JP2001020276A - Ground condition detecting apparatus for use in jet-type complex agitating method - Google Patents

Ground condition detecting apparatus for use in jet-type complex agitating method

Info

Publication number
JP2001020276A
JP2001020276A JP11193758A JP19375899A JP2001020276A JP 2001020276 A JP2001020276 A JP 2001020276A JP 11193758 A JP11193758 A JP 11193758A JP 19375899 A JP19375899 A JP 19375899A JP 2001020276 A JP2001020276 A JP 2001020276A
Authority
JP
Japan
Prior art keywords
ground
jet
piston
cylinder
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11193758A
Other languages
Japanese (ja)
Other versions
JP3595735B2 (en
Inventor
Satoshi Matsuzawa
諭 松沢
Toshihiro Deguchi
敏博 出口
Osamu Ishida
修 石田
Akihiro Miyoshi
朗弘 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Construction Co Ltd filed Critical Fudo Construction Co Ltd
Priority to JP19375899A priority Critical patent/JP3595735B2/en
Publication of JP2001020276A publication Critical patent/JP2001020276A/en
Application granted granted Critical
Publication of JP3595735B2 publication Critical patent/JP3595735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure an advanced distance of the front end of high-pressure jet under the ground, and to confirm the shape and structure of a hardened structure which has been executed, in a jet-type complex agitating method in which the high-pressure jet containing a hardener is injected from a location near an agitating blade edge into the ground, and then the hardener and ground soil are mixed and agitated to carry out soil improvement. SOLUTION: A radius measuring means formed of a cylinder 4 and a piston 5 is arranged in parallel with one of agitating blades 2. After formation of an area in which high-pressure jet 10 containing a hardener, and ground soil have been mixed and agitated, the agitating blade 2 having the radius measuring means arranged in parallel therewith is moved to the area, and the cylinder 4 and the piston 5 are extended under the ground in a radial direction by controlling oil pressure on the ground. At this time, based on fluctuations of reaction from the ground soil received by the piston 5 (determined based on a change in oil pressure) and measurement of a front end location 6 of the piston 5, an advanced distance of the front end of the high-pressure jet 10 under the ground is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本願発明は、噴流式複合撹拌
工法における高圧ジェット(固化材を含む)噴流の地盤
中における到達距離の計測を含む地盤状況検出装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground condition detecting apparatus including a measurement of a reaching distance of a high-pressure jet (including a solidified material) jet in the ground in a jet-type combined stirring method.

【0002】[0002]

【従来の技術】機械式撹拌工法に加えて噴射式撹拌工法
を併用し地盤中に固化材を供給・混合して固化構造物を
造成し、地盤強度を改良する手段は公知である。
2. Description of the Related Art A means for improving the ground strength by supplying and mixing a solidified material into the ground to form a solidified structure by using a jet stirring method in addition to the mechanical stirring method is known.

【0003】この種の工法は、回転掘削軸に取付けた撹
拌翼を回して地盤を撹拌すると共に、前記撹拌翼の基部
から翼端にわたる所定の個所に開口したノズルから流体
を地盤中に供給またはジェット噴射して固化材と地盤土
とを混合し、その範囲内で地中に固化構造物を造成する
ものであるが、その際、固化材の必要量が供給され、そ
れらが均等に地盤土と混合していることを前提とし地盤
中に造成される固化構造物の領域を確認しようとする場
合に少なくとも、撹拌翼の回転軌跡の範囲を固化構造物
の外縁位置とすることの保証は可能としても、外向き高
圧ジェット噴流の地盤中における到達距離は、地盤の土
質、土性(強度、含水比、間隙比)などに関係して変動
するために、従来、固化材の到達距離を保証するのに、
安全率を見込んで必要以上の高圧をジェット流体に加え
るとか、固化材の供給量を多めに確保するなどの手段を
講じていたので、経済的施工が困難であった。
[0003] In this type of construction method, a ground is stirred by rotating a stirring blade attached to a rotary excavation shaft, and fluid is supplied into the ground from a nozzle opened at a predetermined location from the base of the stirring blade to the blade tip. A jet structure is used to mix the solidified material and the ground soil by jetting and create a solidified structure in the ground within the range.At this time, the required amount of the solidified material is supplied and they are evenly distributed. It is possible to at least guarantee that the range of the rotation trajectory of the stirring blade is the outer edge position of the solidified structure when trying to confirm the area of the solidified structure created in the ground on the assumption that it is mixed with Even in the past, the reach of the outward high-pressure jet jet in the ground fluctuates depending on the soil properties, soil properties (strength, water content, void ratio), etc. To do
In view of the safety factor, measures such as applying an unnecessarily high pressure to the jet fluid or securing a large supply of the solidifying material were taken, so that economic construction was difficult.

【0004】そこで、地盤中でのジェット噴流の到達距
離を確実に制御できるようにし、上記の不都合を解決す
る工法(特公平7−30551号工法参照)が提案され
た。すなわち、掘削回転軸に対して軸方向に少なくとも
一対の撹拌翼を設け、それぞれの撹拌翼端に設けた外向
きノズルからの固化材を含むジェット噴流を撹拌翼端よ
りも外側の地盤中で相互に交差するよう設定し、当該個
所にジェット噴流のエネルギーを集中させることにより
前記噴流の地盤中における到達距離を特定して、固化材
の供給、混合範囲を限定し、施工される固化構造物の外
周縁を確定するようにした固化構造物施工制御工法が、
それである。
[0004] Therefore, a method has been proposed (see Japanese Patent Publication No. Hei 7-30551) which can surely control the reach of the jet jet in the ground and solves the above-mentioned disadvantages. That is, at least one pair of stirring blades is provided in the axial direction with respect to the excavation rotation axis, and jet jets containing solidified material from the outward nozzles provided at the respective stirring blade ends are mutually crossed in the ground outside the stirring blade ends. Set to intersect, specify the reach of the jet in the ground by concentrating the energy of the jet jet at the location, supply of solidification material, limit the mixing range, the solidification structure to be constructed The solidified structure construction control method that determines the outer peripheral edge,
That is it.

【0005】当該工法によれば、それぞれ、撹拌翼に設
けた外向きノズルのジェット噴流の向きを調整してその
交差位置を特定すれば、地盤中のジェット噴流の到達距
離が定まり、掘削回転軸に対し所望半径を有する固化構
造物の経済的施工が可能になるとされている。
[0005] According to the construction method, if the direction of the jet jet of the outward nozzle provided on the stirring blade is adjusted and its intersection position is specified, the reach of the jet jet in the ground is determined, and the excavation rotation axis is determined. It is said that economical construction of a solidified structure having a desired radius becomes possible.

【0006】ところで、上記工法により施工した場合、
固化材の供給条件を一定に保持したとしても、実際に地
盤中のどの辺りまでの距離に固化材が到達して固化構造
物が形成されるかについては、地盤の土質、土性の不特
定な条件下においては、確からしいことは判っても確か
な処は見透かすことができない。小規模の実験では、所
要条件の許における施工結果を地盤中から掘り起こし、
固化構造物の形状・構造を実測して設計諸条件と対比す
ることもできるが、そのような実測は、対象物が大掛り
になるにつれて多額の経費が必要になる。まして、通常
施工される規模の場合では、形成される固化構造物の実
測は、実際上、不可能に近い。
By the way, when constructed by the above method,
Even if the supply conditions of the solidified material are kept constant, it is not specified how far in the ground the solidified material actually reaches and the solidified structure is formed. Under unusual conditions, it is possible to see the certainty but not to see the certainty. In a small-scale experiment, the construction results under the required conditions were excavated from the ground,
Although the shape and structure of the solidified structure can be measured and compared with design conditions, such measurement requires a large amount of expense as the object becomes large. Furthermore, in the case of a scale that is usually constructed, actual measurement of a solidified structure to be formed is practically impossible.

【0007】また、施工中に、一々、対象物を掘り出し
て、実測・確認するなどできることではない。とは言う
ものの、上記工法において、固化材を含むジェット噴流
の地盤中における到達距離を具体的に検出したいという
要望は、施工依頼主は勿論のこと、業者側からも施工管
理上、屡々、なされている。すなわち、ジェット噴流の
地盤中での具体的到達距離が判れば、それに応じた固化
材の供給圧力、供給量の制御が可能になるからである。
さらに、既設の地下構造物(固化構造物を含む)に近接
して新たに地盤強化を行なう場合、既設の地下構造物と
新規施工の構造物の領域との間に隙間が無く、しかし、
両者間が近接し過ぎないようしたい、もしくは必要以上
に近接することを要しないとする要求は、経済的施工の
上から、屡々、要望されている。
[0007] Further, it is not possible to excavate an object one by one during the construction, and to actually measure and confirm the object. Nevertheless, in the above-mentioned construction method, a request to specifically detect the reaching distance of the jet jet containing the solidified material in the ground is often made not only by the construction requester but also by the contractor in terms of construction management. ing. That is, if the specific reaching distance of the jet jet in the ground is known, it is possible to control the supply pressure and the supply amount of the solidified material in accordance therewith.
Furthermore, when newly strengthening the ground in the vicinity of the existing underground structure (including the solidified structure), there is no gap between the existing underground structure and the area of the newly constructed structure,
A requirement that the two should not be too close to each other or that they should not be unnecessarily close to each other is often demanded from the viewpoint of economical construction.

【0008】[0008]

【発明が解決しようとする課題】そこで、本願発明は、
従来手段に内在する上記諸問題を解消すると共に、この
種工法に寄せられた従来からの要望を可及的に叶え、ま
た、施工中、必要に応じ、ジェット噴流の地盤中におけ
る到達距離もしくはそれに近い位置をタイムラグ無しに
測定して、地上にあって施工管理に必要な情報を採取す
ることができる噴流式複合撹拌工法における地盤状況検
出(ジェット噴流の到達距離計測を含む)装置を提供す
ることを目的とする。また、地盤中の施工状態をビジュ
アルに表示して、具体的に固化構造物の形状・構造を識
別し、施工の精度、確実性を確認させることにある。も
しくは、既設の地下構造物に対する新規施工領域の位置
関係を検出する手段を提供しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention
In addition to solving the above-mentioned problems inherent in the conventional means, the conventional request sent to this type of construction method is fulfilled as much as possible, and, during construction, if necessary, the reach distance of the jet jet in the ground or To provide a ground condition detection (including measurement of the distance of a jet jet) device in a jet-type combined stirring method capable of measuring a close position without a time lag and collecting information necessary for construction management on the ground. With the goal. Another object of the present invention is to visually display the construction state in the ground, specifically identify the shape and structure of the solidified structure, and confirm the accuracy and reliability of the construction. Alternatively, it is intended to provide means for detecting a positional relationship of a new construction area with respect to an existing underground structure.

【0009】[0009]

【課題を解決するための手段】本願発明は、上記目的を
達成するため、次に述べるとおりの各構成要件からな
る。 (1)回転掘削軸に対し放射方向に取付けた機械式撹拌
翼と前記撹拌翼端付近に外向きに設置したジェットノズ
ルとよりなり、掘削軸を回転させると共に、前記ジェッ
トノズルから地盤中に噴射する高圧ジェット流の先端を
前記撹拌翼の撹拌領域よりも外側の所定位置まで到達さ
せて、固化材を地盤中に供給・混合するようにした噴流
式複合撹拌・掘削装置において、前記撹拌翼の一つに、
放射方向に伸縮するシリンダー・ピストンを並設し、前
記シリンダー・ピストンの前端が、少なくとも、所要距
離もしくは高圧ジェット流の先端の地盤中における到達
点の回転軌跡を超えて伸び、前記シリンダー・ピストン
を移動させる圧力流体の流体圧を計測してシリンダー・
ピストンの前端が対向する地盤土の状况変化を、シリン
ダー・ピストンの変位に連動するワイヤの移動またはシ
リンダー・ピストンに供給する圧力流体の供給容量によ
り、地盤中におけるシリンダー・ピストンの前端位置の
回転掘削軸からの半径長さを計測できるようにした、噴
流式複合撹拌工法における地盤状況検出装置。
Means for Solving the Problems In order to achieve the above object, the present invention comprises the following constituent elements. (1) Consisting of a mechanical stirring blade mounted radially with respect to the rotary excavation axis and a jet nozzle installed outwardly near the end of the stirring blade, rotating the excavation axis and injecting into the ground from the jet nozzle. In the jet-type combined stirring and excavating apparatus in which the tip of the high-pressure jet stream to reach a predetermined position outside the stirring area of the stirring blade to supply and mix the solidified material into the ground, For one thing,
A cylinder piston that expands and contracts in the radial direction is juxtaposed, and a front end of the cylinder piston extends at least over a required distance or a rotation locus of an arrival point in the ground at the tip of the high-pressure jet stream, and the cylinder piston is extended. Measure the fluid pressure of the pressure fluid to be moved and
Rotational excavation of the position of the front end of the cylinder / piston in the ground based on the movement of the wire linked to the displacement of the cylinder / piston or the supply capacity of the pressurized fluid supplied to the cylinder / piston, based on the situation change of the ground soil where the front end of the piston faces. A ground condition detection device in the jet-type combined stirring method that can measure the radius length from the shaft.

【0010】(2)回転掘削軸に対し、軸方向に離して
少なくとも一対の放射方向に取付けた機械式撹拌翼と前
記撹拌翼端付近にそれぞれ外向きに設置したジェットノ
ズルとよりなり、前記各ジェットノズルから噴射する2
つの高圧ジェット流を、前記撹拌翼の撹拌領域よりも外
側の地盤中の所定位置で交差させて、固化材を地中に供
給・混合するようにした噴流式複合撹拌・掘削装置にお
いて、前記撹拌翼の一つに、放射方向に伸縮するシリン
ダー・ピストンを並設し、前記シリンダー・ピストンの
前端が、少なくとも、前記各高圧ジェット流の地盤中の
交差点の回転軌跡を超えて伸び、シリンダー・ピストン
の前端が対向する地盤土の状况変化を計測できるように
した、上記第(1)項記載の噴流式複合撹拌工法におけ
る地盤状況検出装置。
[0010] (2) At least one pair of mechanical stirring blades are installed in at least a pair of radial directions apart from each other in the axial direction with respect to the rotary excavation shaft, and the jet nozzles are respectively installed outwardly near the ends of the stirring blades. Inject from jet nozzle 2
In a jet-type combined stirring / digging apparatus in which two high-pressure jet streams intersect at a predetermined position in the ground outside the stirring area of the stirring blade to supply and mix the solidified material into the ground, On one of the wings, a radially extending and retractable cylinder / piston is juxtaposed, and the front end of the cylinder / piston extends at least beyond the rotation locus of an intersection in the ground of each of the high-pressure jet flows, and the cylinder / piston (1) The ground condition detecting device in the jet-type combined stirring method according to the above (1), wherein a change in the condition of the ground soil facing the front end can be measured.

【0011】(3)シリンダー・ピストンは、撹拌翼の
掘削回転方向に対し追従側か、撹拌翼内に取り付けたこ
とより成る上記第(1)または第(2)項記載の噴流式
複合撹拌工法における地盤状況検出装置。 (4)シリンダー・ピストンは、複動式であって、テレ
スコピック構造を備え、最も縮めたときの長さは、一つ
の撹拌翼の放射方向長さとほぼ、同一か、それよりも僅
かに短いことより成る上記第(1)乃至第(3)項記載
のうちの何れか一項記載の噴流式複合撹拌工法における
地盤状況検出装置。
(3) The jet type combined stirring method according to the above (1) or (2), wherein the cylinder / piston is mounted on the side following the excavation rotation direction of the stirring blade or inside the stirring blade. Ground condition detection device. (4) The cylinder / piston is double-acting and has a telescopic structure, and the length when fully retracted is almost the same as or slightly shorter than the radial length of one stirring blade. The ground condition detecting apparatus in the jet-type combined stirring method according to any one of the above (1) to (3), comprising:

【0012】[0012]

【発明の実施の形態】放射方向に取付けた機械式撹拌翼
と、少なくとも前記撹拌翼端付近の外向き方向に設けた
高圧ジェットノズルとを備えた掘削軸を回転して地盤
中、所望深さまで掘進しながら前記撹拌翼により地盤を
撹拌する一方、掘削軸を逆転させながら軸方向に移動さ
せて、所要深さにわたり高圧ジェットノズル等から流体
を地盤中に供給、噴射して固化材などを地盤土と混合さ
せ、機械式撹拌翼の及ぶ領域又は高圧ジェット流が到達
する領域もしくは機械式撹拌翼の及ぶ領域と高圧ジェッ
ト流が到達する領域の地盤中に固化構造物を造成するよ
うにした地盤の改良工法において、
DETAILED DESCRIPTION OF THE INVENTION A drill shaft having a radially mounted mechanical stirring blade and a high pressure jet nozzle provided at least in the outward direction near the stirring blade end is rotated to reach a desired depth in the ground. While the ground is stirred by the stirring blades while excavating, the excavation axis is moved in the axial direction while reversing, and a fluid is supplied to the ground from a high-pressure jet nozzle or the like over a required depth, and the solidified material is ground by spraying. Ground mixed with soil to form a solidified structure in the area where the mechanical stirring blades reach or where the high pressure jet flow reaches or where the mechanical stirring blades reach and the high pressure jet flow reach In the improvement method of

【0013】高圧ジェット噴流により地盤に水又は固化
材を供給・撹拌した後に、シリンダー・ピストンが取り
付けられた撹拌翼を上記処理済み地盤内の所望深さにセ
ットして、回転位相角を決めて停止し、前記シリンダー
・ピストンに作動流体を供給して伸長させるようにすれ
ば、高圧ジェットノズルより水又は固化材を地盤中に噴
射、混合させた領域はその地盤の土質、土性が、前記高
圧ジェット流の先端が到達し得なかった先の地盤土とは
物理的な性質が異なるため、当該領域の境界辺りで地盤
に対向するピストンの前端の移動抵抗が変動するので、
そのときのピストン前端の掘削軸心からの位置を計測す
ることにより、その深さにおける前記回転位相角方向の
高圧ジェット流の地盤中の到達距離、すなわち、固化構
造物などの半径を具体的に測定することができ、地上に
おいて時間差なしで施工管理の資料を入手することが可
能になる。
After supplying or agitating water or solidified material to the ground by means of a high-pressure jet jet, a stirring blade provided with a cylinder / piston is set at a desired depth in the treated ground to determine a rotation phase angle. If it is stopped and the working fluid is supplied to the cylinder / piston to extend it, water or solidified material is injected into the ground from a high-pressure jet nozzle, and the mixed and mixed region has the soil characteristics and soil properties of the ground, Since the physical properties are different from the ground soil where the tip of the high-pressure jet flow could not reach, the movement resistance of the front end of the piston facing the ground fluctuates around the boundary of the area,
By measuring the position of the piston front end from the excavation axis at that time, the reaching distance in the ground of the high-pressure jet flow in the rotational phase angle direction at that depth, that is, the radius of the solidified structure or the like is concretely determined. Measurement can be performed, and materials for construction management can be obtained on the ground without time lag.

【0014】上述の計測は、必要に応じ掘削軸を間歇的
に回転させて、高圧ジェット流先端の各方向角の地盤中
の到達距離を計測し、また、掘削軸を軸方向に上下させ
て、地盤の所望深さに対し、上記同様、所要回数、計測
を実施するようにしている。また、既設の固化構造物に
隣接して新規に施工する場合は、高圧ジェット流の先端
が既設の構造物の外周縁に到達しているか否か、新たな
固化構造物の周縁が既設の固化構造物に接続して設置さ
れているか、間隙があつて良いものかを確かめることが
できる。次に、本願発明の好ましい一実施例を図面に沿
って説明する。
In the above-described measurement, the excavation axis is rotated intermittently as necessary to measure the reaching distance of the tip of the high-pressure jet in each direction angle in the ground, and the excavation axis is moved up and down in the axial direction. For the desired depth of the ground, the required number of times and measurement are performed in the same manner as described above. In addition, when constructing a new structure adjacent to the existing solidified structure, check whether the tip of the high-pressure jet flow has reached the outer periphery of the existing structure, and check whether the periphery of the new solidified structure is the existing solidified structure. It can be checked whether it is installed in connection with the structure or has a gap. Next, a preferred embodiment of the present invention will be described with reference to the drawings.

【0015】[0015]

【実施例】図1は、本願発明装置のシリンダー・ピスト
ンを掘削回転方向追従側に取付けた撹拌翼を含む噴流式
複合撹拌工法における地盤状況検出(ジェット噴流の到
達距離計測を含む)装置の撹拌翼の一実施例の斜視図、
図2は、一部を切り欠いて示す噴流式複合撹拌工法にお
ける地盤状況検出装置の要部の側面図及び平面図、図3
は、前記装置の要部を構成するシリンダー・ピストンの
断面及び作動を示す図である。図1中、回転掘削軸1に
対し、軸対称に、かつ放射方向に設けた撹拌翼2におい
て、掘削進行方向に対して追従側翼縁3に沿い、かつ、
撹拌翼2の長手方向に並行してシリンダー・ピストン
4,5を取付けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the agitation of a ground condition detection (including the measurement of the reach of a jet jet) device in a jet type combined stirring method including a stirring blade having a cylinder / piston mounted on a side that follows the excavation rotation direction in the device of the present invention. Perspective view of one embodiment of a wing,
FIG. 2 is a side view and a plan view of a main part of a ground condition detecting device in a jet-type combined stirring method shown partially cut away,
FIG. 2 is a diagram showing a cross section and operation of a cylinder / piston constituting a main part of the device. In FIG. 1, a stirring blade 2 provided axially symmetrically with respect to a rotary excavation shaft 1 and in a radial direction, along a trailing-side blade edge 3 with respect to the excavation traveling direction, and
Cylinder pistons 4 and 5 are attached in parallel with the longitudinal direction of the stirring blade 2.

【0016】図で、左回り(掘進方向)回転の前記撹拌
翼2の進行方向側前面は、下側が切り刃の形状に形成さ
れ、撹拌翼2が地盤中を左回りに回転すると、回転掘削
軸1を下方に移動させる力、掘進力が生じ、地盤土を撹
拌する。前記翼2の掘削前進方向縁に対して追従側翼縁
3は、上側を切り刃状に形成して、撹拌翼2が逆転(右
回り)したときには、回転掘削軸1を上方に移動させる
力、したがって地盤から抜き出す力を生じ、地盤土を撹
拌する。シリンダー・ピストン(半径測長又は地盤状況
検出手段)4,5は、回転掘削軸1の掘削回転の際の、
撹拌翼2の進行方向縁に対し追従側の翼縁3に沿い、翼
2の長手方向に並行して取り付けて、掘削軸1の掘進動
作のときに可及的に地盤から受ける抵抗が少なくなるよ
うに、また、撹拌翼2の掘削機能を妨害することが無い
ようにシリンダー4を介して撹拌翼2に固定している。
In the drawing, the front of the agitating blade 2 rotating counterclockwise (in the direction of excavation) in the traveling direction is formed in the shape of a cutting blade on the lower side. When the agitating blade 2 rotates counterclockwise in the ground, rotary excavation is performed. A force for moving the shaft 1 downward and a digging force are generated to stir the ground soil. The trailing-side wing edge 3 with respect to the digging advance direction edge of the wing 2 is formed with a cutting edge on the upper side, and when the stirring blade 2 rotates in the reverse direction (clockwise), the force for moving the rotary excavation shaft 1 upward, Therefore, a force for pulling out from the ground is generated, and the ground soil is agitated. The cylinder / piston (radius length measuring or ground condition detecting means) 4 and 5 are used for excavation rotation of the rotary excavation shaft 1.
Attached along the blade edge 3 on the trailing side with respect to the advancing edge of the stirring blade 2 and in parallel with the longitudinal direction of the blade 2, the resistance received from the ground as much as possible during the excavating operation of the excavating shaft 1 is reduced. As described above, it is fixed to the stirring blade 2 via the cylinder 4 so as not to hinder the excavation function of the stirring blade 2.

【0017】図は、半径測長手段4,5を縮小し最短長
さにした場合を示しており、半径測長手段4,5の全長
と撹拌翼2の放射方向長さ(片翼)とは、ほぼ同一で、
少なくとも、ピストン5の伸長側前端は、撹拌翼2の放
射方向端よりも僅かに内側、すなわち、回転掘削軸1寄
りに配置されていることも同趣旨に基づく。ピストン5
の伸長側前端は、上記半径測長手段4,5が放射方向に
伸びるときに地盤の状況に応じて所要の抵抗(反力)を
受けるように、その伸長(行程)方向に対し直角な面6
を備えている。シリンダー4に連結された配管7〜9
は、半径測長手段4,5を作動させる圧力流体の供給、
排出のための管路で、図2(a),(b)に示すよう
に、回転掘削軸1の外周面に沿って上部に延び、掘削軸
1に設けたスイベルジョイント11に連結している。
The figure shows a case where the radius length measuring means 4 and 5 are reduced to the shortest length. The total length of the radius length measuring means 4 and 5 and the radial length of the stirring blade 2 (single blade) are shown. Are almost identical,
At least the extension side front end of the piston 5 is disposed slightly inside the radial end of the stirring blade 2, that is, disposed closer to the rotary excavation axis 1. Piston 5
The extension-side front end of the surface is perpendicular to the extension (stroke) direction so that the radius measuring means 4 and 5 receive a required resistance (reaction force) according to the condition of the ground when extending in the radial direction. 6
It has. Piping 7 to 9 connected to cylinder 4
Is a supply of a pressurized fluid for operating the radius measuring means 4 and 5,
2 (a) and 2 (b), it extends upward along the outer peripheral surface of the rotary excavation shaft 1 and is connected to a swivel joint 11 provided on the excavation shaft 1. .

【0018】地表に設置した油圧ユニット12、流量計
13及び油圧ホース14〜16を介して前記スイベルジ
ョイント11に連結された管路を通して所定の圧油を半
径測長手段4,5に供給・排出し、その動作を制御す
る。半径測長手段4,5を作動させたときの当該圧力流
体の供給量又は排出量及び圧力を測定することにより、
そのときのピストン5の伸長側端面6の地盤中の位置及
び地盤土の状況を測定することができる。なお、上述の
ピストン5の伸長側端面6の地盤中の位置については、
機械的手段、たとえば、ピストン端面6に連結したワィ
ヤーを回転掘削軸1に沿って地表まで延出させて当該ワ
ィヤー部分に目盛を施しておけば、ピストン5の移動に
応じて引き込まれるワィヤーの目盛を計測し、伸長側端
面6位置が掘削軸1の軸心からどれ程離れているかを地
表から推測することができる。
A predetermined pressure oil is supplied to and discharged from the radius measuring means 4 and 5 through a pipeline connected to the swivel joint 11 via a hydraulic unit 12, a flow meter 13 and hydraulic hoses 14 to 16 installed on the ground surface. And control its operation. By measuring the supply amount or discharge amount and the pressure of the pressure fluid when the radius measuring means 4 and 5 are operated,
At this time, the position of the extension side end face 6 of the piston 5 in the ground and the state of the ground soil can be measured. In addition, about the position in the ground of the extension side end surface 6 of the piston 5 mentioned above,
If mechanical means, for example, a wire connected to the piston end face 6 is extended along the rotary excavation axis 1 to the ground surface and the wire portion is graduated, the graduation of the wire drawn in with the movement of the piston 5 can be obtained. Can be estimated from the ground surface how far the position of the extension-side end face 6 is away from the axis of the excavation shaft 1.

【0019】図1に戻って、撹拌翼2に取り付けた半径
測長手段4,5は、回転掘削軸1を逆転させたときには
前記翼2の前進方向縁に配置されていることになり、撹
拌地盤からの摩擦抵抗(反力)を受けることを免れない
が、当該地盤土は掘進時において撹拌済みとなって乱れ
ているから、新規地盤土のそれに比べ、比較的に小さな
反力に耐えるだけでよい。なお、半径測長手段4,5を
地盤の流動抵抗から保護しようとするならば、当該測長
手段4,5を、撹拌翼2の外郭内側に吊下・収納する方
法もある。
Returning to FIG. 1, the radius measuring means 4 and 5 attached to the stirring blade 2 are disposed at the forward edge of the blade 2 when the rotary excavation shaft 1 is rotated in the reverse direction. Although it is inevitable to receive frictional resistance (reaction force) from the ground, the ground soil is already agitated during excavation and is disturbed, so it can only withstand a relatively small reaction force compared to that of new ground soil Is fine. In order to protect the radius measuring units 4 and 5 from the flow resistance of the ground, there is a method of suspending and storing the length measuring units 4 and 5 inside the outer periphery of the stirring blade 2.

【0020】図中、高圧ジェット噴流10は、掘削軸1
軸芯に対し線対称に設けた撹拌翼2の他方の端部近くに
外向きに取り付けたジェットノズル17から地盤中に噴
射、供給される固化材を主成分とした流体であって、本
実施例にあっては、掘削軸1及び撹拌翼2を逆転させな
がら、撹拌翼2端から外方向、斜め下向きに地盤中に噴
射させている。図示していないもう一つの高圧ジェット
噴流が、同時に別の撹拌翼2端に設けたノズルから地盤
中に噴射、供給され、そのジェット噴流の方向が、さき
の高圧ジェット噴流10と地盤中の所定位置で交差する
向きにセットされている。前記交差させる高圧ジェット
噴流10,10の向きを、撹拌翼2の逆転又は正転を補
助する方向にセツトする選択もあり得る。要するに、撹
拌翼2による地盤の撹拌領域の外側に、高圧ジェット噴
流10による撹拌領域を設定した固化構造物を形成する
複合撹拌工法を実施している。前記工法及び本件計測又
は地盤状況検出装置の操作方法の一例については、図
4,5を用いて後述する。
In the figure, a high pressure jet 10 is
This is a fluid containing a solidified material as a main component, which is injected and supplied into the ground from a jet nozzle 17 mounted outwardly near the other end of the stirring blade 2 provided in line symmetry with respect to the axis. In the example, while excavating shaft 1 and stirring blade 2 are reversed, they are injected into the ground outward and diagonally downward from the end of stirring blade 2. Another high-pressure jet jet (not shown) is simultaneously injected into the ground from a nozzle provided at another end of the stirring blade 2 and supplied, and the direction of the jet jet is determined by the high-pressure jet jet 10 and the predetermined level in the ground. It is set so that it intersects at the position. There may be a choice to set the direction of the intersecting high-pressure jets 10, 10 in a direction that assists the stirring blade 2 in reverse or forward rotation. In short, a combined stirring method is performed in which a solidified structure in which a stirring region by the high-pressure jet jet 10 is set outside the stirring region of the ground by the stirring blades 2. An example of the construction method and the operation method of the present measurement or ground condition detection device will be described later with reference to FIGS.

【0021】図2を参照して、同図は上記複合撹拌工法
を実施する装置の要部を示すもので、図2(a)は、主
として半径測長手段4,5を遠隔制御する油圧ユニット
12と圧油の送排切換えバルブ及び当該圧油の供給量、
油圧の変動を計測する手段13及び表示・記録手段並び
に圧油供給、還流のためのフレキシブル管路14〜16
とよりなる半径計測装置の一部側面図であり、圧油の供
給量を計測して前記ピストン5の端面6の地盤中におけ
る位置(回転掘削軸芯に対する半径距離)を、油圧の変
動を計測して、その位置における地盤土の状况変化を、
それぞれ検知する機能を備えている。
Referring to FIG. 2, FIG. 2 shows a main part of an apparatus for implementing the above-mentioned combined stirring method. FIG. 2 (a) shows a hydraulic unit for mainly controlling radius measuring means 4 and 5 remotely. 12 and the pressure oil switching valve and the supply amount of the pressure oil,
Means 13 for measuring fluctuations in oil pressure, display / recording means, and flexible conduits 14-16 for supplying and recirculating pressure oil
FIG. 4 is a partial side view of a radius measuring device including: a pressure oil supply amount is measured to measure a position of the end face 6 of the piston 5 in the ground (a radial distance from a rotary excavation axis) and a hydraulic pressure fluctuation. And the change in the condition of the soil at that location
Each has a function to detect.

【0022】上記圧油の供給、還流管路14〜16端と
回転掘削軸1側に取り付けた配管7〜9との間は、それ
ぞれスイベルジョイント11を用いて互いに連結してい
る。すなわち、油圧ユニット12とその制御手段とは地
表定置型であるのに対して、操作時における回転掘削軸
1は回転、かつ、上下方向に移動するから、同掘削軸1
に取り付けたスイベルジョイント11に連結している圧
油の供給、還流管路14〜16は、余裕長さを有する耐
圧フレキシブル管を用いる。図2(b)及び(c)は、
さきに図1において斜視図で示した半径計測装置におけ
る撹拌翼部分の側面図及び平面図であって、図中、図1
において付したものと同一の符号を施した部材は、図1
で述べた説明、名称と同一である。
A swivel joint 11 is used to connect the ends of the pressure oil supply and return lines 14 to 16 and the pipes 7 to 9 attached to the rotary excavation shaft 1 with each other. That is, while the hydraulic unit 12 and its control means are of the stationary surface type, the rotary excavating shaft 1 rotates and moves in the vertical direction during operation.
For the supply and return lines 14-16 of the pressure oil connected to the swivel joint 11 attached to the, a pressure-resistant flexible tube having a sufficient length is used. 2 (b) and (c)
1A and 1B are a side view and a plan view of a stirring blade portion in the radius measurement device shown in a perspective view in FIG.
Members given the same reference numerals as in FIG.
This is the same as the description and name described above.

【0023】図2(c)において、回転掘削軸1が地盤
を掘進する場合には、掘削軸1及び同軸1に放射方向に
取り付けた撹拌翼2は、矢印方向、すなわち、左回りに
回転する。撹拌翼2の追従縁3側に取り付けた半径計測
手段のピストン5は掘削軸1に対し放射方向に沿って伸
縮するように設けてある。地盤の撹拌・混合操作時又は
適時に、距離計測手段を取り付けた撹拌翼2と対称的に
設けた撹拌翼2端付近で外向きに設けたノズル17か
ら、固化材を含む高圧ジェット噴流10を地盤中に放射
する。
In FIG. 2 (c), when the rotary excavating shaft 1 excavates the ground, the excavating shaft 1 and the stirring blade 2 radially attached to the coaxial shaft 1 rotate in the direction of the arrow, that is, counterclockwise. . The piston 5 of the radius measuring means attached to the trailing edge 3 side of the stirring blade 2 is provided so as to expand and contract in the radial direction with respect to the excavation axis 1. During the stirring / mixing operation of the ground or at an appropriate time, the high-pressure jet jet 10 containing the solidified material is supplied from a nozzle 17 provided outwardly near the end of the stirring blade 2 provided symmetrically with the stirring blade 2 provided with the distance measuring means. Radiates into the ground.

【0024】図2(b)に戻って、撹拌翼2の回転・撹
拌により地盤が撹拌される領域の外周(面)18は、ほ
ぼ、撹拌翼2端と一致するが、同時に撹拌翼2端付近か
ら斜め下方に地盤中に噴射される高圧ジェット噴流と、
図示されない他の撹拌翼端付近から斜め上方に噴射され
る高圧ジェット噴流との交差点の地盤中における回転軌
跡(当然、回転掘削軸1も回転している)は、掘削軸1
に対し撹拌翼2端よりも放射方向に離れた符号19を付
した面により便宜的に示されている。なお、撹拌翼2
(ノズル17又は計測手段4,5を備えていない)は、
回転撹拌軸1の軸芯方向に互いに離して複数対、他にも
設けることができる。
Returning to FIG. 2 (b), the outer periphery (surface) 18 of the area where the ground is agitated by the rotation and agitation of the agitating blade 2 substantially coincides with the agitating blade 2 end, but at the same time, the agitating blade 2 end A high-pressure jet jet injected into the ground obliquely downward from the vicinity,
The rotation locus in the ground at the intersection with the high-pressure jet jet that is injected obliquely upward from the vicinity of the other stirring blade tip (not shown) (the rotary excavation axis 1 is also rotating) is the excavation axis 1
In contrast, the surface denoted by reference numeral 19, which is radially away from the end of the stirring blade 2, is indicated for convenience. The stirring blade 2
(Without the nozzle 17 or the measuring means 4, 5)
A plurality of pairs may be provided apart from each other in the axial direction of the rotary stirring shaft 1.

【0025】したがって、撹拌翼2の回転・撹拌により
地盤が撹拌された領域の外周面18と地盤面19との間
の距離xにより表示された地盤は、回転する撹拌翼2か
ら高圧ジェット噴流に載って供給された固化材などを含
む交差噴流部により地盤土が撹拌されて、固化材が地盤
土に混合している領域を形成している。当該領域は、時
間の経過につれて変化し固化構造物を形成するが、撹拌
・混合直後の土質、土性は、地盤面19よりも外側の原
地盤20のそれと差異が生じる。
Accordingly, the ground indicated by the distance x between the outer peripheral surface 18 and the ground surface 19 in the area where the ground is agitated by the rotation and agitation of the agitating blade 2 is transferred from the rotating agitating blade 2 to the high-pressure jet stream. The ground soil is agitated by the cross-jet portion including the solidified material supplied and supplied to form a region where the solidified material is mixed with the ground soil. The region changes with the passage of time to form a solidified structure, but the soil properties and properties immediately after stirring and mixing differ from those of the original ground 20 outside the ground surface 19.

【0026】いま、図示の状態において、地表から油圧
配管7〜9を介して半径計測手段のシリンダ4側に圧油
を供給・排出してピストン前端面6を放射方向に地盤中
に伸長させるときは、端面6が受ける地盤土からの流動
抵抗は、少なくとも交差噴流部の領域xを移動中と、地
盤面19に到達して原地盤20へ貫通、進入yした後の
地盤からの流動抵抗との間で、地盤の状況変化に応じて
差異が生じる。計測器により、地盤からの流動抵抗が変
動したときのピストン前端面6の地盤中の位置、すなわ
ち、回転掘削軸心からの放射方向半径距離が地表から判
れば、高圧ジェット噴流の交差噴流が、撹拌地盤の何の
距離まで到達していたかを具体的数値に基づいて確認す
ることができる。そのため、前記噴射半径計測手段のピ
ストン前端面6の行程が、縮小時に比べて少なくとも、
距離x+yだけは伸長する構成とする。
Now, in the state shown in the figure, when the pressure oil is supplied / discharged from the surface of the ground to the cylinder 4 side of the radius measuring means via the hydraulic pipes 7 to 9 to extend the piston front end face 6 radially into the ground. The flow resistance from the ground soil received by the end face 6 is at least the flow resistance from the ground after reaching the ground surface 19 and penetrating into the original ground 20 while moving in the region x of the cross jet portion, and after entering the y. There is a difference between the two depending on changes in the ground condition. If the position in the ground of the piston front end face 6 when the flow resistance from the ground fluctuates from the ground, that is, the radial radial distance from the rotary excavation axis is known from the ground, the cross jet of the high-pressure jet is It is possible to confirm what distance the stirring ground has reached based on specific numerical values. Therefore, the stroke of the piston front end face 6 of the injection radius measuring means is at least
It is configured to extend only the distance x + y.

【0027】図3は、撹拌翼2の翼長に沿って取り付け
た半径計測手段のシリンダ・ピストン4,5の一実施例
の断面作動図を示すもので、2段式伸長機構を備え、そ
の(a)行程が、最も短く収縮した状態、すなわち、撹
拌翼2の翼長とほぼ、同一長さを示し、(b)行程が、
一段目が伸長しているところ、(c)行程が、一段目が
伸長し終わって、二段目が伸長しているところ、(d)
行程が、一段目、二段目が共に伸長し終わって、ピスト
ン5の端面6が回転撹拌軸に対し最も離れたところまで
移動した状態を示している。上記噴射半径計測手段のシ
リンダ・ピストン4,5はまた、複動式構造を採り、地
上からの圧油供給、排出制御により、図3(d)に示す
状態から、図3(a)まで、収縮・変位する。なお、図
示のシリンダ・ピストン4,5は、3ポート2段式伸長
機構よりなるが、構造によっては2ポート2段式であっ
て作動するし、また、一段伸長式が採用できる場合も、
あり得る。
FIG. 3 shows a sectional operation view of one embodiment of the cylinder pistons 4 and 5 of the radius measuring means mounted along the blade length of the stirring blade 2, which is provided with a two-stage type extension mechanism. (A) The stroke is the shortest contracted state, that is, almost the same length as the blade length of the stirring blade 2, and (b) the stroke is
Where the first stage is extended, (c) the stroke is the first stage has been extended and the second stage is extended, (d)
The stroke shows a state where the first stage and the second stage have both been extended, and the end face 6 of the piston 5 has moved to a position farthest from the rotary stirring shaft. The cylinder / pistons 4 and 5 of the above-mentioned injection radius measuring means also adopt a double-acting structure, and control the supply and discharge of pressurized oil from the ground to the state shown in FIG. Shrink and displace. Although the illustrated cylinder / pistons 4 and 5 comprise a three-port two-stage extension mechanism, depending on the structure, they operate with a two-port two-stage extension mechanism.
possible.

【0028】図3に沿って、その構造、作用を説明する
と、その(a)において、シリンダ4には、基部及び端
部にそれぞれ圧油の供給・排出孔(ポート)A及びB,
Cが設けてあり、それぞれシリンダ4内空間H及びJに
連通している。このシリンダ4内筒を往復滑動するピス
トン51を基端とし、これにシリンダ4端部から外方に
向かって伸長・滑動する中空のロツド52及び前記ロツ
ド52と同芯で、二重筒に形成した中心ロツド53を連
結して構成した一段目のピストンロッドが、前記シリン
ダ4に嵌着され、その際、シリンダ4のポートAは、そ
の内筒とピストン51とにより囲まれた空間Hに、ポー
トB,Cは、シリンダ4内筒とピストン51及びロツド
52とにより区画された空間Jに、それぞれ連通してい
る。また、前記ピストン51には、図3(c),(d)
における各部材の相互位置関係において、(後述する)
空間KとポートCを連通する通孔C1と、中心ロツド5
3に囲まれた空間MとポートBを連通する通孔B1と
が、それぞれ独立に穿設されている。
The structure and operation will be described with reference to FIG. 3. In FIG. 3A, the cylinder 4 has pressure oil supply / discharge holes (ports) A and B at its base and end, respectively.
C are provided and communicate with the spaces H and J in the cylinder 4, respectively. A piston 51 that reciprocates and slides in the inner cylinder of the cylinder 4 is used as a base. A hollow rod 52 that extends and slides outward from the end of the cylinder 4 and a double cylinder that is concentric with the rod 52 are formed. The first-stage piston rod formed by connecting the center rods 53 is fitted to the cylinder 4, and the port A of the cylinder 4 is inserted into a space H surrounded by the inner cylinder and the piston 51. The ports B and C communicate with a space J defined by the cylinder 4 and the piston 51 and the rod 52, respectively. FIGS. 3C and 3D show the piston 51.
In the mutual positional relationship of each member in the above (described later)
A through hole C1 for communicating the space K with the port C;
A through hole B1 communicating the space B and the port B surrounded by 3 is formed independently of each other.

【0029】さらに、通孔B1は常時、細孔sにより空
間Jと連通している。前記一段目のピストンロツドの中
空ロッド52の内側面と中心ロツド53の外周面との間
で往復滑動するピストン54を基端とし、これにロツド
52端部から外方に向かって伸長・滑動する中空ロツド
55を連結して構成した二段目のピストンロッドが、前
記中空ロツド52、53に嵌着され、その際に形成され
るロツド52の内側基部と前記ピストン54とにより囲
まれた空間K〔図3(c)参照〕と、ポートCとを連通
する〔図3(c),(d)における各部材の相互位置関
係において〕通孔C1をピストン51に設けたことは前
述したとおりである。
Further, the through hole B1 is always in communication with the space J through the small hole s. A piston 54 reciprocatingly sliding between the inner surface of the hollow rod 52 of the first stage piston rod and the outer peripheral surface of the center rod 53 is used as a base end, and a hollow extending and sliding outward from the end of the rod 52 is formed on the piston 54. A second-stage piston rod formed by connecting rods 55 is fitted to the hollow rods 52 and 53, and a space K [surrounded by the inner base of the rod 52 and the piston 54 formed at that time. 3 (c)] and the port C (in relation to each other in FIGS. 3 (c) and 3 (d)), the through hole C1 is provided in the piston 51 as described above. .

【0030】また、中空ロツド55内周面と中心ロツド
53の外周面との間には筒状空間が存在し、それによっ
て、ロツド52の内筒とピストン54及びロツド55外
周面とにより囲まれる空間Lとロツド55内の空間Mと
が、ロツド55の基部に近い個所の筒壁に穿設した細孔
mを介して連通している。以上説明した通りの構成より
なる噴射距離計測手段の作動原理を説明すれば、以下の
とおりである。
A cylindrical space exists between the inner peripheral surface of the hollow rod 55 and the outer peripheral surface of the center rod 53, and is thereby surrounded by the inner cylinder of the rod 52, the piston 54 and the outer peripheral surface of the rod 55. The space L and the space M in the rod 55 communicate with each other through a small hole m formed in a cylindrical wall near the base of the rod 55. The operation principle of the injection distance measuring means having the configuration as described above will be described below.

【0031】(1)伸長動作 図3(a)において、ポートAから供給した圧油は、シ
リンダ4内の空間Hを満たしてピストン51を押出し、
一段目のピストンロッドを外側に向かって伸長させるよ
うに作動する〔図3(b)参照〕。同時に、空間Jを満
たしていた圧油は、ポートBまたは,C、もしくはポー
トB,Cから排出される。此処では、ポートA及びB,
Cを流れる圧油の状態は、地上に設けた管路切換装置に
より制御されている。
(1) Extending operation In FIG. 3A, the pressure oil supplied from the port A fills the space H in the cylinder 4 and pushes out the piston 51.
It operates to extend the first-stage piston rod outward (see FIG. 3B). At the same time, the pressure oil filling the space J is discharged from the ports B or C or the ports B and C. Here, ports A and B,
The state of the pressure oil flowing through C is controlled by a pipeline switching device provided on the ground.

【0032】図3(c)に見られるように、ピストン5
1がシリンダ4端まで到達し、一段目のピストンロッド
が伸長し終わると、ピストン51に設けた通孔C1とポ
ートCとが並びに通孔B1とポートBとが連通する。そ
こで管路切換装置が作動して、ポートAを閉鎖すると共
にポートCから圧油が供給され、その圧油はピストン5
1に設けたポートC1を通って流れ空間Kを拡げ、ピス
トン54を移動させて二段目のピストンロツドを外側に
向かって伸長するように作動する。また、同時に空間L
内の圧油が、ロツド55の筒壁に穿設した細孔mを介し
て空間M内に流入し、ピストン51に設けた通孔B1を
介して、ポートBに戻り、排出される〔図3(c)参
照〕。なお、ピストン51に設けた細孔sはその際、シ
リンダ4の内壁により、閉鎖されている。
As can be seen from FIG.
When 1 reaches the end of the cylinder 4 and the first-stage piston rod has been extended, the through-hole C1 and the port C provided in the piston 51 and the through-hole B1 and the port B communicate with each other. Then, the pipeline switching device is operated to close the port A and supply the pressure oil from the port C.
The flow space K is expanded through the port C1 provided in the first stage 1 and the piston 54 is moved to operate so that the second stage piston rod extends outward. At the same time, the space L
The internal pressure oil flows into the space M through the fine holes m formed in the cylindrical wall of the rod 55, returns to the port B through the through holes B1 provided in the piston 51, and is discharged [FIG. 3 (c)]. At this time, the small hole s provided in the piston 51 is closed by the inner wall of the cylinder 4.

【0033】図3(d)は、空間Kを拡げて、ピストン
54を最終行程まで移動させ、二段目のピストンロツド
を外側に向かって最大限に伸長させた状態を示してい
る。その時でも、ロツド55の筒壁に穿設した細孔m
は、空間Lと空間Mとの間を連通している必要があるこ
とから、細孔mの穿設位置はピストン54に近接してい
なければならない〔図3(d)参照〕。ここでピストン
ロツド前端面6は、縮小位置から少なくとも距離x+y
だけ移動するストロークを具備することを要求されてい
る。
FIG. 3D shows a state in which the space K is expanded, the piston 54 is moved to the final stroke, and the second stage piston rod is extended outward to the maximum. Even at that time, the pores m drilled in the cylindrical wall of the rod 55
Needs to communicate between the space L and the space M, the hole m must be located close to the piston 54 (see FIG. 3D). Here, the front end face 6 of the piston rod is at least a distance x + y from the reduced position.
It is required to have a stroke that moves only.

【0034】通常、地盤状況検出は、上記二段目のピス
トンロツドの伸長行程において、計測するように設計さ
れている。二段目のピストンロツドの伸長行程中に、ピ
ストン5の伸長側端面6が地盤面19に到達し、端面6
に加わる地盤土の反力(抵抗)が大きくなると、その抵
抗に打ち勝ってピストン5の伸長側端面6を伸ばすため
に供給圧油の圧力が、その前後で変化する。油圧の変化
時期と、その時のピストン・シリンダ4,5への送油量
とを対比させれば、油圧の変化時期にピストン5の伸長
側端面6が回転掘削軸心からどれ程、離れた位置にあっ
たのかが、地表に設置した計測器13に基づいて、測定
することができる。ピストン5の伸長側端面6が回転掘
削軸心からどれ程、離れた位置にあったのかは、その時
迄に排出された圧油の容量を計測することによっても、
測定することができることは、勿論である。
Normally, the ground condition detection is designed to measure during the extension stroke of the second stage piston rod. During the extension stroke of the second stage piston rod, the extension side end surface 6 of the piston 5 reaches the ground surface 19 and the end surface 6
When the reaction force (resistance) of the ground soil applied to the ground increases, the pressure of the supplied pressure oil changes before and after the resistance to overcome the resistance and extend the extension-side end face 6 of the piston 5. By comparing the oil pressure change timing with the amount of oil supplied to the piston cylinders 4 and 5 at that time, how far the extension side end face 6 of the piston 5 is away from the rotary excavation axis at the oil pressure change timing. Can be measured based on the measuring instrument 13 installed on the ground surface. How far the extension side end face 6 of the piston 5 was from the rotary excavation axis was determined by measuring the volume of pressure oil discharged up to that time.
Of course, it can be measured.

【0035】(2)縮小動作 図3(d)において、地表の管路切換装置の作動に基づ
き、ポートBは給油、ポートCは排油回路に連通する。
ポートBに供給された圧油はピストン51の通孔B1を
通って空間Mに流入し、ロツド55の筒壁に穿設した細
孔mを介して空間Lに入り、ピストン54を押し下げ、
二段目のピストンロツドを縮める方向に動かす。その
際、空間Kは通孔C1を介してポートCに連通している
ので、空間Kにある圧油は排出回路となったポートCを
通して外部に排出される。
(2) Reduction operation In FIG. 3D, based on the operation of the pipeline switching device on the ground, port B is connected to the oil supply port and port C is connected to the oil discharge circuit.
The pressure oil supplied to the port B flows into the space M through the through hole B1 of the piston 51, enters the space L through the small hole m formed in the cylindrical wall of the rod 55, and pushes down the piston 54,
Move the second stage piston rod in the direction to shrink. At this time, since the space K communicates with the port C via the through hole C1, the pressure oil in the space K is discharged outside through the port C serving as a discharge circuit.

【0036】図3(c)において、圧油供給管路のポー
トB、圧油排出管路ポートCが機能して二段目のピスト
ンロツドを縮める方向に移動させ、ピストン54がピス
トン51に接する位置まで戻り、ピストン51に設けた
ポートC1が閉鎖されたときに管路切換装置が作動し
て、ポートAが排出管路に連通する。図3(b)で、圧
油供給管路ポートBから供給される圧油は、ピストン5
1に穿設した細孔sを通って、空間Jに入り、一段目の
ピストンロッドを縮める方向に移動させると、圧油供給
管路ポートBと空間Jとが直通し、空間Hの圧油がポー
トAから排出されるにつれて、一段目のピストンロッド
が原位置に戻る。図3(a)は、縮小状態における、各
部材の関係位置を示す。
In FIG. 3C, the port B of the pressure oil supply line and the port C of the pressure oil discharge line function to move the second stage piston rod in the direction of contraction, and the piston 54 comes into contact with the piston 51. When the port C1 provided in the piston 51 is closed, the pipeline switching device is operated, and the port A communicates with the discharge pipeline. In FIG. 3B, the pressure oil supplied from the pressure oil supply pipe port B is the piston 5
When the piston rod of the first stage is moved in the direction of contraction through the small hole s formed in the hole 1 and the piston rod of the first stage is moved in the direction of contraction, the pressure oil supply pipe port B and the space J are directly communicated with each other, Is discharged from the port A, the first stage piston rod returns to the original position. FIG. 3A shows the relative positions of the members in the reduced state.

【0037】図4は、交差噴流式複合撹拌工法におけ
る、回転撹拌軸1の掘進貫入行程を示す模式図で、その
(a)は、掘削撹拌装置を地盤の所定位置に誘導して、
リーダー及び回転掘削軸1を地表に対し垂直に配置した
ところ、図中、回転掘削軸1の上端部はリーダーに誘導
されて上下に滑動する撹拌機に、下端部近くには放射方
向に設けた一対の撹拌翼2を複数段、取付けている。本
実施例では、その内の一枚の撹拌翼2に沿って半径計測
手段のシリンダ4を取り付ける。また、回転掘削軸1の
上下軸方向に設けた一対の撹拌翼2,2の端部にそれぞ
れ、外向きにノズル17,17が設けてあり、それら一
対のノズル17,17から噴射される高圧ジェット流1
0は、撹拌翼2端よりも放射方向外側の所定の空間で交
差するように調整されている。
FIG. 4 is a schematic view showing the excavation and intrusion process of the rotary stirring shaft 1 in the cross-jet type combined stirring method, in which (a) guides the excavation stirring device to a predetermined position on the ground,
When the leader and the rotary excavation shaft 1 are arranged perpendicular to the surface of the ground, in the figure, the upper end of the rotary excavation shaft 1 is provided on a stirrer that is guided by the leader and slides up and down, and is provided radially near the lower end. A plurality of stirring blades 2 are mounted in a plurality of stages. In this embodiment, a cylinder 4 as a radius measuring means is attached along one of the stirring blades 2. Further, nozzles 17, 17 are respectively provided outward at ends of a pair of stirring blades 2, 2 provided in the vertical axis direction of the rotary excavating shaft 1, and high-pressure jets from the pair of nozzles 17, 17 are provided. Jet stream 1
0 is adjusted so as to intersect in a predetermined space radially outside the end of the stirring blade 2.

【0038】図4(b)では、掘削撹拌装置を所定位置
にセットした後、撹拌機を作動し、回転掘削軸1、撹拌
翼2,2を掘進方向に回転させながらリーダーに沿って
降下させ、掘削軸1の下端部近くに設けた撹拌翼2,2
を、地盤中に貫入・掘削している。その際、先進撹拌翼
2,2の下面付近から固化材を地盤中に吐出・供給し、
これを原地盤土に混合・撹拌して、固化構造物を造成す
る。原地盤土の撹拌領域と原地盤との境界を面18で示
す。図4(c)は、上記(b)の操作を進め、撹拌翼
2,2を掘進地盤の所定(設計)深さまで貫入し終わっ
たところで、定位置撹拌を行ないつつあるところを示
す。回転掘削軸1の周りの一定半径の地盤は、撹拌翼
2,2の回転により原地盤土と固化材とを混合・撹拌さ
れた柱状構造が形成されている。
In FIG. 4 (b), after setting the excavating and stirring device at a predetermined position, the stirrer is operated to lower the rotary excavating shaft 1, the stirring blades 2 and 2 along the leader while rotating in the excavation direction. , Stirring blades 2 and 2 provided near the lower end of the drilling shaft 1
Is penetrating and excavating into the ground. At that time, the solidified material is discharged and supplied into the ground from near the lower surfaces of the advanced stirring blades 2 and 2,
This is mixed and stirred with the original ground to create a solidified structure. The boundary between the agitation region of the original ground and the original ground is indicated by a plane 18. FIG. 4 (c) shows a situation where the above-mentioned operation (b) has been advanced and the stirring blades 2 and 2 have been completely penetrated to the predetermined (design) depth of the excavated ground, and then the fixed-position stirring is being performed. The ground having a constant radius around the rotary excavation axis 1 has a columnar structure in which the original ground soil and the solidified material are mixed and stirred by the rotation of the stirring blades 2 and 2.

【0039】図5(a)は、回転掘削軸1の引き抜き工
程を示し、撹拌機を逆転させ撹拌翼2,2を回しなが
ら、その先端に設けた少なくとも一対のノズル17,1
7からエアーと固化材とが混じった高圧ジェット噴流1
0,10を噴出させて撹拌翼2端よりも放射方向外側の
所定の地盤中で交差させながら回転掘削軸1を引き抜い
て行く。この工程では、前記ジェット流交差点のスパイ
ラルな回転軌跡に沿って、面18よりも半径方向外側領
域に拡がる原地盤土と噴流に載った固化材とが混合・撹
拌した、より径の大きな柱状構造が形成される。
FIG. 5 (a) shows a step of pulling out the rotary excavating shaft 1, and at least a pair of nozzles 17 and 1 provided at the tip thereof while rotating the stirrer and rotating the stirring blades 2 and 2 respectively.
High-pressure jet jet mixed with air and solidified material from 7
The rotary excavation shaft 1 is pulled out while jetting 0 and 10 and crossing in a predetermined ground radially outward from the end of the stirring blade 2. In this step, the columnar structure having a larger diameter is obtained by mixing and agitating the original ground soil and the solidified material placed in the jet along the spiral rotation trajectory of the jet flow intersection in a region radially outward from the surface 18. Is formed.

【0040】当該柱状構造の地盤中の外周面は、通常、
前述ジェット噴流の交差点の回転軌跡であるとされてい
る。その混合・撹拌領域と、原地盤との境界面を地盤面
19とする〔図2(b)参照〕。ただし、上記境界面
は、撹拌翼2,2のような機械的撹拌が施された処とは
異なり、固化材を含むジェット噴流10,10によって
原地盤土が撹拌、混合されているから、高圧ジェット噴
流の交差点の回転軌跡が、設計どおり地盤中に配置され
ているか否か確かとはいえない。施工中の、地盤中に形
成されるものであるから、見透かす訳にも行かない。
The outer peripheral surface of the columnar structure in the ground is usually
It is considered to be the rotation trajectory of the intersection of the jet jet. A boundary surface between the mixing / stirring region and the original ground is referred to as a ground surface 19 (see FIG. 2B). However, unlike the place where the mechanical stirring such as the stirring blades 2 and 2 is performed, the boundary soil is agitated and mixed with the original ground soil by the jet jets 10 and 10 containing the solidified material. It is not certain that the trajectory of the jet jet intersection is located in the ground as designed. Because it is formed in the ground during construction, it cannot be seen through.

【0041】図5(b),(c)は、上記境界地盤面1
9の半径測定工程を示し、図5(a)工程を続けた後、
再び、撹拌機を貫入方向に回転させて、撹拌翼2,2を
所定深さに沈めた後、回転掘削軸1のスイベルジョイン
ト16、配管7〜9を通して圧油、排出油を半径長測定
装置のシリンダー4・ピストン5に供給、連通すれば、
ピストン5が放射方向に伸び、その際、混合・撹拌領域
xと、原地盤とでは、ピストン5の移動抵抗が異なるか
ら、地表において、供給油圧の変動と、そのときのピス
トン前端6位置を計測する。境界地盤面19の位置、す
なわち、回転掘削軸1から地盤面19迄の距離、領域x
の大きさを確認することができる。
FIGS. 5B and 5C show the above-mentioned boundary ground surface 1.
9 shows the radius measurement process, and after continuing the process of FIG.
Again, the stirrer is rotated in the penetration direction, and the stirring blades 2 and 2 are sunk to a predetermined depth. Supply and communicate with the cylinder 4 and piston 5 of
The piston 5 extends in the radial direction. At this time, since the movement resistance of the piston 5 is different between the mixing / stirring area x and the original ground, the fluctuation of the supply oil pressure and the position of the piston front end 6 at that time are measured on the ground surface. I do. The position of the boundary ground plane 19, that is, the distance from the rotary excavation axis 1 to the ground plane 19, the area x
The size of can be confirmed.

【0042】 回転掘削軸1の回転角度0において、
境界地盤面19の半径を計測し終わった後、 回転掘削軸1を90°回して、同様に境界地盤面1
9の半径を計測し、 更に、90°回して、境界地盤面19の半径を計測
し、 それから回転掘削軸1を90°回し、境界地盤面1
9の半径を計測すれば、測定装置の深さにおける交差ジ
ェット噴流による原地盤土と固化材などとの撹拌・混合
領域xの、全ての形を測定することができたことにな
る。要すれば、撹拌・混合領域xの深さ方向において、
上記計測手段を複数段施すことにより、地盤中に、上下
方向に亘って形成される固化構造物の全貌を把握するこ
とができる。
At a rotation angle 0 of the rotary excavation shaft 1,
After measuring the radius of the boundary ground surface 19, rotate the rotary excavation shaft 1 by 90 °, and similarly set the boundary ground surface 1
9 and then turn 90 ° to measure the radius of the boundary ground plane 19, and then rotate the rotary excavation axis 1 90 ° to turn the boundary ground plane 1
Measuring the radius of 9 means that all the shapes of the agitation / mixing region x between the original ground soil and the solidified material by the cross jet jet at the depth of the measuring device could be measured. If necessary, in the depth direction of the stirring / mixing region x,
By applying the measuring means in a plurality of stages, it is possible to grasp the whole picture of the solidified structure formed vertically in the ground.

【0043】図5(d)は、回転掘削軸1の引き抜き工
程において、撹拌機を逆転させて撹拌翼2,2を回しな
がら、その先端に設けた一対のノズル17,17からエ
アーと高圧固化材との混合ジェット噴流を噴出して地盤
中で交差させ、前記交差点の回転軌跡に沿って、原地盤
土と固化材などとの混合・撹拌領域を形成すると共
に、、所要深さで、ジェット噴流の噴射・供給を停止
し、地盤中に段部を有する固化構造物を形成する処を例
示している。
FIG. 5 (d) shows that in the step of pulling out the rotary excavating shaft 1, the agitator is rotated in the reverse direction to rotate the stirring blades 2 and 2, while the air and the high pressure solidify from a pair of nozzles 17 and 17 provided at the tip thereof. A jet jet mixed with the material is jetted and intersected in the ground, and along the rotation locus of the intersection, a mixing / stirring area of the original ground and the solidified material is formed, and the jet is jetted at a required depth. FIG. 3 illustrates an example in which injection and supply of the jet are stopped to form a solidified structure having a step in the ground.

【0044】 回転掘削軸1の回転角度0において、
境界地盤面19の半径を計測し終わった後、 回転掘削軸1を90°回して、同様に境界地盤面1
9の半径を計測し、 更に、90°回して、境界地盤面19の半径を計測
し、 それから回転掘削軸1を90°回し、境界地盤面1
9の半径を計測すれば、測定装置の深さにおける交差ジ
ェット噴流による原地盤土と固化材などとの撹拌・混合
領域xの、全ての形を測定することができたことにな
る。要すれば、撹拌・混合領域xの深さ方向において、
上記計測手段を複数段施すことにより、地盤中に、上下
方向に亘って形成される固化構造物の全貌を把握するこ
とができる。
At a rotation angle 0 of the rotary excavation shaft 1,
After measuring the radius of the boundary ground surface 19, rotate the rotary excavation shaft 1 by 90 °, and similarly set the boundary ground surface 1
9 and then turn 90 ° to measure the radius of the boundary ground plane 19, and then rotate the rotary excavation axis 1 90 ° to turn the boundary ground plane 1
Measuring the radius of 9 means that all the shapes of the agitation / mixing region x between the original ground soil and the solidified material by the cross jet jet at the depth of the measuring device could be measured. If necessary, in the depth direction of the stirring / mixing region x,
By applying the measuring means in a plurality of stages, it is possible to grasp the whole picture of the solidified structure formed vertically in the ground.

【0045】図5(d)は、回転掘削軸1の引き抜き工
程において、撹拌機を逆転させて撹拌翼2,2を回しな
がら、その先端に設けた一対のノズル17,17からエ
アーと固化材との混合高圧ジェット噴流を噴出して地盤
中で交差させ、前記交差点の回転軌跡に沿って、原地盤
土と固化材などとの混合・撹拌領域を形成すると共
に、、所要深さで、ジェット噴流の噴射・供給を停止
し、地盤中に段部を有する固化構造物を形成する処を例
示している。
FIG. 5 (d) shows that in the step of pulling out the rotary excavating shaft 1, the agitator is rotated in the reverse direction to rotate the stirring blades 2 and 2, and a pair of nozzles 17 and 17 provided at the tip end thereof form air and solidified material. A high-pressure jet jet is ejected and intersects in the ground to form a mixing / stirring area with the original ground soil and solidified material along the rotation locus of the intersection, and at the required depth, FIG. 3 illustrates an example in which injection and supply of the jet are stopped to form a solidified structure having a step in the ground.

【0046】[0046]

【発明の効果】本願発明は、以上述べたとおりの構成を
具備し、噴流式複合撹拌工法を用いて広範囲に地中の固
化構造物を施工するに当たり、撹拌翼の端部付近から外
側方向噴射される高圧ジェット噴流先端の地盤中におけ
る到達距離、すなわち、地盤土と固化材を含む高圧ジェ
ット噴流との撹拌・混合領域の範囲を施工中、任意に計
測可能にし、上記工法における施工管理の資料を収集し
て、その計測結果に基づいて地盤の特性に応じ設計項目
の実施を経済的に可能にすると共に、複合撹拌工法の信
頼性を向上させ、前記工法に基づく施工品質を高めるよ
うにした複合撹拌工法における高圧ジェット噴流の噴射
距離計測装置をを提供する。
The invention of the present application has the above-described structure, and when the solidified structure under the ground is widely constructed by using the jet-type composite agitation method, the outward injection from near the end of the agitation blade. Distance in the ground at the tip of the high-pressure jet jet, that is, the range of the agitation / mixing area of the high-pressure jet jet containing the ground soil and the solidified material can be arbitrarily measured during construction, and data on construction management in the above method To collectively and economically enable the implementation of the design items according to the characteristics of the ground based on the measurement results, to improve the reliability of the combined stirring method, and to improve the construction quality based on the method Provided is an injection distance measuring device for a high-pressure jet jet in a combined stirring method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の地盤状況検出装置における高圧ジェ
ット噴流の高圧ジェット噴流の噴射距離計測装置におけ
る回転撹拌翼部分の一実施例斜視図である。
FIG. 1 is a perspective view of an embodiment of a rotary stirring blade portion in a device for measuring a jet distance of a high-pressure jet jet of a high-pressure jet jet in a ground condition detecting device of the present invention.

【図2】本願発明の噴流式複合撹拌工法における高圧ジ
ェット噴流の噴射距離計測装置の一実施例の要部のみを
示す側面図及び、回転撹拌翼部分の平面図である。
FIG. 2 is a side view showing only a main part of an embodiment of an apparatus for measuring a jet distance of a high-pressure jet jet in a jet type combined stirring method of the present invention, and a plan view of a rotary stirring blade portion.

【図3】本願発明の噴射距離計測装置の半径測長手段を
構成するシリンダ・ピストンの作動断面図である。
FIG. 3 is an operation sectional view of a cylinder / piston constituting a radius length measuring means of the injection distance measuring device of the present invention.

【図4】本願発明の噴射距離計測装置を備えた混合撹拌
装置による噴流式複合撹拌工法の掘進行程を示す説明図
である。
FIG. 4 is an explanatory diagram showing a digging progress of a jet-type combined stirring method using a mixing and stirring device provided with the injection distance measuring device of the present invention.

【図5】本願発明の噴射距離計測装置を備えた混合撹拌
装置による噴流式複合撹拌工法の撹拌・混合及び計測行
程を示す説明図である。
FIG. 5 is an explanatory diagram showing a stirring / mixing and measurement process of a jet-type composite stirring method using a mixing / stirring device provided with a jet distance measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 回転掘削軸 2 撹拌翼 3 追従側撹拌翼縁 4 シリンダ 5 ピストン 6 ピストンの伸長端面 7〜9 油圧配管 10 高圧ジェット噴流 11 スイベルジョイント 12 油圧ユニット 13 計測装置 14〜16 フレキシブル圧油管路 17 ノズル 18 境界領域面 19 境界地盤面 DESCRIPTION OF SYMBOLS 1 Rotary excavation axis 2 Stirring blade 3 Follower side stirring blade edge 4 Cylinder 5 Piston 6 Piston extension end face 7-9 Hydraulic piping 10 High pressure jet jet 11 Swivel joint 12 Hydraulic unit 13 Measuring device 14-16 Flexible pressure oil pipeline 17 Nozzle 18 Boundary area surface 19 Boundary ground surface

フロントページの続き Fターム(参考) 2D040 AB05 BA02 BA08 BD05 DA11 DA12 DA16 EA18 EA21 GA00 2F051 AA06 AB02 AB06 AC01 AC09 BA01 2F069 AA15 AA38 BB40 DD16 DD25 GG04 GG15 GG39 GG51 GG56 JJ04 JJ25 KK10 MM04 MM11 MM17 MM31 QQ05 RR01 Continued on the front page F-term (reference) 2D040 AB05 BA02 BA08 BD05 DA11 DA12 DA16 EA18 EA21 GA00 2F051 AA06 AB02 AB06 AC01 AC09 BA01 2F069 AA15 AA38 BB40 DD16 DD25 GG04 GG15 GG39 GG51 GG56 JJ04 JJ11 Q05 MM10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転掘削軸に対し放射方向に取付けた機
械式撹拌翼と前記撹拌翼端付近に外向きに設置したジェ
ットノズルとよりなり、掘削軸を回転させると共に、前
記ジェットノズルから地盤中に噴射する高圧ジェット流
の先端を前記撹拌翼の撹拌領域よりも外側の所定位置ま
で到達させて、固化材を地盤中に供給・混合するように
した噴流式複合撹拌・掘削装置において、 前記撹拌翼の一つに、放射方向に伸縮するシリンダー・
ピストンを並設し、 前記シリンダー・ピストンの前端が、少なくとも、所要
距離もしくは高圧ジェット流の先端の地盤中における到
達点の回転軌跡を超えて伸び、 前記シリンダー・ピストンを移動させる圧力流体の流体
圧を計測してシリンダー・ピストンの前端が対向する地
盤土の状况変化を、 シリンダー・ピストンの変位に連動するワイヤの移動ま
たはシリンダー・ピストンに供給する圧力流体の供給容
量により、地盤中におけるシリンダー・ピストンの前端
位置の回転掘削軸からの半径長さを計測できるようにし
た、噴流式複合撹拌工法における地盤状況検出装置。
1. A mechanical stirring blade radially attached to a rotary excavation shaft and a jet nozzle installed outwardly near the end of the stirring blade. In the jet-type combined stirring and excavating apparatus in which the tip of the high-pressure jet stream to be injected to the outside reaches the predetermined position outside the stirring area of the stirring blade to supply and mix the solidified material into the ground, One of the wings is a cylinder that expands and contracts in the radial direction.
A piston is juxtaposed, and a front end of the cylinder / piston extends at least over a required distance or a rotation locus of a reaching point in the ground at the tip of the high pressure jet stream, and a fluid pressure of a pressure fluid for moving the cylinder / piston The cylinder and piston in the ground are measured by measuring the change in the condition of the ground soil where the front end of the cylinder / piston faces, by moving the wire linked to the displacement of the cylinder / piston or by supplying the pressure fluid supplied to the cylinder / piston. The ground condition detection device in the jet-type combined agitation method, which can measure the radius length from the rotary excavation axis at the front end position.
【請求項2】 回転掘削軸に対し、軸方向に離して少な
くとも一対の放射方向に取付けた機械式撹拌翼と前記撹
拌翼端付近にそれぞれ外向きに設置したジェットノズル
とよりなり、前記各ジェットノズルから噴射する2つの
高圧ジェット流を、前記撹拌翼の撹拌領域よりも外側の
地盤中の所定位置で交差させて、固化材を地中に供給・
混合するようにした噴流式複合撹拌・掘削装置におい
て、 前記撹拌翼の一つに、放射方向に伸縮するシリンダー・
ピストンを並設し、 前記シリンダー・ピストンの前端が、少なくとも、前記
各高圧ジェット流の地盤中の交差点の回転軌跡を超えて
伸び、シリンダー・ピストンの前端が対向する地盤土の
状况変化を計測できるようにした、請求項1記載の噴流
式複合撹拌工法における地盤状況検出装置。
2. A method according to claim 1, further comprising at least one pair of radially mounted mechanical stirring blades spaced apart from each other in the axial direction with respect to the rotary excavation shaft, and jet nozzles installed outwardly near the stirring blade ends. The two high-pressure jets jetted from the nozzle intersect at a predetermined position in the ground outside the stirring area of the stirring blade to supply the solidified material into the ground.
In a jet-type combined agitation and excavation apparatus designed to be mixed, one of the agitating blades may include a radially expanding / contracting cylinder,
Pistons are juxtaposed, and the front end of the cylinder / piston extends at least beyond the rotation locus of the intersection of the high-pressure jet flows in the ground, and the state change of the ground soil facing the front end of the cylinder / piston can be measured. The ground condition detecting apparatus according to claim 1, wherein the ground state is detected by the jet-type combined stirring method.
【請求項3】 シリンダー・ピストンは、撹拌翼の掘削
回転方向に対し追従側か、撹拌翼内に取り付けたことよ
り成る請求項1または2記載の噴流式複合撹拌工法にお
ける地盤状況検出装置。
3. The ground condition detecting device according to claim 1, wherein the cylinder / piston is mounted on a side following the excavation rotation direction of the stirring blade or inside the stirring blade.
【請求項4】 シリンダー・ピストンは、複動式であっ
て、テレスコピック構造を備え、最も縮めたときの長さ
は、一つの撹拌翼の放射方向長さとほぼ、同一か、それ
よりも僅かに短いことより成る請求項1乃至3のうちの
何れか一項記載の噴流式複合撹拌工法における地盤状況
検出装置。
4. The cylinder / piston is double-acting and has a telescopic structure, the length of which when fully retracted is approximately equal to or slightly less than the radial length of one stirring blade. The ground condition detecting device in the jet-type combined stirring method according to any one of claims 1 to 3, which is short.
JP19375899A 1999-07-07 1999-07-07 Ground condition detection device in jet-type combined stirring method Expired - Fee Related JP3595735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19375899A JP3595735B2 (en) 1999-07-07 1999-07-07 Ground condition detection device in jet-type combined stirring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375899A JP3595735B2 (en) 1999-07-07 1999-07-07 Ground condition detection device in jet-type combined stirring method

Publications (2)

Publication Number Publication Date
JP2001020276A true JP2001020276A (en) 2001-01-23
JP3595735B2 JP3595735B2 (en) 2004-12-02

Family

ID=16313330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375899A Expired - Fee Related JP3595735B2 (en) 1999-07-07 1999-07-07 Ground condition detection device in jet-type combined stirring method

Country Status (1)

Country Link
JP (1) JP3595735B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052634A (en) * 2004-07-12 2006-02-23 Maeda Corp Device and method for measuring improved diameter
JP2013253462A (en) * 2011-09-28 2013-12-19 Shimizu Corp Improving body measuring device and improving body measuring method
CN115575611A (en) * 2022-12-07 2023-01-06 河北中水建设工程有限公司 Highway soil condition check out test set for highway engineering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052634A (en) * 2004-07-12 2006-02-23 Maeda Corp Device and method for measuring improved diameter
JP4721268B2 (en) * 2004-07-12 2011-07-13 前田建設工業株式会社 Improved diameter measuring device and improved diameter measuring method
JP2013253462A (en) * 2011-09-28 2013-12-19 Shimizu Corp Improving body measuring device and improving body measuring method
CN115575611A (en) * 2022-12-07 2023-01-06 河北中水建设工程有限公司 Highway soil condition check out test set for highway engineering
CN115575611B (en) * 2022-12-07 2023-03-03 河北中水建设工程有限公司 Highway soil condition check out test set for highway engineering

Also Published As

Publication number Publication date
JP3595735B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
CN106836204B (en) The device and method of pouring pile bearing capacity under a kind of promotion Soft Soil
CN203452083U (en) Rotary expanding pile construction equipment and grout feeding device
RU2600120C2 (en) Device for injection of resin for drilling device for installation of anchor bolts in soil
CN101962949A (en) Long spiral double-pipe high-pressure stir-jet grouting pile construction method and device
JP2020525676A (en) Auger vertical drilling system with trajectory correction device
JP2001020276A (en) Ground condition detecting apparatus for use in jet-type complex agitating method
CN1206417C (en) Forming method for water-proof pile fender and screw drill therefor
JP2001020277A (en) Ground condition detecting apparatus for use in jet-type complex agitating method
DK202370158A1 (en) Method and system of underground deployment of materials and equipment
KR20120120645A (en) Apparatus for expansion in ground for improvement of ground
CN105568968A (en) Wedge-shaped inserting-buckling T-shaped pile drilling and stirring machine
KR101109055B1 (en) Auger with rod of double pipe type and reinforcement method using it
JPH02213514A (en) Process of constructing soil cement post and earth auger used therefor
JPH058292B2 (en)
EP1676009B1 (en) Apparatus and method to prepare in-situ pilings with pre-selected physical properties
JP2942779B1 (en) Underground wall construction method
JPH09273150A (en) Construction method of underground continuous wall
CN209227551U (en) The inverse deep footing groove enclosing structure for making to combine with Percussion Piles of spray anchor
KR100491876B1 (en) UCM method and drilling road of ground drilling rigs using UCM method
CN105586951A (en) Buckling device of octagonal piles and T-shaped piles
JP6408948B2 (en) Construction method of impermeable wall
CN109371979A (en) The inverse deep footing groove enclosing structure for making to combine with Percussion Piles of spray anchor
WO2023170388A1 (en) Method and system of building an underground structure
JP2006299730A (en) Soil improving method
KR930010656B1 (en) Grouting method and apparatus of chemical pile

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees