JP2001021234A - Cooler - Google Patents

Cooler

Info

Publication number
JP2001021234A
JP2001021234A JP11189953A JP18995399A JP2001021234A JP 2001021234 A JP2001021234 A JP 2001021234A JP 11189953 A JP11189953 A JP 11189953A JP 18995399 A JP18995399 A JP 18995399A JP 2001021234 A JP2001021234 A JP 2001021234A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
heat exchanger
flow path
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11189953A
Other languages
Japanese (ja)
Inventor
Masahiko Shiyuugai
雅彦 集貝
Yasutaka Negishi
康隆 根岸
Kazuhiro Irie
一博 入江
Muneo Sakurada
宗夫 桜田
Soichi Kato
宗一 加藤
Kunihiko Nishishita
邦彦 西下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP11189953A priority Critical patent/JP2001021234A/en
Publication of JP2001021234A publication Critical patent/JP2001021234A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Abstract

PROBLEM TO BE SOLVED: To improve the heat-exchange function of a cooler by performing supercooling of a refrigerant with high efficiency without needing a surplus installation space and to save energy by reducing a power load loaded on a compressor. SOLUTION: This cooler comprises a compressor to compress a refrigerant; a condenser to condense the compressed refrigerant; an expansion valve 5 to perform heat insulation and expansion of a condensed refrigerant; and an evaporator 6 to perform evaporation of an expand refrigerant. In this case, the cooler is provided with an internal heat-exchanger 7 to effect heat-exchange between a refrigerant before an inflow of it to the expansion valve 5 and a refrigerant after a flow of it through the evaporator 6, and the internal heat-exchanger 7 is situated in a state to be formed integrally with the evaporator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、車両等の熱交換
サイクルに用いられる冷房装置に関する。
TECHNICAL FIELD The present invention relates to a cooling device used in a heat exchange cycle of a vehicle or the like.

【0002】[0002]

【従来の技術】 従来において、車両用に用いられる冷
房装置は、圧縮器、凝縮器、受液器、膨脹弁及び蒸発器
を備え、これらの各器機を配管で連結し、一つの熱交換
サイクルを構成している。
2. Description of the Related Art Conventionally, a cooling device used for a vehicle includes a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator, and these devices are connected by piping to form one heat exchange cycle. Is composed.

【0003】図10は、従来の冷房装置20の概略構成
を示す図である。図10に示すように、冷房装置20
は、冷媒を高温高圧に圧縮する圧縮器21と、圧縮され
た冷媒を凝縮する凝縮器22と、凝縮された冷媒を気液
分離して、液冷媒を一時内部に蓄える受液器23と、冷
媒の断熱膨張を行う膨張弁24と、断熱膨張された冷媒
と外気の熱交換を行って、冷気を放出する蒸発器25を
備えている。蒸発器25を通流した冷媒は,再び、圧縮
器21に流入し、各器機を連結する配管26を介して冷
房が熱交換サイクルを循環する構成となっている。
FIG. 10 is a diagram showing a schematic configuration of a conventional cooling device 20. As shown in FIG.
A compressor 21 for compressing the refrigerant to a high temperature and a high pressure, a condenser 22 for condensing the compressed refrigerant, a liquid receiver 23 for separating the condensed refrigerant into gas and liquid and temporarily storing the liquid refrigerant therein, An expansion valve 24 for adiabatically expanding the refrigerant, and an evaporator 25 for exchanging heat between the adiabatic expanded refrigerant and the outside air to release cool air are provided. The refrigerant flowing through the evaporator 25 flows into the compressor 21 again, and the cooling system circulates through a heat exchange cycle via a pipe 26 connecting each device.

【0004】また、図11は、従来の冷房装置27にお
いて、凝縮器を通流した後の冷媒の過冷却(サブクー
ル)を行うサブ熱交換器28を備えたものもある。
FIG. 11 shows a conventional cooling device 27 including a sub heat exchanger 28 for supercooling (subcooling) a refrigerant after flowing through a condenser.

【0005】サブ熱交換器28は、例えば、凝縮器22
と一体又は別体として設けられ、例えば、凝縮器22で
外気と熱交換した冷媒を一旦、受液器に通流し、冷媒の
気液分離を行った後、再び、サブ熱交換器28に通流し
て、外気と熱交換して、冷媒の過冷却を行う構成として
いる。
The sub heat exchanger 28 includes, for example, the condenser 22
For example, the refrigerant that has been heat-exchanged with the outside air in the condenser 22 is once passed through the receiver to separate the refrigerant into gas and liquid, and then passed through the sub heat exchanger 28 again. It is configured to flow and exchange heat with outside air to supercool the refrigerant.

【0006】このようにサブ熱交換器28において冷媒
の過冷却の状態となり、この状態で膨脹弁における断熱
膨脹が行われる。
In this way, the sub-heat exchanger 28 is in a state of supercooling of the refrigerant, and in this state, adiabatic expansion of the expansion valve is performed.

【0007】冷媒は過冷却された状態で断熱膨脹するた
め、熱交換サイクル全体の熱交換効率の向上を図ること
が可能となる。
[0007] Since the refrigerant adiabatically expands in a supercooled state, it is possible to improve the heat exchange efficiency of the entire heat exchange cycle.

【0008】また、冷媒は、膨脹弁で過冷却された低温
の状態で断熱膨脹されるため、温度差に影響を受ける断
熱膨脹時の膨脹弁24及び蒸発器25の仕事量が低減
し、熱交換サイクル全体の熱交換効率(冷却効率)の向
上を図ることが可能となる。
Further, since the refrigerant is adiabatically expanded in a low temperature state supercooled by the expansion valve, the work of the expansion valve 24 and the evaporator 25 during the adiabatic expansion affected by the temperature difference is reduced, and the heat is reduced. It is possible to improve the heat exchange efficiency (cooling efficiency) of the entire exchange cycle.

【0009】例えば、特開平10−62021号公報に
記載された発明は、前述のような冷房装置に、受液器を
通流した冷媒及び蒸発器を通流した冷媒の相互間で熱交
換が行われるサブ熱交換器を備えている。すなわち、こ
のサブ熱交換器は、受液器内に蒸発器から流出した冷媒
を通流する配管を設け、受液器内に通流又は一時蓄えら
れた比較的高温の冷媒と、蒸発器から通流した比較的低
温の冷媒の熱交換を行っている。
For example, in the invention described in Japanese Patent Application Laid-Open No. H10-62021, heat exchange between the refrigerant flowing through the receiver and the refrigerant flowing through the evaporator is performed in the cooling device described above. It is equipped with a sub heat exchanger. That is, this sub heat exchanger is provided with a pipe through which the refrigerant flowing out of the evaporator flows in the receiver, and a relatively high-temperature refrigerant flowing or temporarily stored in the receiver and the evaporator. Heat exchange of the flowing relatively low-temperature refrigerant is performed.

【0010】また、特開平6−185831号公報に記
載された発明は、膨脹弁及び蒸発器間に熱交換器を設
け、この間に1又は2以上の絞り部を設けて、この絞り
部により、通流する冷媒の圧力を規制して、蒸発器内部
の分岐した冷媒流路に冷媒をほぼ均等に通流し、蒸発器
の熱交換機能を向上している。
In the invention described in Japanese Patent Application Laid-Open No. 6-185831, a heat exchanger is provided between an expansion valve and an evaporator, and one or more throttles are provided between the heat exchangers. The pressure of the flowing refrigerant is regulated, and the refrigerant flows substantially evenly through the branched refrigerant flow path inside the evaporator, thereby improving the heat exchange function of the evaporator.

【0011】[0011]

【発明が解決しようとする課題】しかし、特開平10−
62021号公報に記載した発明の場合は、前述したよ
うなサブ熱交換器を別体で設ける必要があり、冷房装置
の構成が複雑なるとともに、冷房装置自体も大型化する
ため、制限のあるスペースに設置する場合に問題が生じ
る。
However, Japanese Patent Application Laid-Open No.
In the case of the invention described in JP-A-62021, it is necessary to separately provide the sub heat exchanger as described above, which complicates the configuration of the cooling device and increases the size of the cooling device itself. A problem arises when installing in

【0012】また、特開平6−185831号公報記載
の発明は、減圧弁から噴出した後の冷媒と、蒸発器から
流出した冷媒の熱交換を行うため、冷媒の温度上昇は小
さく、低い温度のままで圧縮器において断熱圧縮するた
め、圧縮器の消費動力を低減できないという問題を生じ
る。
In the invention described in Japanese Patent Application Laid-Open No. 6-185831, heat exchange between the refrigerant ejected from the pressure reducing valve and the refrigerant flowing out of the evaporator is performed. Since adiabatic compression is performed in the compressor as it is, there is a problem that power consumption of the compressor cannot be reduced.

【0013】一方、サブ熱交換器28で冷媒が過冷却
(サブクール)の状態となると、蒸発器25を通流した
冷媒は、圧縮器21では、冷媒が所定の高温高圧になる
ように、概念的に従来よりも高温側で過熱度(スーパー
ヒート)の状態となる必要がある。しかし、冷媒がスー
パーヒートの状態となると、圧縮器21にかかる動力負
荷が大きくなり、圧縮器21におけるエネルギー消費が
が大きくなる。
On the other hand, when the refrigerant is supercooled (subcooled) in the sub heat exchanger 28, the refrigerant flowing through the evaporator 25 is conceptualized in the compressor 21 so that the refrigerant has a predetermined high temperature and high pressure. It is necessary to be in a state of superheat (superheat) on the higher temperature side than before. However, when the refrigerant enters a superheat state, the power load applied to the compressor 21 increases, and the energy consumption in the compressor 21 increases.

【0014】そこで、前記問題点に鑑みて、本発明は、
余分な設置スペースを必要とすることなく、効率よく冷
媒の過冷却を行い冷房装置の熱交換機能の向上を図ると
ともに、圧縮器にかかる動力負荷を低減して、エネルギ
ーの省力化を可能とする冷房装置を提供することを目的
とする。
Therefore, in view of the above problems, the present invention provides:
It does not require extra installation space, efficiently supercools the refrigerant, improves the heat exchange function of the cooling device, reduces the power load on the compressor, and saves energy. It is an object to provide a cooling device.

【0015】[0015]

【課題を解決するための手段】本願第1請求項に記載し
た発明は、冷媒を圧縮する圧縮器と、圧縮した前記冷媒
を凝縮する凝縮器と、凝縮した前記冷媒の断熱膨脹を行
う膨脹弁と、膨脹した前記冷媒の蒸化を行う蒸発器を備
えた冷房装置において、前記冷房装置は、膨脹弁に流入
する前の冷媒と、蒸発器を通流した後の冷媒の熱交換器
を行う内部熱交換器を備え、前記内部熱交換器は、蒸発
器と一体として設けた冷房装置である。
According to a first aspect of the present invention, there is provided a compressor for compressing a refrigerant, a condenser for condensing the compressed refrigerant, and an expansion valve for adiabatically expanding the condensed refrigerant. And a cooling device provided with an evaporator for evaporating the expanded refrigerant, wherein the cooling device performs a heat exchanger on the refrigerant before flowing into the expansion valve and the refrigerant after flowing through the evaporator. The cooling device includes an internal heat exchanger, and the internal heat exchanger is provided integrally with the evaporator.

【0016】このように、凝縮器を通流した後の冷媒
と、蒸発器を通流した後の冷媒の熱交換を行う内部熱交
換器を設けると、この内部熱交換器において、膨脹弁に
流入する前の冷媒の過冷却(サブクール)が行われ、冷
房装置の熱交換効率の向上を図ることが可能となる。
As described above, when the internal heat exchanger for exchanging heat between the refrigerant flowing through the condenser and the refrigerant flowing through the evaporator is provided, in this internal heat exchanger, the expansion valve is provided. The supercooling (subcooling) of the refrigerant before flowing in is performed, and the heat exchange efficiency of the cooling device can be improved.

【0017】一方、蒸発器を通流した後の冷媒は、膨脹
弁に流入する前の冷媒と熱交換し、温度が上昇した状態
で、圧縮器に流入するため、例えば、モリエール線図上
においては、冷媒の比容積が上昇し、すなわち、冷媒の
密度が低下した状態で、圧縮器に流入することとなり、
冷媒の密度が低下した状態であると、冷媒を所定の高温
高圧とする圧縮器にかかる動力不可が低減し、エネルギ
ーの省力化を図ることが可能となる。
On the other hand, the refrigerant after flowing through the evaporator exchanges heat with the refrigerant before flowing into the expansion valve, and flows into the compressor in a state where the temperature is increased. Increases the specific volume of the refrigerant, that is, flows into the compressor in a state where the density of the refrigerant is reduced,
In a state where the density of the refrigerant is reduced, the impossibility of power to be applied to the compressor for setting the refrigerant to a predetermined high temperature and high pressure is reduced, and energy can be saved.

【0018】また、本例の内部熱交換器は、蒸発器と一
体に設けるため、冷房装置全体の設置スペースを拡大す
ることなく、前述のように熱交換効率の向上と圧縮器の
エネルギー消費の低減を図ることが可能となる。
Further, since the internal heat exchanger of this embodiment is provided integrally with the evaporator, the heat exchange efficiency can be improved and the energy consumption of the compressor can be improved without increasing the installation space of the entire cooling device as described above. Reduction can be achieved.

【0019】従って、例えば、設置スペースの制限され
た車体等に本発明の冷房装置を搭載する場合であって
も、内部熱交換器を設けたことによる設置スペースの拡
大化を防ぎ、熱交換効率の向上とエネルギーの省力化を
図ることができる。
Therefore, for example, even when the cooling device of the present invention is mounted on a vehicle body or the like having a limited installation space, the installation space can be prevented from being enlarged by providing the internal heat exchanger, and the heat exchange efficiency can be reduced. And energy saving can be achieved.

【0020】本願第2請求項に記載した発明は、前記請
求項1記載の発明において、前記内部熱交換器は、膨脹
弁に流入する前の冷媒が通流する複数の第一の流路と、
蒸発器を通流した後の冷媒が通流する複数の第二の流路
を備え、前記第一の流路と第二の流路が交互に隣接した
位置となるように流路を形成したことを特徴とす交互に
隣接して通流する複数の冷媒流路を備えている。
According to a second aspect of the present invention, in the first aspect of the invention, the internal heat exchanger includes a plurality of first flow paths through which the refrigerant before flowing into the expansion valve flows. ,
A plurality of second flow paths through which the refrigerant flows after flowing through the evaporator were provided, and the flow paths were formed such that the first flow paths and the second flow paths were alternately adjacent to each other. It is provided with a plurality of refrigerant flow paths alternately flowing adjacently.

【0021】このように、内部熱交換器は、膨張弁に流
入する前の冷媒が通流する第一の冷媒流路と、蒸発器か
ら流出した冷媒が通流する第二の冷媒流路が隣接して設
けられているため、第一の冷媒流路を通流する冷媒と第
二の冷媒流路を通流する冷媒の相互間で十分に熱交換が
行われ、膨張弁に流入する前の冷媒を所望の過冷却の状
態にするとともに、圧縮器に流入する前の冷媒の温度を
上昇して、冷媒の過熱度を抑制し、圧縮器にかかる動力
負荷の低減が可能となる。
As described above, the internal heat exchanger has the first refrigerant flow path through which the refrigerant before flowing into the expansion valve flows and the second refrigerant flow path through which the refrigerant flowing out of the evaporator flows. Because it is provided adjacently, sufficient heat exchange is performed between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path, before the refrigerant flows into the expansion valve. In addition to bringing the refrigerant into a desired supercooled state, the temperature of the refrigerant before flowing into the compressor is increased, the degree of superheat of the refrigerant is suppressed, and the power load applied to the compressor can be reduced.

【0022】本願第3請求項に記載した発明は、前記請
求項1記載の発明において、前記内部熱交換器は、複数
の冷媒流路を構成する複数のコアプレートを用いて形成
するものであって、複数のコアプレート同士を接合して
形成した冷媒流路は、その断面形状がハニカム状であ
る。このように、内部熱交換器は、複数のコアプレート
を当接して形成したものであり、たとえば、コアプレー
トの平面部に複数の凹凸部を形成し、一枚のコアプレー
トの凸部の頂部と、他のコアプレートの凸部頂部同士を
接合すると、二つの凹部が対称として当接された第一の
冷媒流路が形成される。
According to a third aspect of the present invention, in the first aspect, the internal heat exchanger is formed by using a plurality of core plates constituting a plurality of refrigerant flow paths. The coolant flow path formed by joining a plurality of core plates together has a honeycomb-shaped cross section. As described above, the internal heat exchanger is formed by abutting a plurality of core plates. When the tops of the protrusions of the other core plate are joined to each other, a first refrigerant flow path is formed in which the two recesses are abutted symmetrically.

【0023】また、第一のコアプレートの凹部の底面部
と、第三のプレートの凹部の底面部を当接すると、第一
のコアプレートの凸部と、第三のコアプレートの凸部間
に第二の冷媒流路が形成される。
When the bottom surface of the concave portion of the first core plate and the bottom surface of the concave portion of the third plate are in contact with each other, the convex portion of the first core plate and the convex portion of the third core plate are contacted. A second refrigerant flow path is formed at the second position.

【0024】したがって、凹凸部を備えた複数のコアプ
レートを当接することにより、例えば、凝縮器から流出
した冷媒が通流する第一の冷媒流路と、蒸発器から流出
した第二の冷媒が通流する第二の冷媒流路が交互に隣接
する断面ハニカム状の冷媒流路が形成される。
Therefore, by contacting the plurality of core plates provided with the concave and convex portions, for example, the first refrigerant flow path through which the refrigerant flowing out of the condenser flows and the second refrigerant flow out of the evaporator flow A coolant channel having a honeycomb shape in cross section, in which the flowing second coolant channels are alternately adjacent, is formed.

【0025】内部熱交換器が、第一の冷媒流路と第二の
冷媒流路が交互に隣接し、第一及び第二の冷媒流路の横
断面がハニカム状に形成されいると、冷媒流路を構成す
るコアプレートを介して、第一の冷媒流路を通流する冷
媒と、第二の冷媒流路を通流する冷媒の熱交換が効率よ
く行われるため、冷媒を所望の過冷却の状態とすること
ができ、また、冷媒の過熱度を抑制して、冷房装置全体
の熱交換効率の向上を図ることが可能となる。
In the internal heat exchanger, when the first refrigerant flow path and the second refrigerant flow path are alternately adjacent to each other and the cross sections of the first and second refrigerant flow paths are formed in a honeycomb shape, The heat exchange between the refrigerant flowing through the first refrigerant flow path and the refrigerant flowing through the second refrigerant flow path is efficiently performed via the core plate that constitutes the flow path. The cooling state can be set, and the degree of superheat of the refrigerant can be suppressed, so that the heat exchange efficiency of the entire cooling device can be improved.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0027】図1は、本例の冷房装置の概略構成を示す
図である。
FIG. 1 is a diagram showing a schematic configuration of the cooling device of the present embodiment.

【0028】図1に示すように、本例の冷房装置1は、
冷媒を圧縮する圧縮器2と、圧縮した冷媒と外気の熱交
換を行って、冷媒を凝縮する凝縮器3と、凝縮された冷
媒の気液分離を行い、液媒体を内部に一時蓄える受液器
4と、凝縮器3で凝縮された液媒体の断熱膨脹を行う膨
脹弁5と、膨脹された冷媒の蒸化を行う蒸発器6を備え
ている。前記各器機は、冷媒を内部に通流して各器機へ
連通する配管8で連結している。
As shown in FIG. 1, the cooling device 1 of the present embodiment comprises:
A compressor 2 for compressing the refrigerant, a condenser 3 for exchanging heat between the compressed refrigerant and the outside air to condense the refrigerant, and a liquid receiver for temporarily separating the condensed gas into a liquid medium and temporarily storing a liquid medium therein. The apparatus includes a vessel 4, an expansion valve 5 for adiabatically expanding the liquid medium condensed in the condenser 3, and an evaporator 6 for evaporating the expanded refrigerant. Each of the devices is connected by a pipe 8 that allows the refrigerant to flow therein and communicates with each device.

【0029】また、冷房装置1は、凝縮器3及び受液器
4を通流した後の冷媒と、蒸発器6を通流した後の冷媒
の熱交換を行う内部熱交換器7を備え、この内部熱交換
器7は、蒸発器6及び膨張弁5と一体として設けてい
る。
The cooling device 1 includes an internal heat exchanger 7 for exchanging heat between the refrigerant flowing through the condenser 3 and the liquid receiver 4 and the refrigerant flowing through the evaporator 6. The internal heat exchanger 7 is provided integrally with the evaporator 6 and the expansion valve 5.

【0030】図2は、前述した内部熱交換器7、膨脹弁
5及び蒸発器6を一体に設けた蒸発器10の概略構成を
示す斜視図である。また、図3は、内部熱交換器7、膨
張弁5、蒸発器6を連結する接続構造の概略構造を示す
分解図である。
FIG. 2 is a perspective view showing a schematic configuration of an evaporator 10 provided integrally with the above-mentioned internal heat exchanger 7, expansion valve 5 and evaporator 6. FIG. 3 is an exploded view showing a schematic structure of a connection structure for connecting the internal heat exchanger 7, the expansion valve 5, and the evaporator 6.

【0031】図2または図3に示すように、本例の蒸発
器10は、内部熱交換器7と蒸発器6を膨張弁5を介し
て一体に接合している。 例えば、内部熱交換器7は、
凝縮器3と連通された配管8aと、圧縮器2に連通する
配管8bを備えたコネクタ11と連結し、更に、内部熱
交換器7は、連結部7a,7bを介して膨張弁5と連結
し、膨張弁5は、蒸発器6の連結部6aを介して、蒸発
器6と連結する。
As shown in FIG. 2 or FIG. 3, in the evaporator 10 of this embodiment, the internal heat exchanger 7 and the evaporator 6 are integrally joined via the expansion valve 5. For example, the internal heat exchanger 7
The internal heat exchanger 7 is connected to the expansion valve 5 via connecting portions 7a and 7b, and is connected to a connector 11 having a pipe 8a communicating with the condenser 3 and a pipe 8b communicating with the compressor 2. Then, the expansion valve 5 is connected to the evaporator 6 via the connecting portion 6a of the evaporator 6.

【0032】図2に示すように、蒸発器6は、複数のチ
ューブ61と、前記複数のチューブ61間に装着したフ
ィン62と、各チューブ61に冷媒を分配するタンク6
3,64を備えている。
As shown in FIG. 2, the evaporator 6 includes a plurality of tubes 61, fins 62 mounted between the plurality of tubes 61, and a tank 6 for distributing the refrigerant to each tube 61.
3,64.

【0033】次に、内部熱交換器7の構造を詳細に説明
する。
Next, the structure of the internal heat exchanger 7 will be described in detail.

【0034】図4は、内部熱交換器7を構成する複数の
コアプレート70を示す図である。
FIG. 4 is a view showing a plurality of core plates 70 constituting the internal heat exchanger 7.

【0035】コアプレート70は、プレートに複数の凹
部71及び凸部72を備えている。また、コアプレート
の上下には四つの連通孔73a,73b,73c、73
dが穿設されている。また、コアプレート70の周囲に
は、他のコアプレートと当接する平面の当接部74が形
成されている。
The core plate 70 has a plurality of concave portions 71 and convex portions 72 on the plate. In addition, four communication holes 73a, 73b, 73c, 73 are provided above and below the core plate.
d is drilled. Around the core plate 70, a flat contact portion 74 that is in contact with another core plate is formed.

【0036】コアプレート70の上下には、コアプレー
ト70の先端が二股に分かれ、他のコアプレート70の
当接部と当接する当接面が形成された当接端部75,7
6が形成されている。
Above and below the core plate 70, the ends of the core plate 70 are bifurcated, and the contact ends 75, 7 are formed with contact surfaces that contact the contact portions of the other core plates 70.
6 are formed.

【0037】図4に示すように、一のコアプレートと他
のコアプレートの当接部74及び当接端部75,76の
当接面同士が接合され、また、前記二枚コアプレートの
凸部72の頂部の平面部同士が接合されて、二枚のコア
プレートの凹部71間に第一の冷媒流路100を形成し
ている。
As shown in FIG. 4, the contact surfaces of the contact portions 74 and the contact ends 75 and 76 of one core plate and the other core plate are joined to each other. The flat portions at the tops of the portions 72 are joined to form a first coolant flow path 100 between the recesses 71 of the two core plates.

【0038】図4中矢印は、第一の冷媒流路100を通
流する冷媒の通流方向を示している。
The arrows in FIG. 4 indicate the flow direction of the refrigerant flowing through the first refrigerant flow path 100.

【0039】また、一のコアプレートの70当接端部7
5,76、当接部74及び凹部73の底面部と、他の一
のコアプレート70の当接部75,76、当接部74及
び凹部73の底面部を接合すると、前記一のコアプレー
ト及び他のコアプレートの凸部72,72間に第二の冷
媒流路101を形成する。
Further, 70 contact ends 7 of one core plate 7
5, 76, the bottom portion of the contact portion 74 and the concave portion 73 and the bottom portion of the contact portion 75, 76, the contact portion 74 and the concave portion 73 of another core plate 70 are joined together. The second coolant flow path 101 is formed between the projections 72 of the other core plate.

【0040】図5は、図4と同様に複数のコアプレート
70を示し、図5中矢印は、凸部72,72間に形成さ
れた、第二の冷媒流路101を通流する冷媒の通流方向
を示す。
FIG. 5 shows a plurality of core plates 70 as in FIG. 4, and the arrows in FIG. 5 indicate the flow of the refrigerant flowing through the second refrigerant flow path 101 formed between the convex portions 72, 72. Indicates the direction of flow.

【0041】図6は、複数のコアプレート70を当接し
た状態の断面を示す斜視図である。
FIG. 6 is a perspective view showing a cross section in a state where a plurality of core plates 70 are in contact with each other.

【0042】図6に示すように、コアプレート70の当
接端部、当接部凹部71の底面部、及び凸部72の頂部
の平面部を当接すると、断面ハニカム状を呈する複数の
第一及び第二の冷媒流路100,101が形成される。
As shown in FIG. 6, when the abutting end of the core plate 70, the bottom surface of the abutting recess 71, and the flat portion of the top of the projection 72 abut, a plurality of honeycombs having a honeycomb cross section are formed. First and second refrigerant flow paths 100 and 101 are formed.

【0043】図6中矢印は、第一及び第二の冷媒流路1
00,101を通流する冷媒の通流方向を示す矢印であ
る。
The arrows in FIG. 6 indicate the first and second refrigerant flow paths 1.
It is an arrow showing the flowing direction of the refrigerant flowing through 00 and 101.

【0044】図7は、凝縮器3及び受液器4を通流した
冷媒が通流する冷媒流路100を示す内部熱交換器7の
断面図であり、図8は、蒸発器6を通流した冷媒が通流
する冷媒流路101を示す内部熱交換器7の断面図であ
る。
FIG. 7 is a cross-sectional view of the internal heat exchanger 7 showing a refrigerant flow path 100 through which the refrigerant flowing through the condenser 3 and the liquid receiver 4 flows, and FIG. It is sectional drawing of the internal heat exchanger 7 which shows the refrigerant | coolant flow path 101 which the flowing refrigerant | coolant flows.

【0045】図7及び図8に示すように、複数のコアプ
レート70の両端部には、サイドプレート77,78が
当接されている。
As shown in FIGS. 7 and 8, side plates 77 and 78 are in contact with both ends of the plurality of core plates 70.

【0046】図7は,第一の冷媒流路100を示してい
る。冷媒は、コアプレート70の連通孔73aから二枚
のコアプレートの凹部71,71間に形成された冷媒流
路100を下方向に通流して、連通孔73d,73d間
を連結する連通路79を通流し、再び,冷媒流路100
を上方向に通流する。冷媒は、前述した通流を繰り返
し、最側端のコアプレート70の連通孔73aから流出
して他の機器方向へ通流する。
FIG. 7 shows the first refrigerant flow path 100. The refrigerant flows downward from the communication hole 73a of the core plate 70 through the refrigerant flow path 100 formed between the recesses 71, 71 of the two core plates, and the communication passage 79 connects the communication holes 73d, 73d. And again, the refrigerant flow path 100
Flow upward. The refrigerant repeats the above-described flow, and flows out of the communication hole 73a of the core plate 70 at the outermost end to flow toward another device.

【0047】図8は、第二の冷媒流路101を示す断面
図であり、冷媒は、サイドプレート78に形成された連
通孔78dからコアプレート70及びサイドプレート7
8間の冷媒流路102から流入し、この冷媒流路102
を上方向に通流して、連通孔73b,73b間に形成さ
れた連通路79を通流して、二枚のコアプレート70,
70の凸部72,72間に形成された第二の冷媒流路間
101を下方向に通流し、二枚のコアプレート70の連
通孔73c,73c間を連結した連結路79を通流し,再
び、冷媒流路101を上方向に通流する。冷媒は,前述
した通流を繰り返し、最終的に、最側のコアプレート7
0と、サイドプレート77間の流路103を通流してサ
イドプレート77に形成された連通孔77bから他の機
器へ通流する。
FIG. 8 is a cross-sectional view showing the second refrigerant flow passage 101. The refrigerant flows from the communication holes 78d formed in the side plate 78 through the core plate 70 and the side plate 7 through the communication holes 78d.
8 and flows through the refrigerant flow path 102 between
Through the communication passage 79 formed between the communication holes 73b, 73b, and the two core plates 70,
70, flows downward between the second refrigerant flow paths 101 formed between the convex portions 72, 72, and flows through the connection path 79 connecting the communication holes 73c, 73c of the two core plates 70, Again, the refrigerant flows upward in the refrigerant flow path 101. The refrigerant repeats the above-described flow, and finally, the core plate
0, flows through the flow path 103 between the side plates 77, and flows from the communication hole 77b formed in the side plate 77 to another device.

【0048】このように、第一及び第二の冷媒流路10
0,101が隣接した断面ハニカム状に形成されている
と、例えば、第一の冷媒流路100には、凝縮器3及び
受液器4からを流出した冷媒が通流し、また、第二の冷
媒流路101には、蒸発器6から流出した冷媒が通流す
るように構成すると、第一の冷媒流路100を通流する
比較的温度の高い冷媒と、第二の冷媒流路を通流する比
較的低温の冷媒がコアプレートを介して熱交換を行い、
熱交換効率の向上と、圧縮機2の動力負荷を低減するこ
とができる。
As described above, the first and second refrigerant flow paths 10
When 0, 101 is formed in an adjacent cross-sectional honeycomb shape, for example, the refrigerant flowing out of the condenser 3 and the liquid receiver 4 flows through the first refrigerant flow path 100, and If the refrigerant flowing out of the evaporator 6 is configured to flow through the refrigerant flow path 101, the relatively high-temperature refrigerant flowing through the first refrigerant flow path 100 and the second refrigerant flow path The flowing relatively low-temperature refrigerant exchanges heat through the core plate,
It is possible to improve the heat exchange efficiency and reduce the power load on the compressor 2.

【0049】図9は、冷房装置1における冷媒の状態を
示す図である。
FIG. 9 is a diagram showing the state of the refrigerant in the cooling device 1.

【0050】図9に示すように、冷媒は、圧縮器2にお
いて、高温高圧に断熱圧縮される(図9中A−B間)。
次に、凝縮器3で、外気と熱交換し、受液器4におい
て、気液分離が行われる(図9中B−C間)。ここで、
内部熱交換器7において、凝縮器3及び受液器4から流
出した第一の冷媒流路100を通流する冷媒と、蒸発器
6から流出し、第二の冷媒流路101を通流した冷媒と
熱交換が行われると、第一の冷媒流路を通流する冷媒
は、過冷却されて、図9中C点からc点へと低エンタル
ピー側に移動し、冷媒は、過冷却により液体の冷媒とな
って膨張弁5に通流される。
As shown in FIG. 9, the refrigerant is adiabatically compressed to a high temperature and a high pressure in the compressor 2 (between AB in FIG. 9).
Next, heat exchange with the outside air is performed in the condenser 3, and gas-liquid separation is performed in the liquid receiver 4 (between B and C in FIG. 9). here,
In the internal heat exchanger 7, the refrigerant flowing out of the condenser 3 and the liquid receiver 4 and flowing through the first refrigerant flow path 100 and the refrigerant flowing out of the evaporator 6 and flowing through the second refrigerant flow path 101. When heat exchange with the refrigerant is performed, the refrigerant flowing through the first refrigerant flow path is supercooled and moves from point C to point c in FIG. 9 toward the low enthalpy side, and the refrigerant is supercooled. The refrigerant becomes a liquid refrigerant and flows through the expansion valve 5.

【0051】冷媒が過冷却により液体状態となっている
と、膨張弁5による断熱膨張による低圧低温の冷媒(図
9中c−d間)の蒸発・気化が向上し、冷却効果が向上
する。
When the refrigerant is in a liquid state by supercooling, evaporation and vaporization of the low-pressure and low-temperature refrigerant (between cd in FIG. 9) due to adiabatic expansion by the expansion valve 5 is improved, and the cooling effect is improved.

【0052】また、冷媒の過冷却が行われると、圧縮機
において所定の高温高圧まで断熱圧縮するため、冷媒の
過熱度が大きくなるという問題を生じる。すなわち、図
9中A−B間に示す状態で行われたいた断熱圧縮が、図
9中a−b間に示す高エンタルピー側で行うこととな
り、圧縮器にかかる動力負荷が増大し、エネルギーの消
費が激しくなる。
Further, when the refrigerant is supercooled, the compressor is adiabatically compressed to a predetermined high temperature and high pressure, so that the degree of superheat of the refrigerant increases. That is, the adiabatic compression performed in the state shown between AB in FIG. 9 is performed on the high enthalpy side shown between a and b in FIG. 9, the power load on the compressor increases, and the energy Consumption will increase.

【0053】本例においては、内部熱交換器7おいて、
蒸発器6から流出した冷媒と凝縮器3及び受液器4から
流出した冷媒の熱交換を行っているため、圧縮器2に流
入する冷媒の温度が上昇する。
In this example, in the internal heat exchanger 7,
Since heat exchange between the refrigerant flowing out of the evaporator 6 and the refrigerant flowing out of the condenser 3 and the liquid receiver 4 is performed, the temperature of the refrigerant flowing into the compressor 2 increases.

【0054】このように、冷媒温度が上昇した状態とな
ると、図9に示すモリエール線X図上において、冷媒の
比容積が大きくなり、すなわち、密度が小さくなり、冷
媒は低密度の状態で断熱圧縮されるため、圧縮器の動力
負荷が低減し、エネルギーの省力化を図ることができ
る。
As described above, when the refrigerant temperature rises, the specific volume of the refrigerant becomes large, that is, the density becomes small on the Moliere line X diagram shown in FIG. 9, and the refrigerant is insulated in a low density state. Since the compressor is compressed, the power load on the compressor is reduced, and energy can be saved.

【0055】すなわち、冷媒の過冷却(図9中c−d
間)を行い熱交換効率の向上を図るとともに、冷媒の過
熱度(図9中a‐b間)を抑制して、圧縮器2にかかる
動力負荷を低減する。また、内部熱交換器7を備えた冷
房装置は、内部熱交換器7を蒸発器6及び膨張弁5を一
体として設けているため、設置スペースを増大すること
なく前記効果を得ることができる。
That is, supercooling of the refrigerant (cd in FIG. 9)
) To improve the heat exchange efficiency, suppress the degree of superheat of the refrigerant (between a and b in FIG. 9), and reduce the power load on the compressor 2. Further, in the cooling device provided with the internal heat exchanger 7, since the internal heat exchanger 7 is provided integrally with the evaporator 6 and the expansion valve 5, the above-mentioned effect can be obtained without increasing the installation space.

【0056】また、本例の内部熱交換器7は、凝縮器3
及び受液器4から流出した冷媒が通流する第一の冷媒流
路100と、蒸発器6から流出した冷媒が通流する第二
の冷媒流路101が交互に隣接する構成としたため、少
ないスペースで所望の熱交換効率が得られる。
The internal heat exchanger 7 of the present embodiment is
Since the first refrigerant flow path 100 through which the refrigerant flowing out of the liquid receiver 4 flows and the second refrigerant flow path 101 through which the refrigerant flowing out of the evaporator 6 flows are alternately adjacent to each other, the number is small. Desired heat exchange efficiency can be obtained in the space.

【0057】本例の内部熱交換器7は、第一の冷媒流路
100及び第二の冷媒流路101が交互に隣接する断面
ハニカム状に形成したが、断面形状は、ハニカム形状に
限ったものではない。
In the internal heat exchanger 7 of this embodiment, the first refrigerant flow paths 100 and the second refrigerant flow paths 101 are formed in a honeycomb shape in which the cross sections are alternately adjacent to each other, but the cross-sectional shape is limited to the honeycomb shape. Not something.

【0058】[0058]

【発明の効果】以上説明したように、本発明は、、冷媒
を圧縮する圧縮器と、圧縮した前記冷媒を凝縮する凝縮
器と、凝縮した前記冷媒の断熱膨脹を行う膨脹弁と、膨
脹した前記冷媒の蒸化を行う蒸発器を備えた冷房装置に
おいて、前記冷房装置は、膨脹弁に流入する前の冷媒
と、蒸発器を通流した後の冷媒の熱交換器を行う内部熱
交換器を備え、前記内部熱交換器は、蒸発器と一体とし
て設けた冷房装置である。
As described above, the present invention provides a compressor for compressing a refrigerant, a condenser for condensing the compressed refrigerant, an expansion valve for performing adiabatic expansion of the condensed refrigerant, and an expanded valve. In a cooling device provided with an evaporator that evaporates the refrigerant, the cooling device is an internal heat exchanger that performs heat exchange between the refrigerant before flowing into an expansion valve and the refrigerant after flowing through the evaporator. Wherein the internal heat exchanger is a cooling device provided integrally with an evaporator.

【0059】このように、凝縮器を通流した後の冷媒
と、蒸発器を通流した後の冷媒の熱交換を行う内部熱交
換器を設けると、この内部熱交換器において、膨脹弁に
流入する前の冷媒の過冷却(サブクール)が行われ、冷
房装置の熱交換効率の向上を図ることが可能となる。
As described above, when the internal heat exchanger for exchanging heat between the refrigerant flowing through the condenser and the refrigerant flowing through the evaporator is provided, in this internal heat exchanger, the expansion valve is connected to the expansion valve. The supercooling (subcooling) of the refrigerant before flowing in is performed, and the heat exchange efficiency of the cooling device can be improved.

【0060】一方、蒸発器を通流した後の冷媒は、膨脹
弁に流入する前の冷媒と熱交換し、温度が上昇した状態
で、圧縮器に流入するため、例えば、モリエール線図上
においては、冷媒の比容積が上昇し、すなわち、冷媒の
密度が低下した状態で、圧縮器に流入することとなり、
冷媒の密度が低下した状態であると、冷媒を所定の高温
高圧とする圧縮器にかかる動力不可が低減し、エネルギ
ーの省力化を図ることが可能となる。
On the other hand, the refrigerant after flowing through the evaporator exchanges heat with the refrigerant before flowing into the expansion valve, and flows into the compressor in a state where the temperature is increased. Increases the specific volume of the refrigerant, that is, flows into the compressor in a state where the density of the refrigerant is reduced,
In a state where the density of the refrigerant is reduced, the impossibility of power to be applied to the compressor for setting the refrigerant to a predetermined high temperature and high pressure is reduced, and energy can be saved.

【0061】また、本例の内部熱交換器は、蒸発器と一
体に設けるため、冷房装置全体の設置スペースを拡大す
ることなく、前述のように熱交換効率の向上と圧縮器の
エネルギー消費の低減を図ることが可能となる。
Further, since the internal heat exchanger of this embodiment is provided integrally with the evaporator, the heat exchange efficiency is improved and the energy consumption of the compressor is reduced without increasing the installation space of the entire cooling device as described above. Reduction can be achieved.

【0062】従って、例えば、設置スペースの制限され
た車体等に本発明の冷房装置を搭載する場合であって
も、内部熱交換器を設けたことによる設置スペースの拡
大化を防ぎ、熱交換効率の向上とエネルギーの省力化を
図ることができる。内部熱交換器は、凝縮器及び受液器
から流出した冷媒が通流する第一の冷媒流路と、蒸発器
から流出した第二の冷媒流路が交互に隣接して通流する
ように構成する。例えば、複数の第一及び第二の冷媒流
路の断面形状がハニカム状となるように形成している。
このように、第一及び第二の冷媒流路が交互に隣接する
ように設けられていると、冷媒流路を形成するコアプレ
ートを介して第一及び第二の冷媒流路を通流する冷媒同
士の熱交換が行われるため、冷媒が過冷却され、さら
に、圧縮器に流入する前の冷媒の温度を上昇して、圧縮
器にかかる動力負荷を低減することができる。さらに、
冷媒流路の断面形状がハニカム状であると、第一及び第
二の冷媒流路を隣接して設ける場合に、設置スペースを
少なくすることができ、コアプレートを介して、第一の
冷媒流路を通流する冷媒と、第二の冷媒流路を通流する
冷媒の熱交換が効率よく行われるため、冷媒を所望の過
冷却の状態とすることができ、また、冷媒の過熱度を抑
制して、冷房装置全体の熱交換効率の向上を図ることが
可能となる。 このように、内部熱交換器の冷媒流路を
構成すると、余計な冷媒流路を形成することなく、温度
差の異なる冷媒同士で効率良く熱交換を行うことが可能
となるため、設置スペースを増大することなく、冷房サ
イクルの効率化とエネルギーの省力化を行うことができ
る。
Therefore, for example, even when the cooling device of the present invention is mounted on a vehicle body or the like having a limited installation space, the installation space is prevented from being enlarged by providing the internal heat exchanger, and the heat exchange efficiency is reduced. And energy saving can be achieved. The internal heat exchanger is configured such that the first refrigerant flow path through which the refrigerant flowing out of the condenser and the liquid receiver flows and the second refrigerant flow path flowing out of the evaporator flow alternately and adjacently. Constitute. For example, the plurality of first and second refrigerant flow paths are formed so that the cross-sectional shape becomes a honeycomb shape.
As described above, when the first and second refrigerant channels are provided so as to be alternately adjacent to each other, the first and second refrigerant channels flow through the core plate that forms the refrigerant channel. Since heat exchange between the refrigerants is performed, the refrigerant is supercooled, and the temperature of the refrigerant before flowing into the compressor is increased, so that the power load applied to the compressor can be reduced. further,
When the cross-sectional shape of the refrigerant flow path is a honeycomb shape, when the first and second refrigerant flow paths are provided adjacent to each other, the installation space can be reduced, and the first refrigerant flow is provided via the core plate. Since the heat exchange between the refrigerant flowing through the passage and the refrigerant flowing through the second refrigerant flow passage is efficiently performed, the refrigerant can be brought into a desired supercooled state, and the degree of superheat of the refrigerant can be reduced. In this way, it is possible to improve the heat exchange efficiency of the entire cooling device. In this manner, when the refrigerant flow path of the internal heat exchanger is configured, it is possible to efficiently perform heat exchange between the refrigerants having different temperature differences without forming an extra refrigerant flow path. Without increasing, it is possible to improve the efficiency of the cooling cycle and save energy.

【0063】[0063]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体例に係り、冷房装置の概略構成を
示す図である。
FIG. 1 is a diagram showing a schematic configuration of a cooling device according to a specific example of the present invention.

【図2】本発明の具体例に係り、内部熱交換器、膨張
弁、及び蒸発器を一体とした装置を示す図である。
FIG. 2 is a view showing a device in which an internal heat exchanger, an expansion valve, and an evaporator are integrated according to a specific example of the present invention.

【図3】本発明の具体例に係り、内部熱交換器、膨張
弁、及び蒸発器を一体とする場合の結合構造を示す分解
図である。
FIG. 3 is an exploded view showing a connection structure when an internal heat exchanger, an expansion valve, and an evaporator are integrated according to a specific example of the present invention.

【図4】本発明の具体例に係り、内部熱交換器を構成す
るコアプレートを示し、コアプレートの凹部間を通流す
る冷媒の通流方向を示した図である。
FIG. 4 is a view showing a core plate constituting an internal heat exchanger according to a specific example of the present invention and showing a flowing direction of a refrigerant flowing between recesses of the core plate.

【図5】本発明の具体例に係り、内部熱交換器を構成す
るコアプレートを示し、コアプレートの凸部間を通流す
る冷媒の通流方向を示した図である。
FIG. 5 is a view showing a core plate constituting an internal heat exchanger according to a specific example of the present invention, and showing a flowing direction of a refrigerant flowing between convex portions of the core plate.

【図6】本発明の具体例に係り、複数のコアプレートを
用いて形成した内部熱交換器の断面形状を示す斜視図で
ある。
FIG. 6 is a perspective view showing a cross-sectional shape of an internal heat exchanger formed using a plurality of core plates according to a specific example of the present invention.

【図7】本発明の具体例に係り、内部熱交換器の第一の
冷媒流路を示す断面図である。
FIG. 7 is a cross-sectional view showing a first refrigerant flow path of an internal heat exchanger according to a specific example of the present invention.

【図8】本発明の具体例に係り、内部熱交換器の第二の
冷媒流路を示す断面図である。
FIG. 8 is a cross-sectional view showing a second refrigerant flow path of the internal heat exchanger according to a specific example of the present invention.

【図9】本発明の具体例に係り、冷房装置を通流する冷
媒の状態を示す図である。
FIG. 9 is a diagram showing a state of a refrigerant flowing through a cooling device according to a specific example of the present invention.

【図10】従来例に係り、冷房装置の概略構成を示す図
である。
FIG. 10 is a diagram showing a schematic configuration of a cooling device according to a conventional example.

【図11】従来例に係り、図10に示す冷房装置を通流
する冷媒の状態変化を示す図である。
11 is a diagram showing a state change of a refrigerant flowing through the cooling device shown in FIG. 10 according to a conventional example.

【符号の説明】[Explanation of symbols]

1 冷房装置 2 圧縮器 3 凝縮器 4 受液器 5 膨脹弁 6 蒸発器 6a 連結部 7 内部熱交換器 7a 連結部 7b 連結部 8 配管 8a 配管 8b 配管 9 サブ熱交換器 10 蒸発器 11 コネクタ 20 冷房装置 21 圧縮器 22 凝縮器 23 受液器 24 膨張弁 25 蒸発器 26 配管 27 冷房装置 28 サブ熱交換器 61 チューブ 62 フィン 63 タンク 64 タンク 70 コアプレート 71 凹部 72 凸部 73a 連通孔 73b 連通孔 73c 連通孔 73d 連通孔 74 当接部 75 当接端部 76 当接端部 77 サイドプレート 78 サイドプレート 79 連通路 100 冷媒流路 101 冷媒流路 102 冷媒流路 103 冷媒流路 DESCRIPTION OF SYMBOLS 1 Cooling apparatus 2 Compressor 3 Condenser 4 Liquid receiver 5 Expansion valve 6 Evaporator 6a Connection part 7 Internal heat exchanger 7a Connection part 7b Connection part 8 Pipe 8a Pipe 8b Pipe 9 Sub heat exchanger 10 Evaporator 11 Connector 20 Cooling device 21 Compressor 22 Condenser 23 Receiver 24 Expansion valve 25 Evaporator 26 Piping 27 Cooling device 28 Sub heat exchanger 61 Tube 62 Fin 63 Tank 64 Tank 70 Core plate 71 Concave portion 72 Convex portion 73a Communication hole 73b Communication hole 73c communication hole 73d communication hole 74 contact part 75 contact end part 76 contact end part 77 side plate 78 side plate 79 communication path 100 refrigerant flow path 101 refrigerant flow path 102 refrigerant flow path 103 refrigerant flow path

フロントページの続き (72)発明者 桜田 宗夫 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 加藤 宗一 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 西下 邦彦 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内Continued on the front page (72) Inventor Muneo Sakurada 39, Higashihara, Chiyo-ji, Odai-gun, Osato-gun, Saitama Pref. (72) Kunihiko Nishishita 39, Higashihara, Chiyo, Odai-gun, Osato-gun, Saitama

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する圧縮器と、圧縮した前記
冷媒を凝縮する凝縮器と、凝縮した前記冷媒の断熱膨脹
を行う膨脹弁と、膨脹した前記冷媒の蒸化を行う蒸発器
を備えた冷房装置において、 前記冷房装置は、膨脹弁に流入する前の冷媒と、蒸発器
を通流した後の冷媒の熱交換を行う内部熱交換器を備
え、 前記内部熱交換器は、蒸発器と一体として設けたことを
特徴とする冷房装置。
1. A compressor for compressing a refrigerant, a condenser for condensing the compressed refrigerant, an expansion valve for performing adiabatic expansion of the condensed refrigerant, and an evaporator for evaporating the expanded refrigerant. In the cooling device, the cooling device includes an internal heat exchanger that exchanges heat between the refrigerant before flowing into the expansion valve and the refrigerant after flowing through the evaporator, and the internal heat exchanger includes an evaporator. A cooling device characterized by being provided integrally with the cooling device.
【請求項2】 前記内部熱交換器は、膨脹弁に流入する
前の冷媒が通流する複数の第一の流路と、蒸発器を通流
した後の冷媒が通流する複数の第二の流路を備え、前記
第一の流路と第二の流路が交互に隣接した位置となるよ
うに流路を形成したことを特徴とする前記請求項1記載
の冷房装置。
2. The internal heat exchanger includes a plurality of first flow paths through which the refrigerant before flowing into the expansion valve flows, and a plurality of second flow paths through which the refrigerant flows through the evaporator. 2. The cooling device according to claim 1, wherein the flow path is formed such that the first flow path and the second flow path are alternately adjacent to each other. 3.
【請求項3】 前記内部熱交換器は、複数の冷媒流路を
構成する複数のコアプレートを用いて形成するものであ
って、 複数のコアプレート同士を接合して形成した第一及び第
二の冷媒流路は、その横断面形状がハニカム状であるこ
とを特徴とする前記請求項1又は2いずれか記載の冷房
装置。
3. The internal heat exchanger is formed by using a plurality of core plates constituting a plurality of refrigerant flow paths, and is formed by joining a plurality of core plates to each other. 3. The cooling device according to claim 1, wherein a cross section of the refrigerant flow path has a honeycomb shape. 4.
JP11189953A 1999-07-05 1999-07-05 Cooler Pending JP2001021234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11189953A JP2001021234A (en) 1999-07-05 1999-07-05 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11189953A JP2001021234A (en) 1999-07-05 1999-07-05 Cooler

Publications (1)

Publication Number Publication Date
JP2001021234A true JP2001021234A (en) 2001-01-26

Family

ID=16249969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11189953A Pending JP2001021234A (en) 1999-07-05 1999-07-05 Cooler

Country Status (1)

Country Link
JP (1) JP2001021234A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085676A1 (en) * 2007-01-03 2008-07-17 Alfa Laval Corporate Ab Plate heat exchanger with auxiliary fluid circuit
CN100434811C (en) * 2003-06-24 2008-11-19 乐金电子(天津)电器有限公司 Integrated air conditioner
JP2009024899A (en) * 2007-07-17 2009-02-05 Showa Denko Kk Evaporator
JP2009110916A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Evaporator for fuel cell system
WO2009062739A1 (en) * 2007-11-14 2009-05-22 Swep International Ab Suction gas heat exchanger
WO2009068547A1 (en) * 2007-11-29 2009-06-04 Valeo Systemes Thermiques Air-conditioning circuit condenser with an undercooling part
EP2072936A1 (en) * 2007-12-20 2009-06-24 Valeo Systèmes Thermiques Unitary heat exchanger for air conditioning circuit
WO2010060657A1 (en) * 2008-11-26 2010-06-03 Valeo Systemes Thermiques Condenser for air-conditioning circuit with integrated internal exchanger
JP2011214826A (en) * 2010-03-31 2011-10-27 Denso Corp Evaporator unit
DE102011014410A1 (en) 2010-03-26 2011-12-22 Denso Corporation Vedampfereinheit
WO2016011090A1 (en) * 2014-07-14 2016-01-21 Toma Hani Evaporator with heat exchange
JP2017226295A (en) * 2016-06-21 2017-12-28 株式会社ヴァレオジャパン Internal heat exchanger and refrigeration cycle of air conditioner for vehicle including the same
JP2019174107A (en) * 2019-06-07 2019-10-10 株式会社ヴァレオジャパン Internal heat exchanger and refrigeration cycle of vehicular air conditioning device comprising the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434811C (en) * 2003-06-24 2008-11-19 乐金电子(天津)电器有限公司 Integrated air conditioner
WO2008085676A1 (en) * 2007-01-03 2008-07-17 Alfa Laval Corporate Ab Plate heat exchanger with auxiliary fluid circuit
JP2009024899A (en) * 2007-07-17 2009-02-05 Showa Denko Kk Evaporator
JP2009110916A (en) * 2007-10-30 2009-05-21 Samsung Sdi Co Ltd Evaporator for fuel cell system
WO2009062739A1 (en) * 2007-11-14 2009-05-22 Swep International Ab Suction gas heat exchanger
WO2009068547A1 (en) * 2007-11-29 2009-06-04 Valeo Systemes Thermiques Air-conditioning circuit condenser with an undercooling part
FR2924490A1 (en) * 2007-11-29 2009-06-05 Valeo Systemes Thermiques CONDENSER FOR AIR CONDITIONING CIRCUIT WITH SUB-COOLING PART
FR2925664A1 (en) * 2007-12-20 2009-06-26 Valeo Systemes Thermiques UNITARY HEAT EXCHANGER FOR AN AIR CONDITIONING CIRCUIT
EP2072936A1 (en) * 2007-12-20 2009-06-24 Valeo Systèmes Thermiques Unitary heat exchanger for air conditioning circuit
WO2010060657A1 (en) * 2008-11-26 2010-06-03 Valeo Systemes Thermiques Condenser for air-conditioning circuit with integrated internal exchanger
DE102011014410A1 (en) 2010-03-26 2011-12-22 Denso Corporation Vedampfereinheit
JP2011214826A (en) * 2010-03-31 2011-10-27 Denso Corp Evaporator unit
US8931305B2 (en) 2010-03-31 2015-01-13 Denso International America, Inc. Evaporator unit
WO2016011090A1 (en) * 2014-07-14 2016-01-21 Toma Hani Evaporator with heat exchange
US9568229B2 (en) 2014-07-14 2017-02-14 Hani Toma Evaporator with heat exchange
JP2017226295A (en) * 2016-06-21 2017-12-28 株式会社ヴァレオジャパン Internal heat exchanger and refrigeration cycle of air conditioner for vehicle including the same
JP2019174107A (en) * 2019-06-07 2019-10-10 株式会社ヴァレオジャパン Internal heat exchanger and refrigeration cycle of vehicular air conditioning device comprising the same

Similar Documents

Publication Publication Date Title
RU2271503C2 (en) Combination of evaporator (accumulator) and suction loop for heater radiator (variants)
JPH11316093A (en) Liquid-cooled tow-phase heat exchanger
JP2001021234A (en) Cooler
KR101755456B1 (en) Heat exchanger
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
JP2006284133A (en) Heat exchanger
JPH0814702A (en) Laminate type evaporator
JP4316200B2 (en) Air conditioner for vehicles
KR100549063B1 (en) Refrigerator
JPH09318195A (en) Laminated evaporator
JP2004183960A (en) Heat exchanger
US11231233B2 (en) Double-pipe heat exchanger including integrated connector
JP2002228299A (en) Composite heat exchanger
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
JPH03195872A (en) Heat exchanger
JP2001012811A (en) Cooler
JP2002081886A (en) Juxtaposed integral heat exchanger
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JPH05157401A (en) Heat exchanger
JPH05157402A (en) Heat exchanger
JP2000346469A (en) Cooler
JP2004177006A (en) Internal heat exchanger
KR102588981B1 (en) Integrated plate-type heat exchanger
KR200168000Y1 (en) Evaporator for room airconditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080528