JP2001019646A - Dechlorination of aromatic chloride - Google Patents

Dechlorination of aromatic chloride

Info

Publication number
JP2001019646A
JP2001019646A JP11195305A JP19530599A JP2001019646A JP 2001019646 A JP2001019646 A JP 2001019646A JP 11195305 A JP11195305 A JP 11195305A JP 19530599 A JP19530599 A JP 19530599A JP 2001019646 A JP2001019646 A JP 2001019646A
Authority
JP
Japan
Prior art keywords
reaction
carbon
comparative example
dechlorination
aromatic chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195305A
Other languages
Japanese (ja)
Other versions
JP4337958B2 (en
Inventor
Shozo Yanagida
祥三 柳田
Koha In
恒波 殷
Takayuki Kitamura
隆之 北村
Yuji Wada
雄二 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Yanagida Shozo
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Yanagida Shozo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd, Yanagida Shozo filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP19530599A priority Critical patent/JP4337958B2/en
Publication of JP2001019646A publication Critical patent/JP2001019646A/en
Application granted granted Critical
Publication of JP4337958B2 publication Critical patent/JP4337958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To detoxicate the catalyst in the reaction system including a platinum group catalyst supported by a carbon carrier and aromatic chlorine compound by carrying out the dechlorination reaction of aromatic chlorine compounds in the presence of a reducing substance, for example, hydrogen under irradiation with microwaves. SOLUTION: The reaction system including a platinum group catalyst supported by a carbon carrier (activated carbon, graphite, carbon black, carbon fiber, activated carbon fiber, meso-carbon or the like) (in addition to platinum, palladium and the platinumcarbon catalyst prepared by heating together platinum chloride and carbon powder may be used) and aromatic chlorine compounds as dioxin (preferably in an aqueous solution) is irradiated with microwaves in the presence of a reducing substance, for example, hydrogen, alcohols or hydrocarbons.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ダイオキシンな
どの芳香族系塩素化合物を脱塩素化する方法に属する。
The present invention relates to a method for dechlorinating an aromatic chlorine compound such as dioxin.

【0002】[0002]

【従来の技術】ダイオキシンと総称されるポリ塩化ジベ
ンゾダイオキシン(PCDD)やポリ塩化ジベンゾフラ
ン(PCDF)などの芳香族系塩素化合物が、産廃、都
市ゴミ又はプラスチックの焼却、紙の塩素漂白、農薬の
生成などの様々な過程で発生している。これら芳香族系
塩素化合物は、人体を含む生体に極めて有害であり、し
かも環境中で分解されにくい。特に2,3,7,8-四塩化ジベ
ンゾダイオキシン(TCDD)は、青酸カリの1万倍の
急性毒性を示し、発ガン性や催奇形性を高めたり、免疫
異常を起こさせることが知られている。
2. Description of the Related Art Aromatic chlorine compounds such as polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF), which are collectively called dioxins, are used for industrial waste, incineration of municipal garbage or plastics, chlorine bleaching of paper, generation of agricultural chemicals. It occurs in various processes such as. These aromatic chlorine compounds are extremely harmful to living bodies including the human body, and are hardly decomposed in the environment. In particular, 2,3,7,8-tetrabenzodioxin tetrachloride (TCDD) is 10,000 times more acutely toxic than potassium cyanide, and is known to enhance carcinogenicity, teratogenicity, and cause immune abnormalities. I have.

【0003】従って、焼却施設においては、900℃以
上の炉温で運転してダイオキシンの発生を抑える必要が
あるが、そのような高温での連続運転は、炉を早く劣化
させるし、人口の少ない自治体や中小企業は、そのよう
な処理能力を有する施設を備えていないところが多い。
そこで、焼却灰にマイクロ波を照射して400〜600
℃という低温で加熱することにより有害有機塩素化合物
を分解する方法(特開平4−284885号)などの種
々の脱塩素化技術あるいは無毒化技術が提案されてい
る。
[0003] Therefore, in an incineration plant, it is necessary to operate at a furnace temperature of 900 ° C or higher to suppress the generation of dioxin. However, continuous operation at such a high temperature causes the furnace to deteriorate quickly and has a small population. Many municipalities and SMEs do not have facilities with such processing capabilities.
Therefore, microwaves are irradiated to the incinerated ash to 400 to 600
Various dechlorination techniques or detoxification techniques have been proposed, such as a method of decomposing harmful organic chlorine compounds by heating at a low temperature of ℃ (JP-A-4-284885).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記特開平4
−284885号に記載の実施例では、分解によって生
成するはずのベンゼンが確認されておらず、現実には分
解ではなく単に揮発しているにすぎない可能性が高い。
従って、その他に提案されている技術も含めて実用上可
能な脱塩素化技術あるいは無毒化技術は未だ存在しない
のが現状である。それ故、この発明の目的は、芳香族系
塩素化合物を脱塩素化して無毒化する実用上可能な方法
を提供することにある。
However, the above-mentioned Japanese Patent Application Laid-Open No.
In the examples described in -284885, benzene which should be produced by decomposition has not been confirmed, and it is highly likely that the benzene is not actually decomposed but merely volatilized.
Therefore, at present, there is no practically available dechlorination technology or detoxification technology including other proposed technologies. Therefore, an object of the present invention is to provide a practically feasible method for dechlorinating and detoxifying an aromatic chlorine compound.

【0005】[0005]

【課題を解決するための手段】その目的を達成するため
に、この発明の芳香族系塩素化合物の脱塩素化方法は、
炭素系触媒担体に担持された白金族触媒と芳香族系塩素
化合物とを含む反応系に、水素などの還元性物質の存在
下でマイクロ波を照射することを特徴とする。
In order to achieve the object, a method for dechlorinating an aromatic chlorine compound according to the present invention comprises:
A reaction system comprising a platinum group catalyst and an aromatic chlorine compound supported on a carbon-based catalyst carrier is irradiated with microwaves in the presence of a reducing substance such as hydrogen.

【0006】この発明の方法によれば、通常の加熱によ
る還元反応よりも格段に速い速度で芳香族系塩素化合物
が分解する。その機構は定かでないが、触媒担体中の炭
素が、それにマイクロ波を照射すると、渦電流を発生さ
せて極めて高い温度になる。従って、その表面に付着し
ている白金族触媒が活性化され芳香族系塩素化合物の分
解を促進すると考えられる。即ち、マイクロ波照射によ
れば、反応系が溶液の場合でも局部的且つ短時間的に沸
点以上に昇温させることができるので、水素が活性化す
るのである。
According to the method of the present invention, the aromatic chlorine compound is decomposed at a remarkably faster rate than the reduction reaction by ordinary heating. The mechanism is unclear, but when the carbon in the catalyst carrier is irradiated with microwaves, an eddy current is generated and the temperature becomes extremely high. Therefore, it is considered that the platinum group catalyst adhering to the surface is activated to accelerate the decomposition of the aromatic chlorine compound. That is, according to the microwave irradiation, even when the reaction system is a solution, the temperature can be locally and quickly raised to the boiling point or higher, so that hydrogen is activated.

【0007】前記触媒担体として好ましいのは吸着力及
び触媒担持力の大きい活性炭である。又、反応系として
好ましい形態は、水溶液である。反応中に生成した塩化
水素を溶解するので、白金族触媒の活性を低下させない
からである。
[0007] Preferred as the catalyst carrier is activated carbon having a large adsorbing power and a large catalyst supporting power. A preferred form of the reaction system is an aqueous solution. This is because the activity of the platinum group catalyst is not reduced because the hydrogen chloride generated during the reaction is dissolved.

【0008】[0008]

【発明の実施の形態】触媒担体としては上記活性炭の他
に、黒鉛、カーボンブラック、炭素繊維、活性炭素繊
維、メソカーボンなどでも良い。触媒は、白金に限ら
ず、パラジウムでもよいし、塩化白金酸を炭素粉末とと
もに加熱して担持された白金でも良い。又、還元性物質
としては水素が一般的であるが、アルコールや炭化水素
などの他の還元性の物質でもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In addition to the above-mentioned activated carbon, graphite, carbon black, carbon fiber, activated carbon fiber, mesocarbon and the like may be used as the catalyst carrier. The catalyst is not limited to platinum, but may be palladium or platinum supported by heating chloroplatinic acid together with carbon powder. In addition, hydrogen is generally used as the reducing substance, but other reducing substances such as alcohol and hydrocarbon may be used.

【0009】[0009]

【実施例】[実施例1〜比較例7の実験方法]実施例1
から比較例7までの実験は、触媒の種類と加熱手段が還
元反応に及ぼす影響について調べたものである。 −実施例1− 白金を5 wt% 担持した80〜100メッシュの活性炭
(Pt/C:和光純薬製)50mgを、75 mM パラクロロフェノ
ール水溶液20mlに懸濁し,水素ガスを吹き込みながら
周波数2.45GHz、照射エネルギー650ワットの
マイクロ波を照射した。反応容器としては還流冷却器の
付いた100mlフラスコを用いた。マイクロ波は一分間
の照射と一分間の放置を交互に繰り返した。後述の反応
時間はこれらの合計時間である。
EXAMPLES [Experimental Methods of Examples 1 to 7] Example 1
In the experiments from to the comparative example 7, the effect of the type of the catalyst and the heating means on the reduction reaction was examined. Example 1 50 mg of 80 to 100 mesh activated carbon (Pt / C: Wako Pure Chemical Industries, Ltd.) supporting 5 wt% of platinum was suspended in 20 ml of a 75 mM aqueous solution of parachlorophenol, and the frequency was increased to 2 while blowing hydrogen gas. Microwave of 45 GHz and irradiation energy of 650 watts was irradiated. A 100 ml flask equipped with a reflux condenser was used as a reaction vessel. The microwave was alternately irradiated for one minute and left for one minute. The reaction time described below is the total time of these.

【0010】−比較例1− マイクロ波を照射することに代えてオイルバスで加熱し
た以外は、実施例1と同一条件で反応させた。反応系の
温度はおよそ95℃であった。 −比較例2− Pt/Cに代えて白金黒(PtB:日本エンゲルハルド製)50
mgを用いた以外は、実施例1と同一条件で反応させた。 −比較例3− マイクロ波を照射することに代えてオイルバスで加熱し
た以外は、比較例2と同一条件で反応させた。
Comparative Example 1 A reaction was performed under the same conditions as in Example 1 except that heating was performed in an oil bath instead of microwave irradiation. The temperature of the reaction system was approximately 95 ° C. -Comparative Example 2-Platinum black (PtB: Nippon Engelhard) 50 instead of Pt / C
The reaction was carried out under the same conditions as in Example 1 except that mg was used. Comparative Example 3 A reaction was performed under the same conditions as in Comparative Example 2 except that heating was performed in an oil bath instead of microwave irradiation.

【0011】−比較例4− 硝酸ニッケルの還元により活性炭(和光純薬製)にニッ
ケルを5 wt%担持させた。このニッケル担持活性炭(Ni
/C)50 mgをPt/Cに代えて用いた以外は、実施例1と同
一条件で反応させた。 −比較例5− マイクロ波を照射することに代えてオイルバスで加熱し
た以外は、比較例4と同一条件で反応させた。 −比較例6− Pt/Cに代えてラネーニッケル(RNi:和光純薬製)50 mg
を用いた以外は、実施例1と同一条件で反応させた。 −比較例7− マイクロ波を照射することに代えてオイルバスで加熱し
た以外は、比較例6と同一条件で反応させた。
Comparative Example 4 5 wt% of nickel was supported on activated carbon (manufactured by Wako Pure Chemical Industries) by reduction of nickel nitrate. This nickel-supported activated carbon (Ni
/ C) The reaction was carried out under the same conditions as in Example 1 except that 50 mg was used in place of Pt / C. Comparative Example 5 A reaction was performed under the same conditions as in Comparative Example 4, except that heating was performed in an oil bath instead of microwave irradiation. -Comparative Example 6-Raney nickel (RNi: manufactured by Wako Pure Chemical Industries) 50 mg instead of Pt / C
The reaction was carried out under the same conditions as in Example 1 except that was used. Comparative Example 7 A reaction was performed under the same conditions as in Comparative Example 6, except that heating was performed in an oil bath instead of microwave irradiation.

【0012】[実施例1〜比較例7の結果]所定時間反
応後の溶液を、PEG−20Mをキャピラリーカラムと
するガスクロマトグラフィー質量分析計(以下、GC−
MS)で分析し、パラクロロフェノールの脱塩素化合物
への転換率を求めた。分析結果を表1に示す。なお、実
施例1及び比較例1については反応開始後40分までの
各時間毎の分析結果を図1に打点した。図中、■及び△
は、各々実施例1及び比較例1の未反応パラクロロフェ
ノールの量、●及び○は、各々実施例1及び比較例1で
生成したフェノールの量を示す。
[Results of Example 1 to Comparative Example 7] A solution after reaction for a predetermined time is converted into a gas chromatography mass spectrometer (hereinafter GC-M) using PEG-20M as a capillary column.
MS) to determine the conversion of parachlorophenol to a dechlorinated compound. Table 1 shows the analysis results. In addition, about Example 1 and the comparative example 1, the analysis result for every time until 40 minutes after reaction start was spotted in FIG. In the figure, ■ and △
Indicates the amount of unreacted parachlorophenol in Example 1 and Comparative Example 1, respectively, and ● and ○ indicate the amount of phenol produced in Example 1 and Comparative Example 1, respectively.

【0013】[0013]

【表1】 [Table 1]

【0014】比較例4及び比較例5を除くいずれの反応
系においても生成物はほとんどがフェノールと塩化水素
で、GC-MSによる分析からは、その他の塩素を含む化合
物の生成は認められなかった。塩化水素が生成している
ことは、反応時間の経過とともに水溶液のpHが低下し
ていることから推測される。
In all of the reaction systems except Comparative Examples 4 and 5, the products were mostly phenol and hydrogen chloride, and no other chlorine-containing compounds were found to be formed by GC-MS analysis. . The generation of hydrogen chloride is presumed from the fact that the pH of the aqueous solution decreases as the reaction time elapses.

【0015】そして、図1にみられるように、Pt/Cを触
媒とする反応系ではマイクロ波照射の場合(実施例1)
のクロロフェノールの減少速度は、オイルバス加熱の場
合(比較例1)の倍近い速度となり、しかも 40 分の反
応時間でほぼ完全にクロロフェノールが消失した。従っ
て、従来の加熱方法よりもマイクロ波照射が芳香族系塩
素化合物の分解反応に著しく有効であることが明らかで
ある。
As shown in FIG. 1, in a reaction system using Pt / C as a catalyst, microwave irradiation (Example 1)
The reduction rate of chlorophenol was almost twice that of the case of heating in an oil bath (Comparative Example 1), and chlorophenol disappeared almost completely in a reaction time of 40 minutes. Therefore, it is clear that microwave irradiation is significantly more effective for the decomposition reaction of the aromatic chlorine compound than the conventional heating method.

【0016】又、表1にみられるように、オイルバス加
熱の場合、PtB(比較例3)はPt/C(比較例1)と同程
度の活性を示すが、マイクロ波照射の場合(比較例2)
にはかえって転換率が低下した。Ni/Cではいずれの場合
(比較例4及び比較例5)にも還元反応は進行しなかっ
た。一方、RNiを用いた場合、マイクロ波(比較例6)
でもオイルバス(比較例7)でもいずれの加熱方法によ
っても反応は非常に早く進行し、反応時間10分程度でク
ロロフェノールが消失した。しかし、反応溶液の色が緑
色に変化したことから、同時にNi金属がNiイオンへと酸
化されたものと認められ、触媒的な反応とはならなかっ
た。従って、マイクロ波照射によって芳香族系塩素化合
物を分解する反応に作用する触媒は、炭素含有担体に担
持された白金族に限られることが明らかである。
As can be seen from Table 1, in the case of oil bath heating, PtB (Comparative Example 3) shows the same activity as Pt / C (Comparative Example 1), but in the case of microwave irradiation (Comparative Example 1). Example 2)
On the contrary, the conversion rate fell. In any case of Ni / C (Comparative Example 4 and Comparative Example 5), the reduction reaction did not proceed. On the other hand, when RNi was used, microwaves (Comparative Example 6)
However, even in the oil bath (Comparative Example 7), the reaction proceeded very quickly by any heating method, and chlorophenol disappeared in about 10 minutes of the reaction time. However, since the color of the reaction solution changed to green, it was recognized that Ni metal was oxidized to Ni ions at the same time, and the reaction did not become catalytic. Therefore, it is clear that the catalyst that acts on the reaction to decompose the aromatic chlorine compound by microwave irradiation is limited to the platinum group supported on the carbon-containing carrier.

【0017】[実施例2〜実施例4]実施例2〜実施例
4は、本発明の脱塩素化方法による反応が如何なる過程
を経て進行するかを調べた実験である。 −実施例2− 実施例1で用いたものと同じ50 mg の Pt/C と 100 mg
のパラクロロフェノールを吸着させ、水素ガス雰囲気下
で実施例1と同一反応容器内で三分間実施例1と同一条
件でマイクロ波を照射した。反応終了後、反応溶液をメ
タノールで洗浄して生成物を抽出した。
[Examples 2 to 4] Examples 2 to 4 are experiments in which the reaction according to the dechlorination method of the present invention proceeds to see what progresses. -Example 2-The same 50 mg of Pt / C and 100 mg as used in Example 1
Was irradiated with microwaves under the same conditions as in Example 1 for 3 minutes in the same reaction vessel as in Example 1 under a hydrogen gas atmosphere. After the completion of the reaction, the reaction solution was washed with methanol to extract a product.

【0018】転換率は52%で、GC-MSによる分析結果
から、生成物はフェノールが生成物中37%、残部がシ
クロヘキサノール、1,1'-オキシビスシクロヘキサン及
びその他の未同定水素化物であると認められた。よっ
て、パラクロロフェノールは主にフェノールへと脱塩素
化され,さらに還元を受けて芳香族性を失うものと考え
られる。
The conversion was 52%. From the results of analysis by GC-MS, the product was phenol at 37% of the product, and the balance was cyclohexanol, 1,1'-oxybiscyclohexane and other unidentified hydrides. It was recognized that there was. Therefore, it is considered that parachlorophenol is mainly dechlorinated to phenol and further reduced to lose aromaticity.

【0019】−実施例3− 実施例1で用いたものと同じ50 mg の Pt/C を 還流冷
却器付きの100mlフラスコ中で10 ml モノクロロベン
ゼン(以下、CB)と10 ml 水との二相に分離している
混合物に懸濁させた。Pt/Cは、実際には二相の界面に凝
集していたと思われる。そして、水素ガスを吹き込みな
がら実施例1と同一条件でオイルバスで加熱し、あるい
はマイクロ波を照射した。CBに代えて1,2-ジクロロ-
ベンゼン(以下、1,2-DCB)及び1,2,4-トリクロロベ
ンゼン(以下、1,2,4-TCB)についても各々同様の操
作を行った。但し、オイルバスによる加熱については実
施例1と異なり、反応時間20分とし、反応系の温度は
90℃とした。
Example 3 The same 50 mg of Pt / C as used in Example 1 was mixed with 10 ml of monochlorobenzene (hereinafter referred to as CB) and 10 ml of water in a 100 ml flask equipped with a reflux condenser. Was suspended in the mixture separated. Pt / C appears to have actually aggregated at the two-phase interface. Then, heating was performed in an oil bath under the same conditions as in Example 1 while blowing hydrogen gas, or microwave irradiation was performed. 1,2-dichloro- in place of CB
The same operation was performed for benzene (hereinafter, 1,2-DCB) and 1,2,4-trichlorobenzene (hereinafter, 1,2,4-TCB). However, heating in an oil bath was different from that in Example 1, and the reaction time was 20 minutes, and the temperature of the reaction system was 90 ° C.

【0020】所定時間反応後の溶液を実施例1と同様に
GC−MSで分析し、各クロロベンゼンの脱塩素化反応
の反応速度及び生成物の組成を求めた。分析結果を表2
に示す。反応速度は、反応時間を1時間に換算したとき
のPt/C1g当たりの反応量(mmol)とした。
After the reaction for a predetermined time, the solution was analyzed by GC-MS in the same manner as in Example 1 to determine the reaction rate and the product composition of the dechlorination reaction of each chlorobenzene. Table 2 shows the analysis results
Shown in The reaction rate was defined as a reaction amount (mmol) per 1 g of Pt / C when the reaction time was converted to one hour.

【0021】[0021]

【表2】 [Table 2]

【0022】表2にみられるように、いずれのクロロベ
ンゼンを基質に用いた場合でもほぼ選択的にベンゼンへ
と脱塩素化され、反応溶液はクロロベンゼン層と水層と
ベンゼン層との三層に分離した。そして、反応速度はオ
イルバスによる加熱に比べてマイクロ波を照射した場合
の方がはるかに速かった。また、多クロロ体は塩素一つ
ずつが段階的に脱塩素化されることが判った。
As can be seen from Table 2, no matter which chlorobenzene was used as the substrate, it was almost selectively dechlorinated to benzene, and the reaction solution was separated into three layers: a chlorobenzene layer, an aqueous layer and a benzene layer. did. The reaction rate was much faster in microwave irradiation than in oil bath heating. Moreover, it turned out that chlorine is dechlorinated step by step in the polychloro form.

【0023】−実施例4− 実施例1で用いたものと同じ200 mg の Pt/C と 0.2 mM
のペンタクロロフェノールのエタノール溶液を混ぜ、
エバポレーターによりエタノールを除いて乾燥させた
後、水素ガスを吹き込みながら10分間マイクロ波を照射
した。反応終了後、メタノールで洗浄して生成物を抽出
した。
Example 4 The same 200 mg of Pt / C and 0.2 mM as used in Example 1
Pentachlorophenol in ethanol solution,
After drying by removing the ethanol using an evaporator, microwave irradiation was performed for 10 minutes while blowing hydrogen gas. After completion of the reaction, the product was extracted by washing with methanol.

【0024】反応の途中経過は不明だが、反応後の溶液
のGC-MSによる分析から、シクロヘキサノールとフェノ
ールにエタノール由来のラジカルが付加したものと思わ
れる物質がほぼ1:1の比で生成していた。これらのこ
とから、ペンタクロロフェノールは一旦フェノールまで
脱塩素化され、さらに還元を受けて芳香族性を失ったと
考えられる。
Although the course of the reaction is unknown, analysis by GC-MS of the solution after the reaction revealed that cyclohexanol and phenol were formed at a ratio of about 1: 1 assuming that a radical derived from ethanol was added to the phenol. I was From these facts, it is considered that pentachlorophenol was once dechlorinated to phenol and further reduced to lose aromaticity.

【0025】以上の実施例2〜実施例4の結果から、本
発明の脱塩素化方法によれば、芳香族系塩素化合物であ
る限り、その塩素置換量や他の官能基の有無にかかわら
ず、脱塩素化が優先的に進行してから、還元を受けて芳
香族性を失うという過程を経ることがわかる。よって、
本発明はダイオキシンの脱塩素化にも適応可能であるこ
とがあきらかである。
From the results of Examples 2 to 4, according to the dechlorination method of the present invention, as long as the compound is an aromatic chlorine compound, regardless of the chlorine substitution amount and the presence or absence of other functional groups. It can be seen that after the dechlorination proceeds preferentially, it undergoes a process of undergoing reduction to lose aromaticity. Therefore,
It is clear that the present invention is also applicable to dioxin dechlorination.

【0026】[0026]

【発明の効果】芳香族系塩素化合物を低温且つ短時間で
脱塩素化することができるので、ダイオキシンなどの有
害塩素化合物を汎用可能な設備で無毒化することができ
る。
As described above, the aromatic chlorine compound can be dechlorinated at a low temperature and in a short time, so that harmful chlorine compounds such as dioxin can be detoxified by general-purpose equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 マイクロ波照射又はオイルバス加熱によるパ
ラクロロフェノールの脱塩素化速度を示すグラフであ
る。
FIG. 1 is a graph showing the dechlorination rate of parachlorophenol by microwave irradiation or oil bath heating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 隆之 大阪府箕面市小野原東3丁目9−9−203 (72)発明者 和田 雄二 大阪府豊中市西緑丘2丁目2−6−643 Fターム(参考) 2E191 BA12 BD11 BD13 BD17 4D004 AA47 AB07 CA36 CA37 CA50 4H006 AA02 AC13 BA22 BA55 BA95 BE20  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Takayuki Kitamura 3-9-9-203 Higashi Onohara, Minoh-shi, Osaka (72) Yuji Wada 2-6-643 Nishi Midorioka, Toyonaka-shi, Osaka F-term ( Reference) 2E191 BA12 BD11 BD13 BD17 4D004 AA47 AB07 CA36 CA37 CA50 4H006 AA02 AC13 BA22 BA55 BA95 BE20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素系触媒担体に担持された白金族触媒と
芳香族系塩素化合物とを含む反応系に、水素などの還元
性物質の存在下でマイクロ波を照射することを特徴とす
る芳香族系塩素化合物の脱塩素化方法。
1. A method comprising irradiating a reaction system containing a platinum group catalyst supported on a carbon-based catalyst carrier and an aromatic chlorine compound with microwaves in the presence of a reducing substance such as hydrogen. A method for dechlorination of a group III chlorine compound.
【請求項2】前記触媒担体が活性炭である請求項1に記
載の方法。
2. The method according to claim 1, wherein said catalyst carrier is activated carbon.
JP19530599A 1999-07-09 1999-07-09 Method for dechlorination of aromatic chlorine compounds Expired - Fee Related JP4337958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19530599A JP4337958B2 (en) 1999-07-09 1999-07-09 Method for dechlorination of aromatic chlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19530599A JP4337958B2 (en) 1999-07-09 1999-07-09 Method for dechlorination of aromatic chlorine compounds

Publications (2)

Publication Number Publication Date
JP2001019646A true JP2001019646A (en) 2001-01-23
JP4337958B2 JP4337958B2 (en) 2009-09-30

Family

ID=16338954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19530599A Expired - Fee Related JP4337958B2 (en) 1999-07-09 1999-07-09 Method for dechlorination of aromatic chlorine compounds

Country Status (1)

Country Link
JP (1) JP4337958B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001220A (en) * 2001-06-25 2003-01-07 Kansai Electric Power Co Inc:The Method for separating polychlorinated aromatic compound from contaminated material
EP1332774A3 (en) * 2002-02-05 2003-12-17 Kabushiki Kaisha Toshiba Method of treating fats and oils
WO2004007365A1 (en) * 2002-07-10 2004-01-22 Japan Envirochemicals, Ltd. Method of heating active carbon
JP2010274170A (en) * 2009-05-27 2010-12-09 Tokyo Electric Power Co Inc:The Detoxifying treatment method and apparatus for instrument with remaining organic halogen compound
JPWO2009087994A1 (en) * 2008-01-07 2011-05-26 財団法人名古屋産業科学研究所 Aromatic halide dehalogenation method
JP2012111717A (en) * 2010-11-25 2012-06-14 Ne Chemcat Corp Method for producing compound containing dichloromethyl group
CN106077039A (en) * 2016-06-29 2016-11-09 程秀 The processing method of municipal refuse

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001220A (en) * 2001-06-25 2003-01-07 Kansai Electric Power Co Inc:The Method for separating polychlorinated aromatic compound from contaminated material
EP1332774A3 (en) * 2002-02-05 2003-12-17 Kabushiki Kaisha Toshiba Method of treating fats and oils
WO2004007365A1 (en) * 2002-07-10 2004-01-22 Japan Envirochemicals, Ltd. Method of heating active carbon
JPWO2009087994A1 (en) * 2008-01-07 2011-05-26 財団法人名古屋産業科学研究所 Aromatic halide dehalogenation method
JP2010274170A (en) * 2009-05-27 2010-12-09 Tokyo Electric Power Co Inc:The Detoxifying treatment method and apparatus for instrument with remaining organic halogen compound
JP2012111717A (en) * 2010-11-25 2012-06-14 Ne Chemcat Corp Method for producing compound containing dichloromethyl group
CN106077039A (en) * 2016-06-29 2016-11-09 程秀 The processing method of municipal refuse

Also Published As

Publication number Publication date
JP4337958B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
Lei et al. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms
Tang et al. Photocatalyzed oxidation pathways of 2, 4-dichlorophenol by CdS in basic and acidic aqueous solutions
Huang et al. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment
Ukisu et al. Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution
US7812211B2 (en) Process for the destruction of halogenated hydrocarbons and their homologous/analogous in deep eutectic solvents at ambient conditions
Tat'yana et al. Chemical methods of transformation of polychlorobiphenyls
Ukisu et al. Dechlorination of polychlorinated dibenzo-p-dioxins catalyzed by noble metal catalysts under mild conditions
Mulholland et al. Formation of poilychlorinated Dibenzo-P-Dioxins by Cuci2-Catalyzed condensation of 2, 6 chlorinated phenols
Palanisami et al. Cerium (IV)-mediated electrochemical oxidation process for removal of polychlorinated dibenzo-p-dioxins and dibenzofurans
Lei et al. Peculiar and full debromination of tetrabromodiphenyl ether on Pd/TiO2: A competing route through hydro-debromination and coupling-debromination
JP2001019646A (en) Dechlorination of aromatic chloride
Govindan et al. Expeditious removal of PCDD/Fs from industrial waste incinerator fly ash using electrogenerated homogeneous Ag (II) ions
Trinh et al. Transformation of mono-to octa-chlorinated dibenzo-p-dioxins and dibenzofurans in MWI fly ash during catalytic pyrolysis process
Ukisu Complete dechlorination of DDT and its metabolites in an alcohol mixture using NaOH and Pd/C catalyst
Wu et al. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: Direct photolysis and photocatalysis processes
Fukui et al. Photocatalytic Reductive Defluorination of Fluorinated Compounds in Aqueous Alcohol Suspensions of a Metal‐loaded Titanium (IV) Oxide
Jiade et al. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism
JP4817190B2 (en) Electroreductive dehalogenation of activated carbon adsorbed organic halides
Ukisu et al. Catalytic dechlorination of aromatic chlorides with Pd/C catalyst in alkaline 2-propanol: activity enhancement by the addition of methanol
Zhang et al. Dechlorination of dioxins with Pd/C in ethanol–water solution under mild conditions
Shee et al. Borohydride and metallic copper as a robust dehalogenation system: Selectivity assessment and system optimization
Mitoma et al. Mechanistic considerations on the hydrodechlorination process of polychloroarenes
JP3679969B2 (en) Composite photocatalyst and organic halogen compound decomposition method
Guasp et al. Dehalogenation of trihalomethanes in drinking water on Pd–Fe° bimetallic surface
JP4963014B2 (en) Decomposition method of organic halogen compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees