surface N of the transparent body is added to shift the center of gravity.

【0005】本発明の目的は、かかる従来例の有する不
都合を改善し、特に、2軸光学系を設けることによっ
て、被測定面の傾きによる誤差を軽減できる正反射型変
位計を提供することにある。また、本発明の他の目的
は、2軸光学系の内、1つの受光素子にPSD、もう1つ
の受光素子にCCDを用いることで、傾きの誤差軽減だ
けでなく透明体測定における誤差を軽減できる正反射型
変位計を提供することにある。また、本発明のさらに他
の目的は、PSD、CCDからのデータを参照演算する
ことによって、CCDのみを用いた変位計より高精度、
高速測定が可能な正反射型変位計を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a regular reflection type displacement meter which can improve the disadvantages of the conventional example and, in particular, can reduce errors due to the inclination of the surface to be measured by providing a biaxial optical system. is there. Another object of the present invention is to use a PSD for one light receiving element and a CCD for the other light receiving element in the two-axis optical system, thereby reducing not only the error of the inclination but also the error in the measurement of the transparent body. It is an object of the present invention to provide a specular displacement type displacement meter which can be used. Still another object of the present invention is to obtain a higher accuracy than a displacement meter using only a CCD by performing a reference calculation on data from a PSD and a CCD.
An object of the present invention is to provide a regular reflection type displacement meter capable of high-speed measurement.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため、次の構成を採用する。請求項1に記載の正
反射型変位計は、被測定物に光を照射する光照射手段お
よび被測定物からの反射光を受光する受光素子を含む光
学系と、前記受光素子からの出力信号を処理して前記被
測定物の位置情報を得る演算処理手段とを備えた正反射
型変位計において、前記光学系は、前記被測定物への光
の照射点を同一とする第1の光学系および第2の光学系
を備え、前記被測定物が傾いたとき、第1の光学系の受
光素子に入射する光と第2の光学系の受光素子に入射す
る光とが互いに反対方向に変位する位置関係に第1の光
学系および第2の光学系を設置し、前記演算処理手段
は、前記第1の光学系の受光素子の出力信号と前記第2
の光学系の受光素子の出力信号とに基づいて前記被測定
物の傾きに起因する測定誤差を補正し前記被測定物の位
置情報を得ることを特徴とする。
The present invention employs the following structure to achieve the above object. 2. The specular displacement displacement meter according to claim 1, wherein the optical system includes a light irradiating unit that irradiates light to the object to be measured and a light receiving element that receives light reflected from the object to be measured, and an output signal from the light receiving element. And a processing unit for obtaining position information of the object to be measured, wherein the optical system comprises: a first optical system for irradiating the object with the same light irradiation point. A light incident on the light receiving element of the first optical system and a light incident on the light receiving element of the second optical system in directions opposite to each other when the device under measurement is tilted. A first optical system and a second optical system are installed in a displaced positional relationship, and the arithmetic processing means includes an output signal of a light receiving element of the first optical system and the second optical system.
And correcting the measurement error caused by the tilt of the object to be measured based on the output signal of the light receiving element of the optical system to obtain the position information of the object to be measured.

【0007】この発明によれば、被測定物が傾くと、第
1の光学系の受光素子に入射する光と第2の光学系の受
光素子に入射する光とが互いに反対方向に変位し、その
変位に基づく各光学系の受光素子からの出力信号の誤差
が、演算処理手段において、相殺されるから、被測定面
の傾きによる誤差を軽減できる。
According to the present invention, when the object to be measured is tilted, the light incident on the light receiving element of the first optical system and the light incident on the light receiving element of the second optical system are displaced in directions opposite to each other, The error of the output signal from the light receiving element of each optical system based on the displacement is canceled by the arithmetic processing means, so that the error due to the inclination of the surface to be measured can be reduced.

【0008】請求項2に記載の正反射型変位計は、請求
項1に記載の正反射型変位計において、前記第1の光学
系の受光素子をPSDにするとともに、前記第2の光学
系の受光素子をCCDとし、前記演算処理手段は、透明
体である被測定物に対し、当該被測定物の傾きに起因す
る測定誤差を補正する前に、前記CCDの出力に基づい
て前記透明体を透過し裏面で反射したノイズの影響を除
去することを特徴とする。この発明によれば、第2の光
学系の受光素子にCCDを用いたので、被測定面の傾き
の誤差軽減だけでなく、透明体を透過し、その透明体の
裏面で反射したノイズによる誤差も軽減することができ
る。しかも、PSD、CCDからのデータを参照演算す
ることによって、CCDのみを用いた変位計より高精
度、高速測定が可能である。
According to a second aspect of the present invention, there is provided a specular reflection type displacement meter according to the first aspect, wherein the light receiving element of the first optical system is a PSD and the second optical system is a light receiving element. The light receiving element is a CCD, and the arithmetic processing means corrects the transparent object based on the output of the CCD before correcting the measurement error caused by the inclination of the object to be measured. , And the effect of noise reflected on the back surface is removed. According to the present invention, since the CCD is used as the light receiving element of the second optical system, not only the error in the inclination of the surface to be measured can be reduced, but also the error due to noise transmitted through the transparent body and reflected on the back surface of the transparent body. Can also be reduced. In addition, by performing a reference operation on data from the PSD and the CCD, it is possible to perform higher precision and higher speed measurement than a displacement meter using only the CCD.

【0009】請求項3に記載の正反射型変位計は、請求
項2に記載の正反射型変位計において、前記演算処理手
段は、前記CCDの出力に基づいて前記透明体の厚みを
算出する厚み算出手段を備え、前記PSDの出力と前記
CCDの出力とに基づいて前記被測定物の傾きに起因す
る測定誤差を補正した上で、前記透明体の厚みを算出す
ることを特徴とする。この発明によれば、透明体に照射
された光は、透明体の表面(被測定面S)で反射される
成分と、透明体の裏面で反射される成分とに分かれ、各
々の成分がCCDで受光される。演算処理手段の厚み算
出手段は、第2の受光素子(CCD)の出力から透明体
の表面で反射された成分の入射位置と、透明体の裏面で
反射された成分の入射位置とをそれぞれ抽出し、抽出さ
れた入射位置の差分データに基づいて透明体の厚みを算
出するから、透明体の厚みを高精度に測定できる。
According to a third aspect of the present invention, in the regular reflection type displacement meter according to the second aspect, the arithmetic processing means calculates the thickness of the transparent body based on an output of the CCD. A thickness calculator is provided, wherein the thickness of the transparent body is calculated based on the output of the PSD and the output of the CCD, after correcting a measurement error caused by the inclination of the object to be measured. According to the present invention, the light applied to the transparent body is divided into a component reflected on the front surface (measured surface S) of the transparent body and a component reflected on the back surface of the transparent body. Is received at. The thickness calculating means of the arithmetic processing means extracts, from the output of the second light receiving element (CCD), the incident position of the component reflected on the front surface of the transparent body and the incident position of the component reflected on the back surface of the transparent body, respectively. Then, since the thickness of the transparent body is calculated based on the extracted difference data of the incident position, the thickness of the transparent body can be measured with high accuracy.

【0010】[0010]

【発明の実施の形態】(第1実施形態)本発明の第1実
施形態を図1〜図5に基づいて説明する。第1実施形態
にかかる正反射型変位計は、被測定面の傾きによる誤差
を軽減することを目的とするもので、被測定面に斜めに
光を照射する光照射手段および被測定面からの反射光を
受光する受光素子を含む光学系を、被測定面への光の照
射点を同一として2組備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. The regular reflection type displacement meter according to the first embodiment aims at reducing an error due to the inclination of the surface to be measured, and a light irradiation unit for irradiating the surface to be measured with light obliquely, and a light source from the surface to be measured. Two sets of optical systems including a light receiving element for receiving the reflected light are provided with the same light irradiation point on the surface to be measured.

【0011】図1(A)は、第1の光照射手段11およ
び第1の受光素子12とからなる第1の光学系10の構
成を示す。図1(B)は、第2の光照射手段21および
第2の受光素子22とからなる第2の光学系20の構成
を示す。図2は、各光学系10,20による光の照射位
置Pを被測定面Sの法線方向から見た図である。
FIG. 1A shows a configuration of a first optical system 10 including a first light irradiating means 11 and a first light receiving element 12. FIG. 1B shows a configuration of a second optical system 20 including a second light irradiation unit 21 and a second light receiving element 22. FIG. 2 is a diagram in which a light irradiation position P of each of the optical systems 10 and 20 is viewed from a normal direction of the surface S to be measured.

【0012】以下の説明では、被測定面Sは、XYZ直
交座標系内のXY平面と平行に配置された平面であると
仮定する。各光照射手段11,21は、レーザ発信器に
よって構成されている。また、各光照射手段11,21
は、光照射方向とXY平面との成す角が互いに等しい状
態で固定され、かつ、被測定面SのZ方向基準位置(所
定のZ座標)において、その被測定面S上におけるレー
ザ照射位置Pが一致するようなZ座標に固定されてい
る。なお、各光照射手段11,21は、レーザを自己生
成する要素に限らず、他の要素により生成されたレーザ
を所定の方向に反射する光学要素であってもよい。
In the following description, it is assumed that the surface S to be measured is a plane arranged in parallel with the XY plane in the XYZ rectangular coordinate system. Each of the light irradiation means 11 and 21 is constituted by a laser transmitter. In addition, each light irradiation means 11 and 21
The laser irradiation position P on the measured surface S is fixed at a reference position (predetermined Z coordinate) of the measured surface S in the Z direction, where the angle between the light irradiation direction and the XY plane is fixed to each other. Are fixed to the Z coordinate such that Each of the light irradiation units 11 and 21 is not limited to an element that self-generates a laser, and may be an optical element that reflects a laser generated by another element in a predetermined direction.

【0013】各受光素子12,22は、入射光の変位を
検出可能なPSDによって構成されている。また、各受
光素子12,22は、互いに等しいZ座標に固定され、
かつ、受光面とXY平面との成す角が互いに等しい状態
で固定されている。
Each of the light receiving elements 12 and 22 is constituted by a PSD capable of detecting a displacement of incident light. Further, each of the light receiving elements 12, 22 is fixed at the same Z coordinate,
In addition, the angle between the light receiving surface and the XY plane is fixed to be equal to each other.

【0014】各光学系10,20は、図2に示すよう
に、光照射方向のXY成分が平行にならず、かつ、直交
しない向きに設定されている。このため、各光学系1
0,20の光学要素を、ぶつかり合わず、かつ、光路を
遮らない位置に配置することができる。これにより、被
測定面Sが傾いたとき、第1の光学系10の受光素子1
2に入射する光と第2の光学系20の受光素子22に入
射する光とが互いに反対方向に変位する位置関係に、第
1の光学系10および第2の光学系20が配置されてい
る。
As shown in FIG. 2, the optical systems 10 and 20 are set so that the XY components in the light irradiation direction are not parallel and are not orthogonal. For this reason, each optical system 1
The optical elements 0 and 20 can be arranged at positions where they do not collide with each other and do not block the optical path. Thereby, when the surface S to be measured is inclined, the light receiving element 1 of the first optical system 10
The first optical system 10 and the second optical system 20 are arranged in a positional relationship where the light incident on the second 2 and the light incident on the light receiving element 22 of the second optical system 20 are displaced in opposite directions. .

【0015】ここで、図3(A)および図3(B)に示
すように、被測定面Sが実線から点線のように傾むく
と、各光照射手段11,21からのレーザ光の反射方向
が変化し、この結果、被測定面SのZ座標が変位してい
ないにもかかわらず、各受光素子12,22へのレーザ
入射位置が変化する。図3(A)および図3(B)のよ
うに、被測定面Sが左上がり右下がりに傾いた場合、図
3(A)に示す第1の光学系10では、受光素子12へ
の入射位置が実線から点線のように上方にずれる。一
方、図3(B)に示す第2の光学系20では、受光素子
22への入射位置が実線から点線のように下方にずれ
る。
Here, as shown in FIGS. 3A and 3B, when the surface S to be measured is inclined from a solid line to a dotted line, the reflection of the laser light from each of the light irradiation means 11 and 21 is performed. The direction changes, and as a result, the laser incident position on each of the light receiving elements 12 and 22 changes even though the Z coordinate of the surface S to be measured is not displaced. As shown in FIGS. 3A and 3B, when the surface S to be measured is inclined upward and downward, the first optical system 10 shown in FIG. The position is shifted upward from a solid line as shown by a dotted line. On the other hand, in the second optical system 20 shown in FIG. 3B, the incident position on the light receiving element 22 shifts downward from the solid line as indicated by the dotted line.

【0016】これを各受光素子12,22におけるZ方
向の受光位置と受光重心との関係で表すと、図4に示す
ようになる。つまり、本来位置Cが重心となるべきもの
が、第1の受光素子12では、プラス方向の位置Bにず
れ、第2の受光素子22では、マイナス方向の位置Aに
ずれる。この重心のずれ量は、AC間およびBC間で等
しくなる。
FIG. 4 shows the relationship between the light receiving position of each of the light receiving elements 12 and 22 in the Z direction and the light receiving center of gravity. That is, the position where the position C should be the center of gravity is shifted to the position B in the plus direction in the first light receiving element 12 and shifted to the position A in the minus direction in the second light receiving element 22. The shift amount of the center of gravity becomes equal between AC and BC.

【0017】そこで、図4に示すように、第1の受光素
子12の出力から受光重心を算出する重心算出手段12
aと、第2の受光素子22の出力から受光重心を算出す
る重心算出手段22aと、重心算出手段12aで算出さ
れた第1の受光素子12の受光重心および重心算出手段
22aで算出された第2の受光素子22の重心位置の平
均をとる補正手段30と、この補正手段30の出力に基
づいて被測定面SのZ方向変位を算出する変位算出手段
40と、この変位算出手段40で算出された被測定面S
の変位量を表示する表示手段50とを備える演算処理手
段101を構成することにより、被測定面Sの傾きの影
響を軽減ないし除去した比較的正確な被測定面Sの変位
量の算出を行うことが可能となる。なお、演算処理手段
101の構成としては、この実施形態の構成に限らず、
他の構成でもよい。
Therefore, as shown in FIG. 4, a center-of-gravity calculating means 12 for calculating the center of light reception from the output of the first light-receiving element 12.
a, a center of gravity calculating means 22a for calculating a light receiving center of gravity from the output of the second light receiving element 22, and a light receiving center of gravity and a center of gravity of the first light receiving element 12 calculated by the center of gravity calculating means 12a calculated by the center of gravity calculating means 12a. Correction means 30 for averaging the positions of the centers of gravity of the two light receiving elements 22; displacement calculation means 40 for calculating the Z-direction displacement of the surface S to be measured based on the output of the correction means 30; Measured surface S
And a display means 50 for displaying the displacement of the object S, the displacement of the surface S to be measured is relatively accurately calculated by reducing or eliminating the influence of the inclination of the surface S to be measured. It becomes possible. Note that the configuration of the arithmetic processing unit 101 is not limited to the configuration of this embodiment,
Other configurations may be used.

【0018】(第2実施形態)本発明の第2実施形態を
図6に基づいて説明する。第2実施形態は、透明体測定
時の誤差を軽減することを目的とするもので、第1実施
形態において、2軸光学系の内、第1の受光素子12に
PSDが、第2の受光素子22にCCDがそれぞれ用い
られている。また、本実施形態の演算処理手段102に
は、補完処理手段22bが付加されている。なお、第2
の受光素子22に接続される重心算出手段22aは、C
CDの出力からピクセル値の重心データを算出する手段
を構成する。その他の構成は上記の第1実施形態と同一
である。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIG. The second embodiment aims at reducing the error at the time of measuring the transparent body. In the first embodiment, the PSD is provided to the first light receiving element 12 of the two-axis optical system and the second light receiving element is provided. A CCD is used for each element 22. Further, a supplementary processing unit 22b is added to the arithmetic processing unit 102 of the present embodiment. The second
The center of gravity calculating means 22a connected to the light receiving element 22 of C
Means for calculating the barycenter data of the pixel value from the output of the CD is configured. Other configurations are the same as those in the first embodiment.

【0019】補完処理手段22bは、第2の受光素子2
2(CCD)の出力から最も光量が検出される位置デー
タを抽出し、その周辺データからピクセル値の補完処理
を行うことによって、CCDの有限ピクセルデータの分
解能を向上させる。補正手段30は、この補完処理手段
22bにおいて補完されたデータを参照用データとし第
1の受光素子12(PSD)の出力データを補正する。
The complementary processing means 22b includes the second light receiving element 2
The resolution of the finite pixel data of the CCD is improved by extracting the position data at which the amount of light is detected most from the output of the 2 (CCD) and performing complementation processing of the pixel value from the peripheral data. The correction unit 30 corrects the output data of the first light receiving element 12 (PSD) using the data complemented by the complement processing unit 22b as reference data.

【0020】具体的には、重心算出手段22aで算出さ
れたデータXc(CCDより得られたデータ)と、重心
算出手段12aで算出されたデータXp(PSDより得
られたデータ)との演算により、傾斜補正データを得
る。簡便な式を用いると、補正量δXcは{(Xc+X
p)/2}−Xcで求めることができる。この値が補完
処理手段22bで得られた値Xccdの補正量となる。こ
れにより、CCDより得られるデータは、 X=Xccd+δXc・k(θ) で算出される。ただし、k(θ):光学特性などを含む
補正係数である。
More specifically, the data Xc (data obtained from the CCD) calculated by the center-of-gravity calculating means 22a and the data Xp (data obtained from the PSD) calculated by the center-of-gravity calculating means 12a are calculated. , And obtain inclination correction data. Using a simple formula, the correction amount δXc is {(Xc + X
p) / 2} −Xc. This value is the correction amount of the value Xccd obtained by the complement processing means 22b. Thus, the data obtained from the CCD is calculated as follows: X = Xccd + δXc · k (θ) Here, k (θ) is a correction coefficient including optical characteristics and the like.

【0021】このデータを基にPSDより得られたデー
タXpに補正演算を行う。演算されたデータをZiとす
ると、 Zi=Xpi+(Xp−X) で表され、最も光量が検出される位置データがPSDの
データを基に得られる。ここで、(Xp−X)はCCD
の1ライン画素のデータを収集し終わった時点でのデー
タ(本処理例では、Xは最も光量が検出される位置デー
タ)を示し、ZiおよびXpiは、演算処理を除くそれ
以外のタイミングでのデータを示す。つまり、CCDの
データ取得時間中測定値が得られない時間帯(空送り時
間、ダミー信号時間、信号転送時間など)においては、
直前のデータXcとその時のPSDの位置情報Xpを用
いて算出した(Xp−X)を補正基準データとして、X
piに補正演算を行い誤差の少ないZiを算出する。
Based on this data, a correction operation is performed on the data Xp obtained from the PSD. Assuming that the calculated data is Zi, it is expressed as Zi = Xpi + (Xp−X), and the position data at which the amount of light is most detected is obtained based on the PSD data. Where (Xp-X) is the CCD
Indicate the data at the time when the data of one line pixel has been collected (in this processing example, X is the position data at which the amount of light is detected most), and Zi and Xpi are the timings other than the arithmetic processing. Show data. In other words, in a time zone in which no measured value is obtained during the CCD data acquisition time (idle feed time, dummy signal time, signal transfer time, etc.),
Using (Xp−X) calculated using the immediately preceding data Xc and the position information Xp of the PSD at that time as correction reference data, X
A correction operation is performed on pi to calculate Zi with a small error.

【0022】なお、重心算出手段22aの処理方法とし
ては、たとえば、次式を満たすxを求め、その近傍を補
完することによって、分解能を向上させるといった方法
が挙げられる。
As a processing method of the center-of-gravity calculating means 22a, for example, there is a method of obtaining x satisfying the following equation and complementing its neighborhood to improve the resolution.

【0023】[0023]

【数1】 (Equation 1)

【0024】このように、第2の受光素子22にCCD
を用いることにより、被測定面Sの傾きの誤差軽減だけ
でなく、透明体を透過しその透明体の裏面で反射したノ
イズによる誤差も軽減することができる。
As described above, the second light receiving element 22 has a CCD
Is used, it is possible not only to reduce the error in the inclination of the surface S to be measured, but also to reduce the error due to noise transmitted through the transparent body and reflected on the back surface of the transparent body.

【0025】また、CCDの演算時間は、PSDの信号
処理時間に比べ低速である。そこで、従来一般的な画像
処理型変位計と同様のCCDデータの演算をしている間
または従来のCCDデータの演算に代えて、補正手段3
0が、補完処理手段22bから受け取った参照データに
基づいてPSDデータの補正をすることによって、透明
体の変位測定を高速に行うことが可能となる。この処理
アルゴリズムによって、透明体測定時のノイズによる誤
差を軽減するだけでなく、CCD単体を使用した従来の
画像処理型変位計よりも高速で高精度の処理が可能なう
え、さらに、被測定面の傾き誤差の軽減を行った測定も
可能である。
The operation time of the CCD is slower than the signal processing time of the PSD. Therefore, the correction means 3 is used during the calculation of the CCD data similar to that of the conventional general image processing type displacement meter or in place of the calculation of the conventional CCD data.
0 corrects the PSD data based on the reference data received from the complementing processing means 22b, so that the displacement measurement of the transparent body can be performed at high speed. This processing algorithm not only reduces errors due to noise when measuring a transparent object, but also enables faster and more accurate processing than conventional image processing displacement meters that use a single CCD. It is also possible to perform a measurement in which the inclination error of is reduced.

【0026】(第3実施形態)本発明の第3実施形態を
図7および図8に基づいて説明する。第3実施形態は、
第2実施形態において、さらに、CCDの位置検出機能
を用いて厚み測定を行えるようにしたものである。
(Third Embodiment) A third embodiment of the present invention will be described with reference to FIGS. In the third embodiment,
In the second embodiment, the thickness can be measured using the position detecting function of the CCD.

【0027】一般に、透明体への照射光は、図7に示す
ように、透明体52の表面(被測定面S)で反射される
成分と、透明体52の裏面Nで反射される成分とに分か
れ、各々の成分がCCD(受光素子22)で受光され
る。
In general, as shown in FIG. 7, the light irradiated on the transparent body is reflected on the surface (measured surface S) of the transparent body 52 and on the back surface N of the transparent body 52. Each component is received by the CCD (light receiving element 22).

【0028】本実施形態の演算処理手段103には、図
8に示すように、厚み算出手段60が新たに付加されて
いる。厚み算出手段60は、第2の受光素子22(CC
D)の出力から透明体52の表面Sで反射された成分の
入射位置と、透明体52の裏面Nで反射された成分の入
射位置とをそれぞれ抽出し、抽出された入射位置の差分
データに基づいて透明体52の厚みを算出し、この厚み
を表示手段50に表示する。その他の構成は上記第2の
実施形態と同一である。
As shown in FIG. 8, a thickness calculating means 60 is newly added to the arithmetic processing means 103 of this embodiment. The thickness calculation means 60 outputs the second light receiving element 22 (CC
From the output of D), the incident position of the component reflected on the front surface S of the transparent body 52 and the incident position of the component reflected on the back surface N of the transparent body 52 are respectively extracted, and the difference data of the extracted incident positions is extracted. The thickness of the transparent body 52 is calculated based on this, and this thickness is displayed on the display means 50. Other configurations are the same as those of the second embodiment.

【0029】このようにすると、上記実施形態と同様の
効果を奏する他、非接触で透明体52の厚みを測定する
ことができる。また、傾き誤差を軽減した上で、透明体
の厚さを測定することができる。以下、その処理手順を
説明する。
In this case, the same effect as in the above embodiment can be obtained, and the thickness of the transparent body 52 can be measured without contact. Further, the thickness of the transparent body can be measured while reducing the inclination error. Hereinafter, the processing procedure will be described.

【0030】たとえば、第2実施形態で示されているよ
うに、CCDとPSDの重心算出処理データより、傾斜
補正データが得られる。これにより、CCDにより得ら
れるデータは、 X=Xccd+δXc・k(θ) で算出される。ただし、k(θ):光学特性などを含む
補正係数である。上記算出式を、上記の抽出したデータ
に適用することによって、傾き誤差を軽減した上で、透
明体の厚さを測定することができる。
For example, as shown in the second embodiment, the inclination correction data is obtained from the center-of-gravity calculation processing data of the CCD and the PSD. Thus, the data obtained by the CCD is calculated as follows: X = Xccd + δXc · k (θ) Here, k (θ) is a correction coefficient including optical characteristics and the like. By applying the above calculation formula to the above extracted data, the thickness of the transparent body can be measured while reducing the inclination error.

【0031】また、処理手順は、第2実施形態と同様の
処理を適用できるため(本処理手順においては、PSD
データを処理している時間帯とCCDのデータを処理し
ている時間がほとんど重ならないため)、表面データを
変位データとすることによって厚み測定と、変位測定を
何ら設定を変更することなく測定可能である。また、設
定により裏面データを変位データとすることも可能であ
る。このことは、厚み測定において厚みが変わったとき
に、どの面(表面、裏面)の変化が大きいかを検出可能
であることを示している。
Also, since the same processing as in the second embodiment can be applied to the processing procedure (in this processing procedure, the PSD
Since the data processing time and the CCD data processing time hardly overlap), the thickness measurement and displacement measurement can be performed without changing any settings by using the surface data as displacement data. It is. Further, it is also possible to set the back surface data as displacement data by setting. This indicates that it is possible to detect which surface (front surface, back surface) has a large change when the thickness changes in the thickness measurement.

【0032】この他、PSDの重心データとCCDの位
置データとの相関データを用いることにより、透明体の
透過率データを相対データとして出力可能となる。これ
は、測定対象の厚み情報と、測定位置における透過率変
化とが、ある程度分離可能であることを示しており、透
明体の不良検出に有効である。また、CCDを用いる実
施形態においては、演算処理手段にモード切替スイッチ
を設け、このスイッチの操作に応じて従来のPSDのみ
による高速測定を実行できるようにしてもよい。
In addition, by using the correlation data between the barycenter data of the PSD and the position data of the CCD, the transmittance data of the transparent body can be output as relative data. This indicates that the thickness information of the measurement target and the transmittance change at the measurement position can be separated to some extent, which is effective for detecting a defect of the transparent body. In an embodiment using a CCD, a mode changeover switch may be provided in the arithmetic processing means so that high-speed measurement using only the conventional PSD can be performed in accordance with the operation of this switch.

【0033】[0033]

【発明の効果】本発明の正反射型変位計によれば、被測
定物に光を照射する光照射手段および被測定物からの反
射光を受光する受光素子を含む測定光学系を、被測定物
への光の照射点を同一として2組備え、被測定面の傾き
によって各受光素子に生じる出力信号の誤差が相殺され
るように信号処理を行うので、被測定面の傾きによる誤
差を軽減できる、傾きの誤差軽減だけでなく透明体測定
における誤差を軽減できる、さらに、CCDのみを用い
た変位計より高精度、高速測定が可能である、という効
果が期待できる。
According to the regular reflection type displacement meter of the present invention, the measuring optical system including the light irradiating means for irradiating the object to be measured and the light receiving element for receiving the reflected light from the object to be measured can be measured. Equipped with two sets of light irradiating points on the object, signal processing is performed so that the error of the output signal generated in each light receiving element is canceled by the inclination of the surface to be measured, so errors due to the inclination of the surface to be measured are reduced. It is expected that not only the inclination error but also the error in the measurement of the transparent body can be reduced, and that the measurement can be performed with higher accuracy and higher speed than the displacement meter using only the CCD.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態における光学系の構成図
であり、図1(A)は第1の光学系の構成図、図1
(B)は第2の光学系の構成図をそれぞれ示す。
FIG. 1 is a configuration diagram of an optical system according to a first embodiment of the present invention. FIG. 1A is a configuration diagram of a first optical system, and FIG.
(B) shows the configuration of the second optical system.

【図2】図1に示す両光学系の配置関係を示す構成図で
ある。
FIG. 2 is a configuration diagram showing an arrangement relationship between both optical systems shown in FIG.

【図3】被測定面の傾きと受光素子への反射光の入射位
置の変化との関係を示す説明図であり、図3(A)は第
1の光学系に関する説明図、図3(B)は第2の光学系
に関する説明図である。
3A and 3B are explanatory diagrams showing a relationship between a tilt of a surface to be measured and a change in an incident position of reflected light on a light receiving element. FIG. 3A is an explanatory diagram of a first optical system, and FIG. () Is an explanatory diagram relating to the second optical system.

【図4】被測定面の傾きに起因する測定誤差の補正原理
を示す説明図である。
FIG. 4 is an explanatory diagram showing a principle of correcting a measurement error caused by a tilt of a surface to be measured.

【図5】第1実施形態に適用される演算処理手段のブロ
ック構成図である。
FIG. 5 is a block diagram of an arithmetic processing unit applied to the first embodiment.

【図6】本発明の第2実施形態に適用される演算処理手
段のブロック構成図である。
FIG. 6 is a block diagram of an arithmetic processing unit applied to a second embodiment of the present invention.

【図7】本発明の第3実施形態における光学系の構成図
である。
FIG. 7 is a configuration diagram of an optical system according to a third embodiment of the present invention.

【図8】第3実施形態に適用される演算処理手段のブロ
ック構成図である。
FIG. 8 is a block diagram of an arithmetic processing unit applied to a third embodiment.

【図9】従来一般的な正反射型変位計の測定原理を示す
説明図である。
FIG. 9 is an explanatory diagram showing a measurement principle of a conventional general regular reflection type displacement meter.

【図10】従来例の課題を示すための説明図である。FIG. 10 is an explanatory diagram showing a problem of a conventional example.

【図11】従来例の課題を示すための説明図である。FIG. 11 is an explanatory diagram showing a problem of a conventional example.

【図12】従来例の課題を示すための説明図である。FIG. 12 is an explanatory diagram showing a problem of a conventional example.

【符号の説明】[Explanation of symbols]

10 第1の光学系 11 第1の光照射手段 12 第1の受光素子 12a 重心算出手段 20 第2の光学系 21 第2の光照射手段 22 第2の受光素子 22a 重心算出手段 22b 補完処理手段 30 補正手段 40 変位算出手段 50 表示手段 52 被測定物 60 厚み算出手段 101 演算処理手段 102 演算処理手段 103 演算処理手段 S 被測定面 N 透明体の裏面 P 被測定物への光の照射点 DESCRIPTION OF SYMBOLS 10 1st optical system 11 1st light irradiation means 12 1st light receiving element 12a Center-of-gravity calculation means 20 2nd optical system 21 2nd light irradiation means 22 2nd light-receiving element 22a Center-of-gravity calculation means 22b Complement processing means Reference Signs List 30 correction means 40 displacement calculation means 50 display means 52 object to be measured 60 thickness calculation means 101 arithmetic processing means 102 arithmetic processing means 103 arithmetic processing means S surface to be measured N back surface of transparent body P irradiation point of light to the object to be measured

フロントページの続き (72)発明者 佐藤 章 神奈川県川崎市高津区坂戸1−20−1 株 式会社ミツトヨ内 (72)発明者 古嶋 宏光 神奈川県川崎市高津区坂戸1−20−1 株 式会社ミツトヨ内 Fターム(参考) 2F065 AA17 AA65 BB13 BB22 BB24 DD03 EE03 GG04 HH04 HH12 HH14 JJ02 JJ03 JJ16 JJ25 JJ26 Continued on the front page (72) Inventor Akira Sato 1-2-1-1, Sakado, Takatsu-ku, Kawasaki, Kanagawa Prefecture (72) Inventor Hiromitsu Furushima 1-2-1-1, Sakado, Takatsu-ku, Kawasaki, Kanagawa Corporation Mitutoyo F-term (reference) 2F065 AA17 AA65 BB13 BB22 BB24 DD03 EE03 GG04 HH04 HH12 HH14 JJ02 JJ03 JJ16 JJ25 JJ26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物に光を照射する光照射手段およ
び被測定物からの反射光を受光する受光素子を含む光学
系と、前記受光素子からの出力信号を処理して前記被測
定物の位置情報を得る演算処理手段とを備えた正反射型
変位計において、 前記光学系は、前記被測定物への光の照射点を同一とす
る第1の光学系および第2の光学系を備え、前記被測定
物が傾いたとき、第1の光学系の受光素子に入射する光
と第2の光学系の受光素子に入射する光とが互いに反対
方向に変位する位置関係に第1の光学系および第2の光
学系を設置し、 前記演算処理手段は、前記第1の光学系の受光素子の出
力信号と前記第2の光学系の受光素子の出力信号とに基
づいて前記被測定物の傾きに起因する測定誤差を補正し
前記被測定物の位置情報を得ることを特徴とする正反射
型変位計。
An optical system including a light irradiating means for irradiating the object with light and a light receiving element for receiving reflected light from the object to be measured, and an output signal from the light receiving element being processed to process the object to be measured. Wherein the optical system includes a first optical system and a second optical system that make the irradiation point of light on the object to be measured the same. A first positional relationship in which the light incident on the light receiving element of the first optical system and the light incident on the light receiving element of the second optical system are displaced in opposite directions when the object to be measured is tilted. An optical system and a second optical system are provided, and the arithmetic processing unit is configured to perform the measurement based on an output signal of the light receiving element of the first optical system and an output signal of the light receiving element of the second optical system. It is characterized in that the measurement error caused by the inclination of the object is corrected and the position information of the object to be measured is obtained. Specular reflection type displacement meter for the.
【請求項2】 請求項1に記載の正反射型変位計におい
て、 前記第1の光学系の受光素子をPSDにするとともに、
前記第2の光学系の受光素子をCCDとし、 前記演算処理手段は、透明体である被測定物に対し、そ
の被測定物の傾きに起因する測定誤差を補正する前に、
前記CCDの出力に基づいて前記透明体を透過し裏面で
反射したノイズの影響を除去することを特徴とする正反
射型変位計。
2. The specular displacement type displacement meter according to claim 1, wherein the light receiving element of the first optical system is a PSD.
The light receiving element of the second optical system is a CCD, and the arithmetic processing means corrects a measurement error caused by a tilt of the object to be measured, which is a transparent body, before correcting the measurement error.
A specular displacement type displacement meter, wherein the influence of noise transmitted through the transparent body and reflected on the back surface is removed based on the output of the CCD.
【請求項3】 請求項2に記載の正反射型変位計におい
て、 前記演算処理手段は、前記CCDの出力に基づいて前記
透明体の厚みを算出する厚み算出手段を備え、前記PS
Dの出力と前記CCDの出力とに基づいて前記被測定物
の傾きに起因する測定誤差を補正した上で、前記透明体
の厚みを算出することを特徴とする正反射型変位計。
3. The regular reflection type displacement meter according to claim 2, wherein the arithmetic processing means includes a thickness calculating means for calculating a thickness of the transparent body based on an output of the CCD, and the PS
A specular reflection displacement meter, wherein the thickness of the transparent body is calculated after correcting a measurement error caused by the inclination of the object to be measured based on the output of D and the output of the CCD.
JP11194414A 1999-07-08 1999-07-08 Regular reflection type displacement gauge Pending JP2001021316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11194414A JP2001021316A (en) 1999-07-08 1999-07-08 Regular reflection type displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11194414A JP2001021316A (en) 1999-07-08 1999-07-08 Regular reflection type displacement gauge

Publications (1)

Publication Number Publication Date
JP2001021316A true JP2001021316A (en) 2001-01-26

Family

ID=16324217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11194414A Pending JP2001021316A (en) 1999-07-08 1999-07-08 Regular reflection type displacement gauge

Country Status (1)

Country Link
JP (1) JP2001021316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117940A (en) * 2009-11-09 2011-06-16 Sharp Corp Optical range finder, electronic apparatus, and calibration method of the optical range finder
US20140292695A1 (en) * 2013-03-29 2014-10-02 Fuji Jukogyo Kabushiki Kaisha Display device for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117940A (en) * 2009-11-09 2011-06-16 Sharp Corp Optical range finder, electronic apparatus, and calibration method of the optical range finder
US20140292695A1 (en) * 2013-03-29 2014-10-02 Fuji Jukogyo Kabushiki Kaisha Display device for vehicle
US10067726B2 (en) * 2013-03-29 2018-09-04 Subaru Corporation Display device for vehicle

Similar Documents

Publication Publication Date Title
US8994693B2 (en) Locating method of optical touch device and optical touch device
JP2963890B2 (en) Wafer optical shape measuring instrument
JPH059604Y2 (en)
US5340060A (en) Rendezvous docking optical sensor system
JPH02291908A (en) Inspection of tandem-layout shaft
CN104180756B (en) Method for measuring relative displacement of butt-joint pieces through laser displacement sensors
JP2000121324A (en) Thickness measuring apparatus
CN108731593B (en) Front and back binocular position and attitude optical measurement structure and method
JP2012007972A (en) Vehicle dimension measuring device
JP2001021316A (en) Regular reflection type displacement gauge
JP5507050B2 (en) 3D sensor
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
TW201207699A (en) Optical touch system
JP2008157955A (en) Displacement measuring method, displacement measuring device, and target for displacement measuring
CN113847872A (en) Discrete single-point displacement static monitoring device and method based on laser ranging
JPH11132763A (en) Distance measuring method
JPH06273162A (en) Flatness measuring device
JPH01221605A (en) Thickness measuring instrument
JPH051904A (en) Optical shape measuring instrument
JP2000190900A (en) Space debris detecting method and space debris detecting device
EP1909063B1 (en) Vision-measuring-machine calibration scale
JPH06331744A (en) Optical distance measuring equipment
US6643003B2 (en) Process for reading fractioin of an interval between contiguous photo-sensitive
JP2003028631A (en) Length measuring instrument and method therefor
KR100287727B1 (en) Apparatus for measuring gap between mask and glass with two dimensional CCD in exposure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620