JP2001017183A - New metal protease - Google Patents

New metal protease

Info

Publication number
JP2001017183A
JP2001017183A JP11196584A JP19658499A JP2001017183A JP 2001017183 A JP2001017183 A JP 2001017183A JP 11196584 A JP11196584 A JP 11196584A JP 19658499 A JP19658499 A JP 19658499A JP 2001017183 A JP2001017183 A JP 2001017183A
Authority
JP
Japan
Prior art keywords
gly
ser
leu
glu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11196584A
Other languages
Japanese (ja)
Inventor
Noboru Yamaji
昇 山地
Koichi Nishimura
耕一 西村
Yoshio Sasamata
美穂 笹又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamanouchi Pharmaceutical Co Ltd
Original Assignee
Yamanouchi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co Ltd filed Critical Yamanouchi Pharmaceutical Co Ltd
Priority to JP11196584A priority Critical patent/JP2001017183A/en
Publication of JP2001017183A publication Critical patent/JP2001017183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new metal protease composed of a metal protease containing a specific amino acid sequence and having protease activity, highly possible to be usable as a drug-creating target molecule and useful e.g. for searching a treating drug for a disease caused by the enzymatic activity. SOLUTION: This new protease comprises a metal protease containing the amino acid sequence corresponding to the 1st to 740th amino acids of the amino acid sequence of formula I or corresponding to the 1st to 481st amino acids of the amino acid sequence of formula II and having protease activity or a protease having action similar to the metal protease. It is highly promising as a drug-creating target molecule and useful e.g. for the screening of a substance usable as a treating agent for cancer, arthritis, arthrosis deformans, etc. caused by abnormality such as promotion or lowering of metal protease activity or deformation. The metal protease can be produced by screening a cDNA library derived from human spinal marrow, integrating the obtained gene into an expression vector, transducing into a host cell and expressing the enzyme.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、新規金属プロテア
ーゼ、該金属プロテアーゼをコードする遺伝子、該金属
プロテアーゼの製造方法、該金属プロテアーゼを用いた
スクリーニング法に関するものである。
The present invention relates to a novel metalloprotease, a gene encoding the metalloprotease, a method for producing the metalloprotease, and a screening method using the metalloprotease.

【0002】[0002]

【従来の技術】これまでに数百種類のプロテアーゼが報
告されている。これらのプロテアーゼの中には、単に蛋
白やペプチドの消化を行う分子の他に、ペプチド鎖の切
断を介して蛋白質の成熟や生理活性の発現、代謝の調
節、情報の発現や伝達など生命現象に直結した重要な役
割に関与している分子が多数あることが知られている。
そのため、古くより、プロテアーゼ阻害剤の医薬品応用
が進められてきた。プロテアーゼの分類において、金属
プロテアーゼ、特に亜鉛を含むものは、アンギオテンシ
ンI交換酵素(ACE)の阻害剤が実際に高血圧等の循環器
疾患治療薬として医療の場で使用されている他、マトリ
ックスメタロプロテアーゼ群、エンドセリン変換酵素、
TNF(Tumor Necrosis Factor) 変換酵素(TACE)、プロ
コラーゲンCプロテイナーゼ等多くの分子が創薬標的分
子となり、その阻害剤の臨床開発が行われている(監
修:早石修、プロテアーゼとそのインヒビター、メジカ
ルビュー社、1993)。ここで、金属プロテアーゼの中で
も注目すべきものとして、ADAM(A Disintegrin And Me
talloprotease)ファミリーが挙げられる。ADAMはその
名前の通り、Cys残基を多く含むディスインテグリン様
ドメインと金属プロテアーゼ様ドメインを含む分子であ
り、その多くがプロペプチドと金属プロテアーゼ様ドメ
インとの間にfurinプロテアーゼの認識配列を有し、そ
れらによりプロペプチドが切断除去され、成熟蛋白とな
ると考えられている(Black, R. A. et al.,Curr. Opi
n. Cell Biol., 10, 654-659, 1998; Huovila A. P. J.
et al., Curr. Opin. Cell Biol., 8, :692-699, 199
6; Wolfsberg T. G. et al., J. CellBiol., 131, 275-
278, 1995)。ADAMはその金属プロテアーゼ様ドメイン
の相同性より、マトリックスメタロプロテアーゼ群とは
独立した金属プロテアーゼサブファミリーを構成してい
る。最近になり、膜貫通型に加えてトロンボスポンジン
I型繰り返し配列(以下、TSP-1繰り返し配列という)と
それらの中間に位置する配列でマトリックスに付着する
型があることが報告された(Kuno, K. et al., J. Bio
l. Chem., 272, 556-562, 1997; Kuno, K. et al., J.
Biol. Chem., 273,13912-13917,1998; Tang, B. L. et
al., FEBS Lett., 445, 223-225, 1999)。
2. Description of the Related Art Several hundred types of proteases have been reported so far. Some of these proteases include not only molecules that simply digest proteins and peptides, but also life phenomena such as the maturation of proteins, the expression of biological activities, the regulation of metabolism, the expression and transmission of information through the cleavage of peptide chains. It is known that there are a number of molecules that are involved in important direct roles.
Therefore, pharmaceutical applications of protease inhibitors have been promoted since ancient times. In the classification of proteases, those containing metalloproteases, particularly zinc, include those in which the inhibitors of angiotensin I exchange enzyme (ACE) are actually used in the medical field as drugs for treating cardiovascular diseases such as hypertension, and matrix metalloproteases. Group, endothelin converting enzyme,
Many molecules such as TNF (Tumor Necrosis Factor) converting enzyme (TACE) and procollagen C proteinase have become drug discovery target molecules, and clinical development of their inhibitors is underway (supervision: Osamu Hayaishi, protease and its inhibitors, Medical View, 1993). Here, as notable among metalloproteases, ADAM (A D isintegrin A nd M e
talloprotease) family. ADAM is, as its name implies, a molecule containing a disintegrin-like domain containing many Cys residues and a metalloproteinase-like domain, many of which have a recognition sequence for furin protease between the propeptide and the metalloproteinase-like domain. It is believed that they cleave off the propeptide and become the mature protein (Black, RA et al., Curr. Opi.
n. Cell Biol., 10, 654-659, 1998; Huovila APJ
et al., Curr.Opin.Cell Biol., 8,: 692-699, 199
6; Wolfsberg TG et al., J. CellBiol., 131, 275-
278, 1995). ADAM constitutes a metalloprotease subfamily independent of the matrix metalloprotease group due to the homology of its metalloprotease-like domains. Recently, thrombospondin in addition to transmembrane type
It has been reported that a type I repeat sequence (hereinafter referred to as a TSP-1 repeat sequence) and a sequence located between them have a type attached to a matrix (Kuno, K. et al., J. Bio).
l. Chem., 272, 556-562, 1997; Kuno, K. et al., J.
Biol. Chem., 273,13912-13917,1998; Tang, BL et
al., FEBS Lett., 445, 223-225, 1999).

【0003】現在までに20種以上知られているADAMファ
ミリーの分子の中で、TACE(ADAM17; Moss, M. L. et a
l., Nature, 385, 733-736, 1997; Black, R. A. et a
l., Nature, 385, 729-733, 1997)、ADAM9(MDC9; Wes
kamp, G. et al., J. Cell Biol., 132, 717-26, 199
6)、ADAM10(MADM; Howard, L. et al., Biochem. J.,
317, 45-50, 1996)、ADAM12(Meltrin alpha; Yagami-H
iromasa, T. et al., Nature, 377, 652-656, 1995)、A
DAM15(Metargidin; Kratzschmar, J. et al., J. Bio
l. Chem., 271; 4593-4596, 1996)、ADAM20(Hooft va
n Huijsduijnen, R., Gene, 206, 273-282, 1998)、マ
ウスADAMTS-1(Kuno, K. et al., J. Biol.Chem., 272,
556-562, 1997)が金属プロテアーゼ様ドメイン内にHExx
H(HisGluXaaXaaHis)からなる亜鉛結合コンセンサス配列
を有している。この中で、TACEはTNFの他、ノックアウ
トマウスの解析からアミロイドプレカーサー蛋白APP(B
uxbaum, J. D. et al., J. Biol. Chem., 273, 27765-2
7767,1998)、TNF受容体、L-セレクチン、TGF(Transfor
ming Growth Factor)-α.(Peschon, J. J. et al., Sc
ience, 282, 1281-1284, 1998)を切断することが示さ
れている。そのため、TACEはTNF変換酵素(可溶性TNFの
生成)、APPのαセクレターゼとしての活性を含め、多
くの膜蛋白のsheddingに関与し、多彩な生理機能を担っ
ているとされている。実際に、TNF変換酵素としての機
能に注目し、その阻害剤の炎症領域への応用が探られて
いる(Conquering Airway Inflammation inthe 21st Cen
tury (Part A), September 14-16, 1998)。また、ADAM1
0はそのショウジョウバエのホモログであるKuzbanianの
解析から、Notch(Blobel, C. P.,Cell, 90, 589-592,
1997; Pan, D. et al., Cell, 90, 271-280, 1997)、N
otch ligand delta(Qi, H. et al., Science, 283, 91
-94, 1999)を切断することが示唆されている。加え
て、in vitroの実験で、APP(Lammich, S. et al., Pro
c. Natl. Acad. Sci. USA., 96 3922-3927, 1999)、プ
ロTNF(Lunn, C. A. et al., FEBS Lett., 400, 333-33
5, 1997)、IV型コラーゲン(Millichip, M. I.et al.,
Biochem. Biophys. Res. Commun., 245, 594-598, 199
8)を切断することが示されている。そのため、ADAM10
はNotchシグナルの制御に関与し、神経形成に重要な役
割を果たしている他、膜蛋白のsheddingの一翼、さらに
は細胞外マトリックス成分の分解への関与も示唆されて
いる。さらに、最近になり、関節炎や変形性関節症にお
ける軟骨細胞外基質アグリカンの分解の本体の酵素であ
ると考えられていたアグリカナーゼの1種であるaggreca
nase-1が精製、クローニングされ、ADAMファミリーの分
子であること報告された(Tortorella, M. D. et al.,
Science, 284, 1664-1666, 1999)。このように、ADAM
の細胞接着活性に加えて、プロテアーゼ活性と生理的意
義との関連が注目されきている(Black, R.A. et al.,
Curr. Opin. Cell Biol., 10, 654-659, 1998)。
[0003] Among the more than 20 known ADAM family molecules to date, TACE (ADAM17; Moss, ML et a
l., Nature, 385, 733-736, 1997; Black, RA et a
l., Nature, 385, 729-733, 1997), ADAM9 (MDC9; Wes
kamp, G. et al., J. Cell Biol., 132, 717-26, 199
6), ADAM10 (MADM; Howard, L. et al., Biochem. J.,
317, 45-50, 1996), ADAM12 (Meltrin alpha; Yagami-H
iromasa, T. et al., Nature, 377, 652-656, 1995), A
DAM15 (Metargidin; Kratzschmar, J. et al., J. Bio
l. Chem., 271; 4593-4596, 1996), ADAM20 (Hooft va
n Huijsduijnen, R., Gene, 206, 273-282, 1998), mouse ADAMTS-1 (Kuno, K. et al., J. Biol. Chem., 272,
556-562, 1997) has HExx in the metalloproteinase-like domain.
It has a zinc-binding consensus sequence consisting of H (HisGluXaaXaaHis). Among them, TACE analyzed TNF and amyloid precursor protein APP (B
uxbaum, JD et al., J. Biol. Chem., 273, 27765-2
7767, 1998), TNF receptor, L-selectin, TGF (Transfor
ming Growth Factor) -α. (Peschon, JJ et al., Sc
ience, 282, 1281-1284, 1998). Therefore, TACE has been implicated in shedding of many membrane proteins, including TNF converting enzyme (production of soluble TNF) and the activity of APP as α-secretase, and is believed to be responsible for various physiological functions. In fact, attention has been paid to the function as a TNF-converting enzyme, and application of the inhibitor to the inflammatory area is being explored (Conquering Airway Inflammation in the 21st Cen
tury (Part A), September 14-16, 1998). Also, ADAM1
0 indicates Notch (Blobel, CP, Cell, 90, 589-592, Notch) from the analysis of the Drosophila homolog Kuzbanian.
1997; Pan, D. et al., Cell, 90, 271-280, 1997), N
otch ligand delta (Qi, H. et al., Science, 283, 91
-94, 1999). In addition, APP (Lammich, S. et al., Pro
c. Natl. Acad. Sci. USA., 96 3922-3927, 1999), professional TNF (Lunn, CA et al., FEBS Lett., 400, 333-33).
5, 1997), type IV collagen (Millichip, MI et al.,
Biochem. Biophys. Res.Commun., 245, 594-598, 199
8) has been shown to cut. Therefore, ADAM10
Is involved in the regulation of Notch signaling and plays an important role in neurogenesis, and has also been suggested to be involved in the degradation of extracellular matrix components, as well as in the shedding of membrane proteins. In addition, aggreca, a type of aggrecanase that was recently considered to be the enzyme responsible for the degradation of the extracellular matrix aggrecan in arthritis and osteoarthritis
nase-1 has been purified, cloned, and reported to be a member of the ADAM family (Tortorella, MD et al.,
Science, 284, 1664-1666, 1999). Thus, ADAM
In addition to cell adhesion activity, the relationship between protease activity and physiological significance has been attracting attention (Black, RA et al.,
Curr. Opin. Cell Biol., 10, 654-659, 1998).

【0004】このような観点から、ADAMのプロテアーゼ
活性の検討が行われ、ADAM9とADAM12に生理的基質は不
明なものの蛋白分解能があることが示されてきた。すな
わち、ADAM9は多くのプロテアーゼの基質になるインス
リンB鎖を切断し(Roghani, M. et al., J. Biol. Che
m., 274, :3531-3540, 1999)、 ADAM12は広範囲なプロ
テアーゼと反応するアルファ2マクログロブリン(以下
α2M)との反応産物を生成することが報告された(Loech
el, F. et al., J. Biol. Chem., 273, 16993-16997, 1
998.)。これらの分子に関しては、今後、生理的基質の
探索が行われ、プロテアーゼ活性と生理的意義の関連性
が探られていくと考えられる。その結果、疾患との関連
性があれば、その阻害剤もしくはプロテアーゼ蛋白自体
の医薬品応用がなされていくと期待される。なお、特開
平11-46781号公報にはヒト由来のADAMTS-1遺伝子の配列
およびアミノ酸配列とする配列が示されていたが、同配
列はマウスADAMTS-1が951アミノ酸であるの対して727ア
ミノ酸と短く、furin様プロテアーゼ認識配列Arg Lys L
ysArg(該公報の配列表の配列番号1の9番目から12番目
のアミノ酸)のN側に8アミノ酸しか存在せず、マウスAD
AMTS-1に存在する分泌シグナル配列とそれに続くプロペ
プチド部が存在していなかった。このことは、2つの可
能性を示唆していた。すなわち、該公報の発明者らがヒ
トADAMTS-1であるとした遺伝子がマウスADAMTS-1遺伝子
のホモログでない可能性と、実際には全長ORFを含む遺
伝子の配列決定、単離に成功できていない可能性を示唆
していた。つまり、いずれにしても、ヒトADAMTS-1の全
長ORF配列は知られていない状況にあった。
[0004] From such a viewpoint, the protease activity of ADAM has been examined, and it has been shown that ADAM9 and ADAM12 have a protein decomposability, although their physiological substrates are unknown. That is, ADAM9 cleaves the insulin B chain, which is a substrate for many proteases (Roghani, M. et al., J. Biol. Che.
m., 274,: 3531-3540, 1999), and ADAM12 was reported to produce a reaction product with α2 macroglobulin (hereinafter α2M), which reacts with a wide range of proteases (Loech).
el, F. et al., J. Biol. Chem., 273, 16993-16997, 1
998.). With regard to these molecules, a search for physiological substrates will be conducted in the future, and the relationship between protease activity and physiological significance will be explored. As a result, if there is a connection with a disease, it is expected that the inhibitor or the protease protein itself will be applied to pharmaceutical applications. In addition, Japanese Patent Application Laid-Open No. 11-46781 discloses a human ADAMTS-1 gene sequence and a sequence as an amino acid sequence, which are 727 amino acids compared to mouse ADAMTS-1 having 951 amino acids. Short, furin-like protease recognition sequence Arg Lys L
ysArg (the ninth to twelfth amino acids of SEQ ID NO: 1 in the sequence listing of the publication) has only 8 amino acids on the N side,
The secretion signal sequence present in AMTS-1 followed by the propeptide portion was absent. This suggested two possibilities. That is, the possibility that the gene that the inventors of the publication are human ADAMTS-1 is not a homolog of the mouse ADAMTS-1 gene, and in fact, the sequence determination of the gene containing the full-length ORF, the isolation has not been successful Signaled the possibility. That is, in any case, the full-length ORF sequence of human ADAMTS-1 was not known.

【発明が解決しようとする課題】本発明は、創薬標的分
子としての可能性が非常に高い新規金属プロテアーゼフ
ァミリー蛋白質をコードする遺伝子を単離・同定し、そ
れらの発現生産系を構築し、それらの活性を修飾する物
質を探索するために必要となる組換え蛋白を提供するこ
とを目的とする。
DISCLOSURE OF THE INVENTION The present invention is to isolate and identify genes encoding novel metalloproteinase family proteins, which have a very high potential as drug target molecules, and to construct expression and production systems for them. It is an object of the present invention to provide a recombinant protein required for searching for a substance that modifies their activity.

【0005】[0005]

【課題を解決するための手段】このような状況下、本発
明者らは鋭意検討した結果、上記ADAMファミリーに分類
される新規金属プロテアーゼをコードする遺伝子を単離
し、全長ORF配列を決定して、組み換え蛋白の生産を可
能にすることに成功した。さらには、プロテアーゼ活性
を有するアミノ酸配列の単位を特定し、そのアミノ酸配
列を有する組み換え蛋白を用いて、その部位にプロテア
ーゼ活性があることを示し、本発明を見いだした。さら
にまた、該遺伝子を含むベクター、該ベクターを含む宿
主細胞、該宿主細胞を用いた同金属プロテアーゼの製造
法を確立した。これにより、該金属プロテアーゼ及び該
金属プロテアーゼ活性を修飾する化合物、ペプチド及び
抗体のスクリーニングを可能にし、本発明を完成した。
Under these circumstances, the present inventors have made intensive studies and as a result, isolated a gene encoding a novel metalloprotease classified into the ADAM family, determined the full-length ORF sequence, and And succeeded in enabling the production of recombinant proteins. Further, the present inventors have identified a unit of an amino acid sequence having a protease activity, and have shown that a recombinant protein having the amino acid sequence has a protease activity at the site, thereby finding the present invention. Furthermore, a vector containing the gene, a host cell containing the vector, and a method for producing the same metalloprotease using the host cell have been established. This enabled screening of the metal protease and compounds, peptides and antibodies that modify the metal protease activity, and completed the present invention.

【0006】即ち本発明は、(1)配列番号4で表され
るアミノ酸配列の第1番から第470番のアミノ酸配列、
若しくは、配列番号10で表されるアミノ酸配列の第1番
から第481番のアミノ酸配列を含み、かつ、プロテアー
ゼ活性を有する金属プロテアーゼ、又は、該金属プロテ
アーゼの同効物である金属プロテアーゼ、(2)配列番
号4若しくは10で表されるアミノ酸配列を有する蛋白
質、(3)(1)記載の金属プロテアーゼ、若しくは
(2)記載の蛋白質のアミノ酸配列をコードする遺伝
子、(4)(3)記載の遺伝子を含むベクター、(5)
(4)記載のベクターを含む宿主細胞、(6)(5)記
載の宿主細胞を用いる(1)記載の金属プロテアーゼ及
び(2)記載の蛋白質の製造方法、(7)(1)記載の
金属プロテアーゼ及び(2)記載の蛋白質に対する抗
体、(8)(1)記載の金属プロテアーゼ又は(2)記
載の蛋白質と被験化合物とを接触させ、当該金属プロテ
アーゼの活性を修飾する物質をスクリーニングする方
法、に関する。
That is, the present invention relates to (1) an amino acid sequence of the first to 470th amino acid sequence of SEQ ID NO: 4,
Alternatively, a metal protease comprising the amino acid sequence of amino acids 1 to 481 of the amino acid sequence represented by SEQ ID NO: 10 and having protease activity, or a metal protease that is the same as the metal protease, (2 A) a protein having the amino acid sequence represented by SEQ ID NO: 4 or 10; (3) a gene encoding the amino acid sequence of the metalloprotease according to (1), or (2); A vector containing a gene, (5)
(4) a host cell containing the vector described in (4), (6) a method for producing the metalloprotease described in (1) and the protein described in (2) using the host cell described in (5), and (7) a metal described in (1). (8) a method of contacting the protease and an antibody against the protein according to (2), (8) contacting the metal protease according to (1) or the protein according to (2) with a test compound, and screening for a substance that modifies the activity of the metal protease; About.

【0007】[0007]

【発明の実施の形態】以下、本発明で使用される用語に
つき説明する。本明細書中で使用される「金属プロテア
ーゼ」は、亜鉛コンセンサス配列(HExxH)を有し、プロ
テアーゼ活性を有する「金属プロテアーゼ」を意味す
る。また、「プロテアーゼ」は断りがない限り、「蛋
白」を表す。本発明の新規金属プロテアーゼは、配列番
号4で表されるアミノ酸配列の第1番から第470番のアミ
ノ酸配列、若しくは、配列番号10で表されるアミノ酸配
列の第1番から第481番のアミノ酸配列を含み、かつ、蛋
白分解能を有する金属プロテアーゼ、又は、該金属プロ
テアーゼの同効物である金属プロテアーゼならいずれで
もよい。ここで、「金属プロテアーゼの同効物」とは、
配列番号4で表されるアミノ酸配列の第1番から第470番
のアミノ酸配列、若しくは、配列番号10で表されるアミ
ノ酸配列の第1番から第481番のアミノ酸配列の中のいず
れかの1乃至複数個の部位において、1乃至数個のアミ
ノ酸残基が置換、失欠、及び/または挿入されていても
よく、かつ、蛋白分解能を有する金属プロテアーゼであ
る。「金属プロテアーゼの同効物」として好ましくは、
SNPなどのアミノ酸置換で生じた該金属プロテアーゼを
示す。本発明の新規金属プロテアーゼとして好ましくは
配列番号4若しくは10記載のアミノ酸配列を有するポり
ペプチドである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Terms used in the present invention will be described below. As used herein, "metal protease" means a "metal protease" having a zinc consensus sequence (HExxH) and having protease activity. “Protease” represents “protein” unless otherwise specified. The novel metalloprotease of the present invention is the first to 470th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4, or the first to 481th amino acid of the amino acid sequence represented by SEQ ID NO: 10. Any metal protease containing a sequence and having the ability to degrade proteins or a metal protease that is the same as the metal protease may be used. Here, the “equivalent of metalloprotease” means
Any one of the first to 470th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4 or the first to 481th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 10 Or a metal protease having one to several amino acid residues in which substitutions, deletions, and / or insertions may be made at a plurality of sites, and having protein-degrading ability. As the "same effect of metalloprotease", preferably
The metal protease generated by amino acid substitution such as SNP is shown. The novel metalloprotease of the present invention is preferably a polypeptide having the amino acid sequence of SEQ ID NO: 4 or 10.

【0008】また、本発明の新規金属プロテアーゼをコ
ードする遺伝子は、上記の金属プロテアーゼをコードす
る塩基配列を含む遺伝子、即ち、配列番号4で表される
アミノ酸配列の第1番から第470番のアミノ酸配列、若し
くは、配列番号10で表されるアミノ酸配列の第1番から
第481番のアミノ酸配列で示される金属プロテアーゼ、
又はそれらの同効物をコードする塩基配列を含み、か
つ、蛋白分解能を有する金属プロテアーゼ遺伝子ならい
ずれでもよい。本発明の新規金属プロテアーゼをコード
する遺伝子として好ましくは、配列番号5記載の塩基配
列の1番目から2850番目、配列番号11記載の塩基配列の1
番から3615番を有する遺伝子である。
[0008] The gene encoding the novel metalloprotease of the present invention is a gene containing a base sequence encoding the above metalloprotease, that is, the first to 470th amino acid sequence represented by SEQ ID NO: 4. An amino acid sequence, or a metalloprotease represented by the first to 481st amino acid sequence of the amino acid sequence represented by SEQ ID NO: 10,
Alternatively, any metal-protease gene containing a nucleotide sequence encoding the same effective substance and having the ability to degrade proteins may be used. As the gene encoding the novel metalloprotease of the present invention, preferably the first to 2850th of the nucleotide sequence of SEQ ID NO: 5, 1 of the nucleotide sequence of SEQ ID NO: 11
It is a gene having the numbers 3615 to 3615.

【0009】ここで、本発明の金属プロテアーゼをコー
ドする遺伝子、本発明のベクター、本発明の宿主細胞、
本発明の金属プロテアーゼ、本発明の金属プロテアーゼ
の活性を修飾する化合物、ペプチド及び抗体のスクリー
ニング方法、金属プロテアーゼに反応する抗体の製造方
法を以下の1)〜4)に記載する。 1)新規金属プロテアーゼ遺伝子の製造方法 a)第1製造法−PCRを用いた方法 本発明の金属プロテアーゼを産生する能力を有するヒト
細胞あるいは組織からmRNAを抽出する。次いでこのmRNA
を鋳型として該金属プロテアーゼmRNAまたは一部のmRNA
領域をはさんだ2種類のプライマーを作製する。denatu
re温度、変性剤添加条件などを改良し、本発明の配列番
号4又は10で表されるアミノ酸配列の一部を含む蛋白質
のそれぞれに適した逆転写酵素−ポリメラーゼ連鎖反応
(以下RT-PCRという)を行うことにより、該金属プロテ
アーゼの全長cDNAまたはその一部を得ることができる。
もしくは、本発明の金属プロテアーゼを産生する能力を
有するヒト細胞あるいは組織から調製したmRNAから逆転
写酵素により作製したcDNAあるいは市販の該ヒト細胞あ
るいは組織由来のcDNAを鋳型とした、ポリメラーゼ連鎖
反応(以下、PCRという)を行うことにより、該金属プ
ロテアーゼの全長cDNAまたはその一部を得ることができ
る。さらに、得られた金属プロテアーゼの全長cDNAまた
はその一部を適当な発現ベクターに組み込むことによ
り、宿主細胞で発現させ、該金属プロテアーゼを製造す
ることができる。まず、本発明の金属プロテアーゼの産
生能力を有する細胞あるいは組織から該プロテアーゼを
コードするものを包含するmRNAを既知の方法により抽出
する。抽出法としては、グアニジン・チオシアネート・
ホット・フェノール法、グアニジン・チオシアネート−
グアニジン・塩酸法等が挙げられるが、好ましくはグア
ニジン・チオシアネート塩化セシウム法が挙げられる。
該プロテアーゼの産生能力を有する細胞あるいは組織
は、該プロテアーゼをコードする塩基配列を有する遺伝
子あるいはその一部を用いたノーザンブロッティング
法、該プロテアーゼに特異的な抗体を用いたウエスタン
ブロッティング法などにより特定することができる。mR
NAの精製は常法に従えばよく、例えばmRNAをオリゴ(d
T)セルロースカラムに吸着・溶出させ、精製すること
ができる。さらに、ショ糖密度勾配遠心法等によりmRNA
をさらに分画することもできる。また、mRNAを抽出せず
とも、市販されている抽出精製済みのmRNAを用いても良
い。次に、精製されたmRNAをランダムプライマー、オリ
ゴdTプライマーまたはカスタム合成したプライマーの
存在下で、逆転写酵素反応を行い第1鎖cDNAを合成す
る。この合成は常法によって行うことができる。得られ
た第1鎖cDNAを用い、目的遺伝子の一部の領域をはさん
だ2種類のプライマーを用いてPCRに供し、目的とする
新規金属プロテアーゼDNAを増幅する。また、cDNAを合
成せずとも、市販のcDNAを用いてもよい。得られたDNA
をアガロースゲル電気泳動等により分画する。所望によ
り、上記DNAを制限酸素等で切断し、接続することによ
って目的とするDNA断片を得ることもできる。
Here, the gene encoding the metalloprotease of the present invention, the vector of the present invention, the host cell of the present invention,
The metalloprotease of the present invention, a compound for modifying the activity of the metalloprotease of the present invention, a method for screening a peptide and an antibody, and a method for producing an antibody that reacts with the metalloprotease are described in the following 1) to 4). 1) Method for producing a novel metalloprotease gene a) First method for production-a method using PCR mRNA is extracted from human cells or tissues having the ability to produce the metalloprotease of the present invention. Then this mRNA
Using the metalloprotease mRNA or a part of the mRNA as a template
Two types of primers sandwiching the region are prepared. denatu
The re temperature, conditions for adding a denaturing agent, and the like are improved, and a reverse transcriptase-polymerase chain reaction (hereinafter referred to as RT-PCR) suitable for each of the proteins containing a part of the amino acid sequence represented by SEQ ID NO: 4 or 10 of the present invention. ) To obtain a full-length cDNA of the metalloprotease or a part thereof.
Alternatively, a polymerase chain reaction (hereinafter referred to as a template) using cDNA prepared by reverse transcriptase from mRNA prepared from human cells or tissues capable of producing the metalloprotease of the present invention or commercially available cDNA derived from the human cells or tissues. , PCR) to obtain the full-length cDNA of the metalloprotease or a part thereof. Furthermore, the metal protease can be produced by incorporating the full-length cDNA of the obtained metal protease or a part thereof into an appropriate expression vector and expressing it in a host cell. First, mRNAs including those encoding the protease are extracted from cells or tissues capable of producing the metalloprotease of the present invention by known methods. As the extraction method, guanidine / thiocyanate /
Hot phenol method, guanidine thiocyanate-
A guanidine / hydrochloric acid method and the like can be mentioned, and a guanidine / thiocyanate cesium chloride method is preferable.
Cells or tissues having the protease-producing ability are identified by a Northern blotting method using a gene having a nucleotide sequence encoding the protease or a part thereof, a Western blotting method using an antibody specific to the protease, or the like. be able to. mR
Purification of NA may be carried out according to a conventional method.
T) It can be adsorbed and eluted on a cellulose column and purified. Furthermore, the mRNA was subjected to sucrose density gradient centrifugation, etc.
Can be further fractionated. Instead of extracting mRNA, commercially available extracted and purified mRNA may be used. Next, the purified mRNA is subjected to a reverse transcriptase reaction in the presence of a random primer, an oligo dT primer, or a custom-synthesized primer to synthesize a first-strand cDNA. This synthesis can be performed by a conventional method. The obtained first-strand cDNA is subjected to PCR using two types of primers sandwiching a partial region of the target gene to amplify the target novel metalloprotease DNA. Alternatively, a commercially available cDNA may be used without synthesizing the cDNA. Obtained DNA
Is fractionated by agarose gel electrophoresis or the like. If desired, the target DNA fragment can be obtained by cutting the DNA with restriction oxygen or the like and connecting it.

【0010】b)第2製造法 本発明の遺伝子は上述の製造法の他、常法の遺伝子工学
的手法を用いて製造することもできる。まず、前述の方
法で得たmRNAを鋳型として逆転写酵素を用いて1本鎖cD
NAを合成した後、この1本鎖cDNAから2本鎖cDNAを合成
する。その方法としてはS1ヌクレアーゼ法(Efstrati
adis, A. et al., Cell, 7, 279-288, 1976)、Land法(L
and, H. et al., Nucleic Acids Res., 9, 2251-2266,
1981)、O. Joon Yoo法(Yoo, O. J. et al., Proc. Nat
l. Acad. Sci. USA, 79, 1049-1053, 1983)、Okayama-B
erg法(Okayama, H. and Berg, P., Mol. Cell. Biol.,
2,161-170, 1982)などが挙げられる。次に、上述の方法
で得られる組換えプラスミドを大腸菌、例えばDH5α
株、HB101株、JM109株等に導入して形質転換させて、テ
トラサイクリン、アンピシリン、カナマイシン等に対す
る薬剤耐性を指標として組換体を選択することができ
る。宿主細胞の形質転換は、例えば、宿主細胞が大腸菌
の場合にはHanahanの方法(Hanahan, D. J., Mol. Bio
l., 166, 557-580, 1983)、すなわちCaCl2やMgCl2また
はRbClを共存させて調製したコンピテント細胞に該組換
えDNA体を加える方法により実施することができる。も
ちろん、市販のコンピテント細胞を使用しても構わな
い。なお、ベクターとしてはプラスミド以外にもラムダ
系などのファージベクターも用いることができる。上記
により得られる形質転換株から、目的の新規金属プロテ
アーゼ蛋白質のDNAを有する株を選択する方法として
は、例えば以下に示す各種方法を採用できる。
B) Second Production Method The gene of the present invention can be produced by a conventional genetic engineering technique in addition to the above-mentioned production method. First, using the mRNA obtained by the above method as a template and a single-stranded cD
After synthesizing the NA, a double-stranded cDNA is synthesized from the single-stranded cDNA. The method includes the S1 nuclease method (Efstrati
adis, A. et al., Cell, 7, 279-288, 1976), Land method (L
and, H. et al., Nucleic Acids Res., 9, 2251-2266,
1981), O. Joon Yoo method (Yoo, OJ et al., Proc. Nat.
l. Acad. Sci. USA, 79, 1049-1053, 1983), Okayama-B
erg method (Okayama, H. and Berg, P., Mol.Cell.Biol.,
2,161-170, 1982). Next, the recombinant plasmid obtained by the above-mentioned method is
Strain, HB101 strain, JM109 strain, etc., and transformed, and a recombinant can be selected using drug resistance to tetracycline, ampicillin, kanamycin, or the like as an index. For example, when the host cell is Escherichia coli, the method of Hanahan (Hanahan, DJ, Mol. Bio
l., 166, 557-580, 1983 ), that is, carried out by a method of adding the recombinant DNA material into competent cells prepared in the coexistence of CaCl 2 and MgCl 2 or RbCl. Of course, commercially available competent cells may be used. In addition, a phage vector such as a lambda system can be used in addition to the plasmid. As a method for selecting a strain having the DNA of the desired novel metalloproteinase from the transformants obtained as described above, for example, the following various methods can be adopted.

【0011】 合成オリゴヌクレオチドプローブを用
いるスクリーニング法 本発明の金属プロテアーゼの全部または一部に対応する
オリゴヌクレオチドを合成し(この場合コドン使用頻度
を用いて導いたヌクレオチド配列または考えられるヌク
レオチド配列を組合せた複数個のヌクレオチド配列のど
ちらでもよく、また後者の場合、イノシンを含ませてそ
の種類を減らすこともできる)、これをプローブ(32P
又は33Pで標識する)として、形質転換株のDNAを変性固
定したニトロセルロースフィルターやナイロンフィルタ
ーとハイブリダイズさせ、得られた陽性株を検索して、
これを選択する。 ポリメラーゼ連鎖反応により作製したプローブを用
いるスクリーニング法 本発明の金属プロテアーゼの一部に対応するセンスプラ
イマーとアンチセンスプライマーのオリゴヌクレオチド
を合成し、これらを組合せてポリメラーゼ連鎖反応(Sai
ki, R. K. et al., Science 239, 487-491, 1988)を行
い、目的の金属プロテアーゼの全部又は一部をコードす
るDNA断片を増幅する。ここで用いる鋳型DNAとしては、
該金属プロテアーゼを産生する細胞のmRNAより逆転写反
応にて合成したcDNA、またはゲノムDNAを用いることが
できる。このようにして調製したDNAを断片を32P又は33
Pで標識し、これをプローブとして用いてコロニーハイ
ブリダイゼーションまたはプラークハイブリダイゼーシ
ョンを行うことにより目的のクローンを選択する。 他の動物細胞で新規金属プロテアーゼを産生させて
スクリーニングする方法 形質転換株を培養し、遺伝子を増幅させ、その遺伝子を
動物細胞にトランスフェクトし(この場合、自己複製可
能で転写プロモーター領域を含むプラスミドもしくは動
物細胞の染色体に組み込まれ得るようなプラスミドのい
ずれでもよい)、遺伝子にコードされた蛋白を細胞外に
産生させる。本発明の金属プロテアーゼに対する抗体を
用いて該金属プロテアーゼを検出することにより、元の
形質転換株より目的の金属プロテアーゼをコードするcD
NAを有する株を選択する。 本発明の金属プロテアーゼに対する抗体を用いて選
択する方法 あらかじめ、cDNAを発現ベクターに組込み、形質転換株
の培養上清、細胞内もしくは細胞表面に蛋白を産生さ
せ、本発明の金属プロテアーゼに対する抗体および該抗
体に対する2次抗体を用いて、所望の金属プロテアーゼ
産生株を検出し、目的の株を選択する。 セレクティブ・ハイブリダイゼーション・トランス
レーションの系を用いる方法 形質転換株から得られるcDNAを、ニトロセルロースフィ
ルター等にブロットし本発明の金属プロテアーゼ産生細
胞からのmRNAをハイブリダイズさせた後、cDNAに結合し
たmRNAを解離させ、回収する。回収されたmRNAを蛋白翻
訳系、例えばアフリカツメガエルの卵母細胞への注入
や、ウサギ網状赤血球ライゼートや小麦胚芽等の無細胞
系で蛋白に翻訳させる。本発明の金属プロテアーゼに対
する抗体を用いて検出して、目的の株を選択する。得ら
れた目的の形質転換株より本発明の金属プロテアーゼを
コードするDNAを採取する方法は、公知の方法(Sambroo
k, J. et al., "Molecular Cloning-A Laboratory Manu
al", Cold Spring Harbor Laboratory, NY, 1989) 等の
遺伝子操作実験マニュアルに従い実施できる。例えば細
胞よりプラスミドDNAに相当する画分を分離し、該プラ
スミドDNAよりcDNA領域を切り出すことにより行ない得
る。
Screening Method Using Synthetic Oligonucleotide Probes Oligonucleotides corresponding to all or a part of the metalloprotease of the present invention were synthesized (in this case, nucleotide sequences derived using codon usage or possible nucleotide sequences were combined. may be either of a plurality of nucleotide sequences, also in the latter case, it is also possible to reduce the types by including inosine), this probe (32 P
Or labeling with 33 P), and hybridizing with a nitrocellulose filter or a nylon filter in which the DNA of the transformed strain is denatured and fixed, and searching for the obtained positive strain,
Select this. Screening Method Using Probe Prepared by Polymerase Chain Reaction Oligonucleotides of sense primer and antisense primer corresponding to a part of the metalloprotease of the present invention are synthesized, and these are combined to perform polymerase chain reaction (Sai
ki, RK et al., Science 239, 487-491, 1988) to amplify a DNA fragment encoding all or part of the desired metalloprotease. As the template DNA used here,
CDNA or genomic DNA synthesized by reverse transcription from mRNA of a cell that produces the metalloprotease can be used. The DNA prepared in this manner was fragmented with 32 P or 33
The target clone is selected by labeling with P and performing colony hybridization or plaque hybridization using this as a probe. Method for Screening by Producing a Novel Metal Protease in Other Animal Cells A transformant is cultured, the gene is amplified, and the gene is transfected into an animal cell (in this case, a plasmid capable of self-replication and containing a transcription promoter region). Or a plasmid which can be integrated into the chromosome of an animal cell), and the protein encoded by the gene is produced extracellularly. By detecting the metalloprotease using an antibody against the metalloprotease of the present invention, cD encoding the metalloprotease of interest can be obtained from the original transformant.
Select strains with NA. Method for selecting using an antibody against the metalloprotease of the present invention In advance, cDNA is incorporated into an expression vector, and a protein is produced in the culture supernatant of a transformant, intracellularly or on the cell surface. Using a secondary antibody to the antibody, a desired metalloprotease-producing strain is detected, and a target strain is selected. Method using selective hybridization / translation system cDNA obtained from the transformant, mRNA from the metalloprotease-producing cells of the present invention blotted on a nitrocellulose filter or the like, and then mRNA bound to the cDNA Is dissociated and recovered. The recovered mRNA is translated into protein by a protein translation system, for example, injection into Xenopus oocytes or a cell-free system such as rabbit reticulocyte lysate or wheat germ. The target strain is selected by detection using an antibody against the metalloprotease of the present invention. A method for collecting DNA encoding the metalloprotease of the present invention from the obtained desired transformant is a known method (Sambroo
k, J. et al., "Molecular Cloning-A Laboratory Manu
al ", Cold Spring Harbor Laboratory, NY, 1989), etc. For example, it can be carried out by separating a fraction corresponding to a plasmid DNA from a cell and cutting out a cDNA region from the plasmid DNA.

【0012】c)第3製造法 本発明の金属プロテアーゼ遺伝子は、化学合成法によっ
て製造したDNA断片を結合することによっても製造でき
る。各DNAは、DNA合成機[例えば、Oligo 1000M DNA Sy
nthesizer (Beckman社製)、あるいは、394 DNA/RNA Syn
thesizer (Applied Biosystems社製)など]を用いて合
成することができる。
C) Third Production Method The metalloprotease gene of the present invention can also be produced by joining DNA fragments produced by a chemical synthesis method. Each DNA is used as a DNA synthesizer [for example, Oligo 1000M DNA Sy
nthesizer (Beckman) or 394 DNA / RNA Syn
thesizer (manufactured by Applied Biosystems)].

【0013】d)第4製造法 本発明の金属プロテアーゼ遺伝子は、金属プロテアーゼ
の情報に基づいて、例えばホスファイト・トリエステル
法(Hunkapiller, M. et al., Nature, 10, 105-111, 19
84)等の常法に従い、核酸の化学合成により製造するこ
ともできる。なお、所望アミノ酸に対するコドンはそれ
自体公知であり、その選択も任意でよく、例えば利用す
る宿主のコドン使用頻度を考慮して常法に従い決定でき
る(Crantham, R. et al., Nucleic Acids Res., 9, r43
-r74, 1981)。さらに、これら塩基配列のコドンの一部
改変は、常法に従い、所望の改変をコードする合成オリ
ゴヌクレオチドからなるプライマーを利用したサイトス
ペシフィック・ミュータジェネシス(site specific mut
agenesis) (Mark, D. F. et al., Proc. Natl. Acad. S
ci. USA, 81, 5662-5666, 1984)等に従うことができ
る。
D) Fourth Production Method The metalloprotease gene of the present invention can be prepared, for example, by the phosphite-triester method (Hunkapiller, M. et al., Nature, 10, 105-111, 19) based on information on the metalloprotease.
It can also be produced by chemical synthesis of nucleic acids according to a conventional method such as 84). In addition, the codon for the desired amino acid is known per se, and the selection may be arbitrarily determined. , 9, r43
-r74, 1981). Furthermore, partial modification of the codons of these nucleotide sequences can be performed by a conventional method using site-specific mutagenesis (site specific mutase) using a primer composed of a synthetic oligonucleotide encoding the desired modification.
agenesis) (Mark, DF et al., Proc. Natl. Acad. S
ci. USA, 81, 5662-5666, 1984).

【0014】以上、a)乃至d)により得られるDNAの
配列決定は、例えばマキサム−ギルバートの化学修飾法
(Maxam, A. M. and Gilbert, W., "Methods in Enzymol
ogy", 65, 499-559, 1980)やジデオキシヌクレオチド鎖
終結法(Messing, J. and Vieira, J., Gene, 19, 269-2
76, 1982)等により行うことができる。また、本発明の
ベクター、本発明の宿主細胞、本発明の金属プロテアー
ゼは、下記の方法によって得ることができる。 2)本発明のベクター、本発明の宿主細胞、本発明の金
属プロテアーゼの組み換え蛋白質の製造方法 単離された本発明の金属プロテアーゼをコードする遺伝
子を含む断片は、適当なベクターDNAに再び組込むこと
により、真核生物および原核生物の宿主細胞を形質転換
させることができる。さらに、これらのベクターに適当
なプロモーターおよび形質発現にかかわる配列を導入す
ることにより、それぞれの宿主細胞において遺伝子を発
現させることが可能である。例えば、真核生物の宿主細
胞には、脊椎動物、昆虫、酵母等の細胞が含まれ、脊椎
動物細胞としては、サルの細胞であるCOS細胞(Gluzman,
Y. Cell, 23, 175-182, 1981)やチャイニーズ・ハムス
ター卵巣細胞(CHO)のジヒドロ葉酸レダクターゼ欠損株
(Urlaub, G. and Chasin, L. A., Proc. Natl. Acad.
Sci. USA, 77, 4216-4220, 1980)、ヒト胎児腎臓由来HE
K293細胞および同細胞にEpstein BarrVirusのEBNA-1遺
伝子を導入した293-EBNA細胞(Invitrogen社)等がよく
用いられるが、これらに限定されるわけではない。脊椎
動物細胞の発現ベクターとしては、通常発現しようとす
る遺伝子の上流に位置するプロモーター、RNAのスプ
ライス部位、ポリアデニル化部位および転写終結配列等
を有するものを使用でき、これはさらに必要により複製
起点を有してもよい。該発現ベクターの例としては、S
V40の初期プロモーターを有するpSV2dhfr (Subraman
i, S., et al. Mol. Cell. Biol., 1, 854-864, 198
1)、ヒトのelongation factorプロモーターを有するpEF
-BOS (Mizushima, S. and Nagata, S., Nucleic Acids
Res., 18, 5322, 1990)、cytomegalovirusプロモーター
を有するpCEP4(Invitrogen社製)等を例示できるが、こ
れに限定されない。宿主細胞として、COS細胞を用いる
場合を例に挙げると、発現ベクターとしては、SV40複製
起点を有し、COS細胞において自律増殖が可能であり、
さらに転写プロモーター、転写終結シグナルおよびRNA
スプライス部位を備えたものを用いることができ、例え
ば、 pME18S (Maruyama, K. and Takebe,Y., Med. Immu
nol., 20, 27-32, 1990)、pEF-BOS (Mizushima, S. and
Nagata, S., Nucleic AcidsRes., 18, 5322, 1990)、
pCDM8(Seed, B., Nature, 329, 840-842, 1987) 等が挙
げられる。該発現ベクターはDEAE−デキストラン法(Lut
hman, H. and Magnusson, G.,, Nucleic Acids Res., 1
1, 1295-1308, 1983)、リン酸カルシウム−DNA共沈殿法
(Graham, F. L. and van der Ed, A. J.,, Virology, 5
2, 456-457,1973)、 FuGENETM6 Transfection Reagent
(Boeringer Mannheim社製)を用いた方法、および電気
パスル穿孔法(Neumann, E. et al.,, EMBO J., 1, 841-
845, 1982)等によりCOS細胞に取り込ませることがで
き、かくして所望の形質転換細胞を得ることができる。
As described above, sequencing of the DNA obtained by a) to d) is performed, for example, by the Maxam-Gilbert chemical modification method.
(Maxam, AM and Gilbert, W., "Methods in Enzymol
ogy ", 65, 499-559, 1980) and dideoxynucleotide chain termination (Messing, J. and Vieira, J., Gene, 19, 269-2).
76, 1982). The vector of the present invention, the host cell of the present invention, and the metalloprotease of the present invention can be obtained by the following methods. 2) Method for Producing Recombinant Protein of the Vector of the Present Invention, the Host Cell of the Present Invention, and the Metalloprotease of the Present Invention The isolated fragment containing the gene encoding the metalloprotease of the present invention is re-integrated into an appropriate vector DNA. Thus, eukaryotic and prokaryotic host cells can be transformed. Furthermore, by introducing an appropriate promoter and a sequence related to expression into these vectors, the gene can be expressed in each host cell. For example, eukaryotic host cells include cells of vertebrates, insects, yeasts, and the like, and vertebrate cells include monkey COS cells (Gluzman,
Natl. Acad. Y. Cell, 23, 175-182, 1981) and a dihydrofolate reductase-deficient strain of Chinese hamster ovary cells (CHO) (Urlaub, G. and Chasin, LA, Proc. Natl. Acad.
Sci. USA, 77, 4216-4220, 1980), human fetal kidney-derived HE
K293 cells and 293-EBNA cells (Invitrogen) into which Epstein BarrVirus EBNA-1 gene has been introduced are often used, but not limited thereto. As a vertebrate cell expression vector, those having a promoter, an RNA splice site, a polyadenylation site, a transcription termination sequence, and the like, which are usually located upstream of the gene to be expressed, can be used. May have. Examples of the expression vector include S
PSV2dhfr with the early promoter of V40 (Subraman
i, S., et al. Mol. Cell. Biol., 1, 854-864, 198
1), pEF with human elongation factor promoter
-BOS (Mizushima, S. and Nagata, S., Nucleic Acids
Res., 18, 5322, 1990) and pCEP4 (manufactured by Invitrogen) having a cytomegalovirus promoter, but are not limited thereto. As an example, when a COS cell is used as a host cell, the expression vector has an SV40 origin of replication and is capable of autonomous propagation in the COS cell.
In addition, transcription promoter, transcription termination signal and RNA
Those having a splice site can be used. For example, pME18S (Maruyama, K. and Takebe, Y., Med.
nol., 20, 27-32, 1990), pEF-BOS (Mizushima, S. and
Nagata, S., Nucleic Acids Res., 18, 5322, 1990),
pCDM8 (Seed, B., Nature, 329, 840-842, 1987). The expression vector is a DEAE-dextran method (Lut
hman, H. and Magnusson, G. ,, Nucleic Acids Res., 1
1, 1295-1308, 1983), calcium phosphate-DNA coprecipitation method
(Graham, FL and van der Ed, AJ ,, Virology, 5
2, 456-457,1973), FuGENE TM 6 Transfection Reagent
(Boeringer Mannheim) and electric pulse perforation (Neumann, E. et al. ,, EMBO J., 1, 841-
845, 1982) and the like, and thus a desired transformed cell can be obtained.

【0015】また、宿主細胞としてCHO細胞を用いる場
合には、発現ベクターと共に、G418耐性マーカーとして
機能するneo遺伝子を発現し得るベクター、例えばpRSVn
eo(Sambrook, J. et al., "Molecular Cloning-A Labor
atory Manual", Cold SpringHarbor Laboratory, NY, 1
989)やpSV2-neo(Southern, P. J. and Berg,P., J.,Mo
l. Appl. Genet., 1, 327-341, 1982)等をコ・トランス
フェクトし、G418耐性のコロニーを選択することにより
新規金属プロテアーゼを安定に産生する形質転換細胞を
得ることができる。また、宿主細胞として293-EBNA細胞
を用いる場合には、Epstein Barr Virusの複製起点を有
し、293-EBNA細胞で自己増殖が可能なpCEP4(Invitrogen
社製)などの発現ベクターを用いて所望の形質転換細胞
を得ることができる。上記で得られる所望の形質転換細
胞は、常法に従い培養することができ、該培養により細
胞外に本発明の金属プロテアーゼが生産される。該培養
に用いられる培地としては、採用した宿主細胞に応じて
慣用される各種のものを適宜選択でき、例えば上記COS
細胞であればRPMI-1640培地やダルベッコ修飾イーグル
最小必須培地(DMEM)等の培地に必要に応じ牛胎児血清(F
BS)等の血清成分を添加したものを使用できる。また、
上記293-EBNA細胞であれば牛胎児血清(FBS)等の血清成
分を添加したダルベッコ修飾イーグル最小必須培地(DME
M)等の培地にG418を加えたものを使用できる。上記によ
り、形質転換細胞の細胞外に生産される本発明の金属プ
ロテアーゼは、該金属プロテアーゼの物理的性質や生化
学的性質等を利用した各種の公知の分離操作法により、
分離・精製することができる。該方法としては、具体的
には例えば該金属プロテアーゼを含む培養液を通常の蛋
白沈殿剤による処理、限外濾過、分子ふるいクロマトグ
ラフィー(ゲル濾過)、吸着クロマトグラフィー、イオ
ン交換体クロマトグラフィー、アフィニティクロマトグ
ラフィー、高速液体クロマトグラフィー(HPLC)等の各種
液体クロマトグラフィー、透析法、これらの組合せ等を
例示できる。本発明の金属プロテアーゼはマーカー配列
とインフレームで融合して発現させることで、該金属プ
ロテアーゼの発現の確認、精製等が可能になる。マーカ
ー配列としては、例えば、FLAG epitope、Hexa-Histidi
ne tag、Hemagglutinin tag、myc epitopeなどがある。
また、マーカー配列と該金属プロテアーゼの間にエンテ
ロキナーゼ、ファクターXa、トロンビンなどのプロテア
ーゼが認識する特異的なアミノ酸配列を挿入することに
より、マーカー配列部分をこれらのプロテアーゼにより
切断除去する事が可能である。
When a CHO cell is used as a host cell, a vector capable of expressing a neo gene functioning as a G418 resistance marker together with an expression vector, for example, pRSVn
eo (Sambrook, J. et al., "Molecular Cloning-A Labor
atory Manual ", Cold SpringHarbor Laboratory, NY, 1
989) and pSV2-neo (Southern, PJ and Berg, P., J., Mo.
l. Appl. Genet., 1, 327-341, 1982) and the like, and by selecting G418-resistant colonies, a transformed cell stably producing a novel metalloprotease can be obtained. When 293-EBNA cells are used as host cells, pCEP4 (Invitrogen) which has an Epstein Barr Virus replication origin and is capable of self-replication in 293-EBNA cells
Desired transformants can be obtained using an expression vector such as The desired transformed cells obtained above can be cultured according to a conventional method, and the culture produces the metalloprotease of the present invention extracellularly. The medium used for the culture can be appropriately selected from various conventional ones depending on the host cell employed.
If it is a cell, use a medium such as RPMI-1640 medium or Dulbecco's Modified Eagle's Minimum Essential Medium (DMEM) if necessary.
Those containing serum components such as BS) can be used. Also,
If the above 293-EBNA cells, Dulbecco's Modified Eagle Minimum Essential Medium (DME) supplemented with serum components such as fetal bovine serum (FBS)
A medium obtained by adding G418 to a medium such as M) can be used. As described above, the metalloprotease of the present invention produced extracellularly in transformed cells can be obtained by various known separation procedures utilizing the physical properties and biochemical properties of the metalloprotease.
It can be separated and purified. As the method, specifically, for example, a culture solution containing the metal protease is treated with a usual protein precipitant, ultrafiltration, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchanger chromatography, affinity Examples include various types of liquid chromatography such as chromatography and high performance liquid chromatography (HPLC), dialysis methods, and combinations thereof. The expression and fusion of the metal protease of the present invention can be confirmed by in-frame fusion with the marker sequence and expression of the metal protease. As the marker sequence, for example, FLAG epitope, Hexa-Histidi
There are ne tag, Hemagglutinin tag and myc epitope.
In addition, by inserting a specific amino acid sequence recognized by a protease such as enterokinase, factor Xa, or thrombin between the marker sequence and the metalloprotease, the marker sequence can be cleaved and removed by these proteases. is there.

【0016】3)本発明の金属プロテアーゼの活性を修
飾する化合物、ペプチド及び抗体のスクリーニング方法 本発明のスクリーニング方法は、少なくとも前記により
調製された金属プロテアーゼを用いて、該金属プロテア
ーゼの生化学的な特性に応じた金属プロテアーゼ活性の
修飾の指標を測定する系に被験物質を添加し、該指標を
測定する手段を含む。ここで、該測定系としては、公知
の各種プロテアーゼ測定系(鶴 大典・船津 勝編 生
物化学実験法30 「蛋白質分解酵素I」 学会出版センタ
ー、1993、同31 「蛋白質分解酵素I」 学会出版センタ
ー、1993)を挙げることができ、該文献に記載された処
理方法に従い、あるいは準じて、あるいは応用して実施
することにより被験物質のスクリーニングを行うことが
できる。また、後記実施例4-2に記載したプロテアーゼ
活性測定法を使用してスクリーニングを行うこともでき
る。被験物質としては従来金属プロテアーゼ阻害活性を
有することは知られているが該新規金属プロテアーゼの
活性に対して修飾するか不明な化合物またはペプチド、
あるいはケミカルファイルに登録されている種々の公知
化合物やペプチド、コンビナトリアル・ケミストリー技
術(Terrett, N. K. et al., Tetrahedron,51, 8135-81
37, 1995)によって得られた化合物群やファージ・ディ
スプレイ法(Felici, F. et al., J. Mol. Biol., 222,
301-310, 1991)などを応用して作成されたランダム・
ペプチド群を用いることができる。また、微生物の抽出
物や培養上清、植物、海洋生物由来の天然成分、動物組
織抽出物などもスクリーニングの対象となる。あるいは
本発明のスクリーニング法により選択された化合物また
はペプチドを化学的または生物学的に修飾した化合物ま
たはペプチドを用いうる。本発明の金属プロテアーゼの
活性を修飾する化合物、ペプチド及び抗体のスクリーニ
ングには、本発明のプロテアーゼまたはその部分ペプチ
ドの基質となるものであればいずれのものでも使用可能
である。例えば、カゼイン、コラーゲン、フイブロネク
チン、ゼラチン等の蛋白、インスリン等の生理活性ペプ
チドや合成ペプチド、蛍光もしくは放射線標識したゼラ
チン、コラーゲンや合成ペプチド、蛍光団、発色団を有
する合成基質等が用いられる。ここでいう合成ペプチド
とは非天然型アミノ酸を含むものも含有する。Knightの
基質など、市販の基質も用いられる。該金属プロテアー
ゼの生化学的な特性に応じた金属プロテアーゼ活性の修
飾の指標を測定する系として、上記の基質と本発明の金
属プロテアーゼ蛋白を適当な緩衝液中で混合し、反応さ
せた後、それぞれの基質にあった方法でプロテアーゼ活
性を検出する。たとえば、非標識の基質を用いる場合
は、SDS-PAGE、HPLC、Zymography等で分解物を検出する
ことが可能であるし、放射線標識した基質や蛍光団、発
光団を有する基質を用いる場合は、液体シンチレーショ
ンカウンター、蛍光検出器、発光検出器等、適当な検出
器を用いることにより、プロテアーゼ活性を検出するこ
とができる。
3) Method for Screening Compound, Peptide and Antibody that Modifies the Activity of Metal Protease of the Present Invention The screening method of the present invention uses at least the metal protease prepared as described above, The system includes a means for adding a test substance to a system for measuring an index of modification of metalloprotease activity in accordance with the property, and measuring the index. Here, as the measuring system, various known protease measuring systems (Dainori Tsuru, Masaru Funatsu, Biochemistry Experiment Method 30, “Protease I”, Gakkai Shuppan Center, 1993, and 31 “Protease I,” Gakkai Shuppan Center , 1993), and a test substance can be screened by carrying out according to, according to, or according to the treatment method described in the literature. Screening can also be performed using the protease activity measurement method described in Example 4-2 described later. As a test substance, a compound or peptide which is conventionally known to have a metalloprotease inhibitory activity but is not known to modify the activity of the novel metalloprotease,
Alternatively, various known compounds and peptides registered in the chemical file, combinatorial chemistry technology (Terrett, NK et al., Tetrahedron, 51, 8135-81)
37, 1995) and the phage display method (Felici, F. et al., J. Mol. Biol., 222,
301-310, 1991)
Peptides can be used. In addition, microbial extracts and culture supernatants, natural components derived from plants and marine organisms, animal tissue extracts, and the like are also targets for screening. Alternatively, a compound or peptide obtained by chemically or biologically modifying the compound or peptide selected by the screening method of the present invention can be used. In screening for compounds, peptides and antibodies that modify the activity of the metalloprotease of the present invention, any compounds that can serve as substrates for the protease of the present invention or its partial peptides can be used. For example, proteins such as casein, collagen, fibronectin and gelatin, physiologically active peptides and synthetic peptides such as insulin, fluorescent or radiolabeled gelatin, collagen and synthetic peptides, and synthetic substrates having a fluorophore and a chromophore are used. The term "synthetic peptide" used herein includes those containing unnatural amino acids. Commercially available substrates such as Knight's substrate can also be used. As a system for measuring an index of modification of the metal protease activity according to the biochemical properties of the metal protease, the above substrate and the metal protease protein of the present invention are mixed in an appropriate buffer, and reacted, Protease activity is detected by a method appropriate for each substrate. For example, when using an unlabeled substrate, it is possible to detect a degradation product by SDS-PAGE, HPLC, Zymography, or the like, and when using a radiolabeled substrate, a fluorophore, or a substrate having a luminophore, Protease activity can be detected by using an appropriate detector such as a liquid scintillation counter, a fluorescence detector, and a luminescence detector.

【0017】4)本発明の金属プロテアーゼに反応する
抗体の作成方法 本発明の金属プロテアーゼに反応する抗体、例えばポリ
クローナル抗体、モノクローナル抗体は、各種動物に該
新規金属プロテアーゼや該金属プロテアーゼの断片を直
接投与することで得ることができる。また、本発明金属
プロテアーゼをコードする遺伝子を導入したプラスミド
を用いてDNAワクチン法(Raz, E. et al., Proc. Natl.
Acad. Sci. USA, 91, 9519-9523, 1994; Donnelly, J.
J. et al., J. Infect. Dis., 173, 314-320, 1996)
によっても得ることができる。ポリクローナル抗体は該
金属プロテアーゼまたはその断片をフロイント完全アジ
ュバントなどの適当なアジュバントに乳濁し、腹腔、皮
下また静脈等に免疫して感作した動物、例えばウサギ、
ラット、ヤギ、またはニワトリ等の血清または卵から製
造される。このように製造されたポリクローナル抗体は
常法の蛋白質単離精製法により、分離精製することがで
き、常法の蛋白質単離精製法としては例えば、遠心分
離、透析、硫酸アンモニウムによる塩析、DEAE-セルロ
ース、ハイドロキシアパタイト、プロテインAアガロー
ス等によるクロマトグラフィー法が挙げられる。モノク
ローナル抗体は、ケーラーとミルスタインの細胞融合法
(Kohler, G. and Milstein, C., Nature, 256, 495-49
7, 1975)により当業者が容易に製造することが可能で
ある。すなわち、本発明金属プロテアーゼまたはその断
片をフロイント完全アジュバントなどの適当なアジュバ
ントに乳濁した乳濁液を数週間おきにマウスの腹腔、皮
下または静脈に数回繰り返し接種することにより免疫す
る。最終免疫後、脾臓細胞を取り出し、ミエローマ細胞
と融合してハイブリドーマを作製する。ハイブリドーマ
を得るためのミエローマ細胞としては、ヒポキサンチン
ーグアニンーホスホリボシルトランスフェラーゼ欠損や
チミジンキナーゼ欠損のようなマーカーを持つミエロー
マ細胞、例えば、マウスミエローマ細胞株P3X63Ag8.U
1、を利用する。また、融合剤としてはポリエチレング
リーコールを利用する。さらにはハイブリドーマ作製に
おける培地として、イーグル最小必須培地、ダルベッコ
修飾最小必須培地、RPMI-1640などの通常よく用いられ
ているものに適宜10〜30%の牛胎児血清を加えて用い
る。融合株はHAT選択法により選択する。ハイブリドー
マのスクリーニングは培養上清を用い、ELISA法、免疫
組織染色法などの周知の方法または前記のスクリーニン
グ法により行い、目的の抗体を分泌しているハイブリド
ーマのクローンを選択する。また、限界希釈法によっ
て、サブクローニングを繰り返すことによりハイブリド
ーマの単クローン性を保証する。このようにして得られ
るハイブリドーマは培地中で数日間、あるいはプリスタ
ンで前処理したBALB/c系マウスの腹腔内で10〜20日培養
することで精製可能な量の抗体が産生される。このよう
に製造されたモノクローナル抗体は培養上清あるいは腹
水から常法の蛋白質単離精製法により分離精製すること
ができる。
4) Method for Producing Antibodies Reacting with the Metalloprotease of the Present Invention Antibodies that react with the metalloprotease of the present invention, such as polyclonal antibodies and monoclonal antibodies, can be prepared by directly applying the novel metalloprotease and fragments of the metalloprotease to various animals It can be obtained by administration. Further, a DNA vaccine method (Raz, E. et al., Proc. Natl.
Acad. Sci. USA, 91, 9519-9523, 1994; Donnelly, J.
J. et al., J. Infect. Dis., 173, 314-320, 1996)
Can also be obtained by A polyclonal antibody is prepared by emulsifying the metal protease or a fragment thereof in a suitable adjuvant such as Freund's complete adjuvant and immunizing the peritoneal cavity, subcutaneously or intravenously, for example, a rabbit,
Manufactured from serum or eggs of rats, goats or chickens. The polyclonal antibody thus produced can be separated and purified by conventional protein isolation and purification methods.Examples of conventional protein isolation and purification methods include centrifugation, dialysis, salting out with ammonium sulfate, DEAE- Chromatography using cellulose, hydroxyapatite, protein A agarose and the like. Monoclonal antibodies were obtained using the Kohler and Milstein cell fusion method (Kohler, G. and Milstein, C., Nature, 256, 495-49).
7, 1975) can be easily manufactured by those skilled in the art. That is, immunization is carried out by repeatedly inoculating a mouse intraperitoneally, subcutaneously or intravenously several times with an emulsion obtained by emulsifying the metalloprotease of the present invention or a fragment thereof in an appropriate adjuvant such as Freund's complete adjuvant every few weeks. After the final immunization, the spleen cells are removed and fused with myeloma cells to produce a hybridoma. Myeloma cells for obtaining hybridomas include myeloma cells having markers such as hypoxanthine-guanine-phosphoribosyltransferase deficiency and thymidine kinase deficiency, for example, mouse myeloma cell line P3X63Ag8.U
1, use. In addition, polyethylene glycol is used as a fusion agent. Further, as a medium for preparing a hybridoma, a commonly used medium such as Eagle's minimum essential medium, Dulbecco's modified minimum essential medium, and RPMI-1640 is used by appropriately adding 10 to 30% fetal bovine serum. The fusion strain is selected by the HAT selection method. Hybridoma screening is performed by using well-known methods such as ELISA method and immunohistochemical staining method or the above-mentioned screening method using the culture supernatant, and a clone of the hybridoma secreting the desired antibody is selected. In addition, the monoclonality of the hybridoma is guaranteed by repeating subcloning by the limiting dilution method. The hybridoma thus obtained is cultured in a medium for several days or in the abdominal cavity of a BALB / c mouse pretreated with pristane for 10 to 20 days to produce a purifiable amount of the antibody. The monoclonal antibody thus produced can be separated and purified from the culture supernatant or ascites by a conventional protein isolation and purification method.

【0018】以上のように分離精製された抗体につき、
常法により、ペプシン、パパイン等の蛋白質分解酵素に
よって消化を行い、引き続き常法の蛋白質単離精製法に
より分離精製することで、活性のある抗体の一部分を含
む抗体断片、例えば、F(ab') 2、Fab、Fab'、Fvを得るこ
とができる。さらには、本発明金属プロテアーゼに反応
する抗体を、クラクソンらやゼベデらの方法(Clackso
n, T. et al., Nature, 352, 624-628, 1991; Zebedee,
S. et al., Proc. Natl. Acad. Sci. USA, 89, 3175-3
179, 1992)によりsingle chain FvやFabとして得るこ
とも可能である。また、マウスの抗体遺伝子をヒト抗体
遺伝子に置き換えたトランスジェニックマウス(Lonber
g, N. et al., Nature,368, 856-859, 1994)に免疫す
ることでヒト抗体を得ることも可能である。
With respect to the antibody separated and purified as described above,
Proteolytic enzymes such as pepsin, papain, etc.
Therefore, digestion is performed, and then the protein isolation and purification method is continued.
By separating and purifying more,
Antibody fragments, e.g., F (ab ') Two, Fab, Fab ', Fv
Can be. Furthermore, it reacts with the metalloprotease of the present invention.
Antibodies are used in the method of Clackson et al.
n, T. et al., Nature, 352, 624-628, 1991; Zebedee,
 S. et al., Proc. Natl. Acad. Sci. USA, 89, 3175-3.
179, 1992) to obtain single chain Fv or Fab.
Both are possible. In addition, the mouse antibody gene is replaced with a human antibody
Transgenic mice (Lonber
g, N. et al., Nature, 368, 856-859, 1994).
Thus, it is also possible to obtain a human antibody.

【0019】本発明には、金属プロテアーゼまたは前記
スクリーニング法により選択された金属プロテアーゼの
活性を有意に修飾する化合物、ペプチド及び抗体を有効
成分とする医薬が包含される。本発明の金属プロテアー
ゼ活性修飾化合物、ペプチド、抗体または抗体断片を有
効成分とする製剤は、該有効成分のタイプに応じて、そ
れらの製剤化に通常用いられる担体や賦形剤、その他の
添加剤を用いて調製されうる。投与は錠剤、丸剤、カプ
セル剤、顆粒剤、細粒剤、散剤、経口用液剤などによる
経口投与、あるいは静注、筋注などの注射剤、坐剤、経
皮投与剤、経粘膜投与剤などによる非経口投与が挙げら
れる。特に胃で消化されるペプチドにあっては静注等の
非経口投与が望まれる。本発明による経口投与のための
固体組成物は、一つ又はそれ以上の活性物質が少なくと
も一つの不活性な希釈剤、例えば乳糖、マンニトール、
ブドウ糖、微結晶セルロース、ヒドロキシプロピルセル
ロース、デンプン、ポリビニルピロリドン、メタケイ酸
アルミン酸マグネシウムなどと混合される。組成物は常
法に従って、不活性な希釈剤以外の添加剤、例えば滑沢
剤、崩壊剤、安定化剤、溶解乃至溶解補助剤などを含有
していてもよい。錠剤や丸剤は必要により糖衣又は胃溶
性若しくは腸溶性物質などのフィルムで被覆していても
よい。
The present invention includes a drug containing as an active ingredient a compound, a peptide or an antibody which significantly modifies the activity of a metal protease or a metal protease selected by the above screening method. Formulations containing the metalloprotease activity-modifying compound, peptide, antibody or antibody fragment of the present invention as an active ingredient may be, depending on the type of the active ingredient, carriers, excipients, and other additives that are commonly used in the formulation thereof. Can be prepared using For administration, tablets, pills, capsules, granules, fine granules, powders, oral liquids, etc., or injections such as intravenous and intramuscular injections, suppositories, transdermal preparations, transmucosal preparations And parenteral administration. In particular, parenteral administration such as intravenous injection is desired for peptides digested in the stomach. A solid composition for oral administration according to the present invention may comprise one or more active substances in at least one inert diluent, such as lactose, mannitol,
It is mixed with glucose, microcrystalline cellulose, hydroxypropyl cellulose, starch, polyvinylpyrrolidone, magnesium aluminate metasilicate and the like. The composition may contain additives other than the inert diluent, such as a lubricant, a disintegrant, a stabilizer, and a solubilizing or solubilizing agent, according to a conventional method. Tablets and pills may be coated with sugar coating or a film of a gastric or enteric substance, if necessary.

【0020】経口のための液体組成物は、乳濁剤、溶液
剤、懸濁剤、シロップ剤、エリキシル剤を含み、一般的
に用いられる不活性な希釈剤、例えば精製水、エタノー
ルを含む。該組成物は不活性な希釈剤以外の添加剤、例
えば湿潤剤、懸濁剤、甘味剤、芳香剤、防腐剤を含有し
ていてもよい。非経口のための注射剤としては、無菌の
水性または非水性の溶液剤、懸濁剤、乳濁剤を含む。水
溶性の溶液剤や懸濁剤には、希釈剤として例えば注射用
蒸留水、生理用食塩水などが含まれる。非水溶性の溶液
剤、懸濁剤の希釈剤としてはプロピレングリコール、ポ
リエチレングリコール、オリーブ油のような植物油、エ
タノールのようなアルコール類、ポリソルベート80等
を含む。該組成物はさらに湿潤剤、乳化剤、分散剤、安
定化剤、溶解乃至溶解補助剤、防腐剤などを含んでいて
もよい。組成物は例えばバクテリア保留フィルターを通
す濾過、殺菌剤の配合、または照射によって無菌化され
る。また、無菌の固体組成物を製造し、使用に際し無菌
水その他の無菌用注射用媒体に溶解し使用することもで
きる。投与量は前記スクリーニング法により選択された
有効成分の活性の強さ、症状、投与対象の年齢、性別等
を考慮して適宜決定される。
Liquid compositions for oral use include emulsions, solutions, suspensions, syrups and elixirs, and include commonly used inert diluents such as purified water and ethanol. The composition may contain additives other than inert diluents, such as wetting agents, suspending agents, sweetening agents, flavoring agents, preservatives. Parenteral injections include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. The water-soluble solutions and suspensions include, for example, distilled water for injection, physiological saline, and the like as diluents. Examples of diluents for non-aqueous solutions and suspensions include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, and polysorbate 80. The composition may further contain a wetting agent, an emulsifier, a dispersant, a stabilizer, a solubilizing or solubilizing agent, a preservative and the like. The composition is sterilized by, for example, filtration through a bacteria-retaining filter, blending of a bactericide, or irradiation. In addition, a sterile solid composition can be produced and dissolved in sterile water or another sterile injectable medium before use. The dose is appropriately determined in consideration of the activity intensity, symptoms, age, sex, and the like of the active ingredient selected by the screening method.

【0021】[0021]

【実施例】以下、本発明を更に具体的に説明する。特に
断りのない限り、公知の方法(Sambrook, J. et al., "M
olecular Cloning-A Laboratory Manual", Cold Spring
Harbor Laboratory, NY, 1989) 等の遺伝子操作実験マ
ニュアルに従ったが、本発明は実施例に限定されるもの
ではない。
Hereinafter, the present invention will be described more specifically. Unless otherwise noted, known methods (Sambrook, J. et al., "M
olecular Cloning-A Laboratory Manual ", Cold Spring
Harbor Laboratory, NY, 1989), etc., but the present invention is not limited to the examples.

【0022】(実施例1)新規ヒトADAM型金属金属プロ
テアーゼ(MDTS4)の全長ORF配列の決定 新規ヒトADAM型金属プロテアーゼMDTS4全長蛋白翻訳領
域(以下ORFとする)配列は、ヒト脊髄由来のcDNAクロー
ン(Clontch社製)、さらにそれらにより取得した配列を
用いたrapid amplification of cDNA ends(以下、RACE
とする)により取得した配列をつなぎ合わせることによ
り決定した。ヒト脊髄由来cDNAライブラリーのスクリー
ニングには、配列番号3の848番から1144番の塩基に対応
するDNA断片をプローブにした。プローブDNA断片の32P
標識および精製は、それぞれ、BcaBESTTM Labeling Kit
(宝酒造社製)、NICKTMカラム(アマシャム ファルマシ
ア バイオテク社製)を用いて行い、比活性5×108 cpm/
μg以上の32P標識プローブを調製した。まず、ヒト脊髄
由来cDNAライブラリー(human Brain spinal cord 5-st
rech plus; Clontch社製、カタログ番号:HL5001a、ロ
ット番号:46027)約120万クローンを対象にスクリーニ
ングを実施した。具体的には、まず、Hybond N+(アマ
シャム ファルマシア バイオテク社製)添付の指示書に
従い、Hybond N+のナイロン膜へプラークを転写、アル
カリ処理によりDNAを固定した後、65℃で18時間3 2P標識
プローブとのハイブリダイゼーションを行い、2×SSPE,
0.1×SDS, 室温15分2回、1×SSPE, 0.1×SDS, 65℃15
分2回、0.1×SSPE, 0.1×SDS, 65℃15分2回の条件で洗
浄した。続いて、ナイロン膜をX線フィルムに2日間露
出した後、X線フィルムを現像し、陽性シグナルを検出
した。陽性シグナルの位置から回収したファージを対象
に、上記と同じ条件で2次スクリーニングを行った。そ
の結果、陽性クローン24-Aを取得した。クローン24-Aは
配列番号5の766番から2382番の塩基配列に該当すること
がわかった。3'側の残りの配列は、MDTS4の3'側部分配
列(配列番号5の2383番以降) を含有するcDNAクローン:
IMAGEクローン番号163187(ATCC Cat. No. 401100)を
購入し、このクローンの塩基配列を決定することにより
配列番号5の2383番から2853番の部分を取得した。5'側
の配列は2セットのRACEにより生成したDNA断片を直接塩
基配列解析することにより決定した。RACEはClontech社
のヒト胎盤のMarathon-ReadyTM cDNAを鋳型として、2回
のPCRを1セットとして実施した。第1セット1回目のPCR
は、ヒト胎盤のMarathon-ReadyTM cDNAを鋳型(Clontch
社製)、配列番号6で示されるオリゴDNA、配列番号1で示
されるオリゴDNA(以下、AP-1とする)をプライマーとし
て、LA-TaqTM(宝酒造社製)を用いて、94℃2分の後、9
8℃20秒、72℃2分のサイクル5回、98℃20秒、70℃2分の
サイクル5回、98℃20秒、68℃2分のサイクル30回という
条件で行った。この1回目の反応液をTE緩衝液で50倍希
釈した溶液5μlを鋳型に、配列番号7で示されるオリゴD
NA、配列番号2で示されるオリゴDNA(以下、AP-2とす
る)をプライマーとして、1回目と同じ条件のサイクル
で2回目のPCR反応を行った。第2セットの1回目のPCRは
配列番号8で示されるオリゴDNAとAP-1をプライマーと
し、2回目のPCRは配列番号9で示されるオリゴDNAとAP-2
をプライマーとして、上記第1セットと同じ条件で行っ
た。これにより生成した断片の塩基配列を決定すること
により、ようやくインフレームに翻訳開始Metに対応す
るコドンに到達し、配列番号5の1番から765番の塩基配
列の部分を取得した。以上より取得した配列をつなぎ合
わせることで、MDTS4全長ORFは2853bpからなり(配列番
号5)、950アミノ酸からなる蛋白をコードすることが判
明した(配列番号4)。
(Example 1) Determination of full-length ORF sequence of novel human ADAM-type metalloprotease (MDTS4) The novel human ADAM-type metalloprotease MDTS4 full-length protein translation region (hereinafter referred to as ORF) sequence is a cDNA clone derived from human spinal cord. (Manufactured by Clontch) and rapid amplification of cDNA ends (hereinafter, RACE
) Were determined by connecting the sequences obtained in the above. For screening of a human spinal cord-derived cDNA library, a DNA fragment corresponding to nucleotides 848 to 1144 of SEQ ID NO: 3 was used as a probe. 32 P of probe DNA fragment
Labeling and purification, respectively, BcaBEST TM Labeling Kit
(Manufactured by Takara Shuzo) and NICK column (manufactured by Amersham Pharmacia Biotech), and the specific activity was 5 × 10 8 cpm /
More than 32 μg of 32 P-labeled probe was prepared. First, a human spinal cord-derived cDNA library (human Brain spinal cord 5-st
rech plus; Clontch, catalog number: HL5001a, lot number: 46027) About 1.2 million clones were screened. Specifically, first, Hybond N + in accordance with (Amersham Pharmacia Biotech Ltd.) attached instructions, transferring the plaques to Hybond N + nylon membrane, after fixing the DNA by alkali treatment, 18 hours 3 2 at 65 ° C. Hybridization with P-labeled probe was performed and 2 × SSPE,
0.1 × SDS, room temperature twice for 15 minutes, 1 × SSPE, 0.1 × SDS, 65 ° C15
Washing was performed twice, 0.1 × SSPE, 0.1 × SDS, twice at 65 ° C. for 15 minutes. Subsequently, after exposing the nylon membrane to the X-ray film for 2 days, the X-ray film was developed and a positive signal was detected. Secondary screening was performed on the phage recovered from the position of the positive signal under the same conditions as described above. As a result, a positive clone 24-A was obtained. Clone 24-A was found to correspond to the nucleotide sequence of positions 766 to 2382 of SEQ ID NO: 5. The remaining 3'-side sequence is a cDNA clone containing the 3'-side partial sequence of MDTS4 (from position 2383 of SEQ ID NO: 5):
IMAGE clone number 163187 (ATCC Cat. No. 401100) was purchased, and the nucleotide sequence of this clone was determined to obtain the portion of SEQ ID NO: 5 from position 2383 to position 2853. The sequence on the 5 'side was determined by direct nucleotide sequence analysis of the DNA fragments generated by the two sets of RACE. RACE was performed using Clontech human placenta Marathon-Ready cDNA as a template and two rounds of PCR as one set. First PCR of the first set
The human placenta Marathon-Ready TM cDNA template (Clontch
Using the oligo DNA represented by SEQ ID NO: 6 and the oligo DNA represented by SEQ ID NO: 1 (hereinafter referred to as AP-1) as primers using LA-Taq (manufactured by Takara Shuzo) at 94 ° C. After a minute, 9
The cycle was performed at 8 ° C for 20 seconds, 72 ° C for 2 minutes 5 times, 98 ° C for 20 seconds, 70 ° C for 2 minutes 5 times, 98 ° C for 20 seconds, and 68 ° C for 2 minutes 30 times. Oligo D represented by SEQ ID NO: 7 was prepared using 5 μl of a solution obtained by diluting the first reaction solution 50-fold with TE buffer as a template.
A second PCR reaction was performed using the oligo DNA represented by SEQ ID NO: 2 (hereinafter referred to as AP-2) as a primer in the same cycle as the first cycle. The first PCR of the second set was performed using the oligo DNA represented by SEQ ID NO: 8 and AP-1 as primers, and the second PCR was performed by using the oligo DNA represented by SEQ ID NO: 9 and AP-2.
Was used as a primer under the same conditions as in the first set. By determining the nucleotide sequence of the fragment thus generated, the codon corresponding to the translation initiation Met was finally reached in-frame, and a portion of the nucleotide sequence from No. 1 to No. 765 of SEQ ID NO: 5 was obtained. By joining the sequences obtained as described above, the MDTS4 full-length ORF was found to consist of 2853 bp (SEQ ID NO: 5) and encode a protein consisting of 950 amino acids (SEQ ID NO: 4).

【0023】(実施例2)新規ヒトADAM型金属プロテア
ーゼ(MDTS5)の全長ORF配列の決定 新規ヒトADAM型ヒト金属プロテアーゼMDTS5の塩基配列
は、配列番号11で示すMDTS5の1番から1443番の塩基配列
を含有するDNA断片Aと1354番から3618番の塩基配列を
含有するDNA断片BををPCRで生成し、塩基配列を決定す
ることにより取得した。具体的には、DNA断片Aは、ヒ
ト脳のMarathon-ReadyTM cDNA(Clontech社製)を鋳
型、配列番号18で示されるオリゴDNAと配列番号19で示
されるオリゴDNAをプライマーとし、Native pfu DNAポ
リメラーゼ(Stratagene社製)を用い、94℃2分の後、9
8℃30秒、65℃30秒、74℃3分のサイクルを35回、74℃10
分の条件のPCRで生成した。DNA断片Bは、ヒト脳のMara
thon-ReadyTM cDNA(Clontech社製)を鋳型、配列番号2
1で示されるオリゴDNAと配列番号22で示されるオリゴDN
Aをプライマーとして、PyroBestTM DNA(宝酒造社製)
を用い、94℃2分の後、98℃10秒、68℃3分のサイクルを
40回、68℃7分という条件のPCRで生成した。これよりMD
TS5全長ORFは3618bpからなり(配列番号11)、1205アミノ
酸からなる蛋白をコードすることが判明した(配列番号1
0)。以上の操作により取得した新規ADAM型蛋白質MDTS
4、MDTS5はお互いに相同性を示し、報告されているADAM
ファミリーの中ではマウスADAMTS-1と最も高いアミノ酸
配列レベルでの相同性を示し、そのドメイン構造も、N
末から分泌シグナル配列、プロペプチド、金属プロテア
ーゼ様ドメイン、ディスインテグリン様ドメイン、TSP-
1繰り返し配列と同じであった。
(Example 2) Determination of full-length ORF sequence of novel human ADAM-type metalloprotease (MDTS5) The nucleotide sequence of novel human ADAM-type human metalloprotease MDTS5 is represented by nucleotides 1 to 1443 of MDTS5 shown in SEQ ID NO: 11. A DNA fragment A containing the sequence and a DNA fragment B containing the nucleotide sequence from Nos. 1354 to 3618 were generated by PCR and the nucleotide sequences were determined. Specifically, the DNA fragment A was prepared by using a human brain Marathon-Ready cDNA (manufactured by Clontech) as a template, an oligo DNA represented by SEQ ID NO: 18 and an oligo DNA represented by SEQ ID NO: 19 as primers, and Native pfu DNA After 2 minutes at 94 ° C, use polymerase (Stratagene)
35 cycles of 8 ° C for 30 seconds, 65 ° C for 30 seconds, and 74 ° C for 3 minutes, 74 ° C for 10 seconds
It was generated by PCR under the conditions of minutes. DNA fragment B is from human brain Mara
thon-Ready cDNA (Clontech) as template, SEQ ID NO: 2
Oligo DNA represented by 1 and oligo DN represented by SEQ ID NO: 22
PyroBest DNA (Takara Shuzo) using A as a primer
After 2 minutes at 94 ° C, cycle at 98 ° C for 10 seconds and at 68 ° C for 3 minutes.
It was generated by PCR for 40 times at 68 ° C. for 7 minutes. MD from this
The full-length TS5 ORF consists of 3618 bp (SEQ ID NO: 11) and was found to encode a protein consisting of 1205 amino acids (SEQ ID NO: 1).
0). MDTS, a novel ADAM protein obtained by the above procedure
4.MDTS5 shows homology to each other and reported ADAM
It shows the highest homology at the amino acid sequence level with mouse ADAMTS-1 in the family, and its domain structure is N
From the end, secretory signal sequence, propeptide, metalloprotease-like domain, disintegrin-like domain, TSP-
It was the same as one repeat sequence.

【0024】(実施例3)新規ヒトADAM型金属プロテア
ーゼの動物細胞での発現 新規ヒトADAM型金属プロテアーゼは、分泌シグナル配
列、プロペプチド、金属プロテアーゼ様ドメイン、ディ
スインテグリン様ドメイン、TSP-1繰り返し配列、とい
うドメイン構造をとっている。金属プロテアーゼ活性の
発揮には、少なくとも分泌シグナルから金属プロテアー
ゼ様ドメインまでの蛋白発現が必要と考えられる。そこ
で、MDTS4およびMDTS5について、N末からディスインテ
グリン様ドメインの1番目のCys残基の手前のGln残基ま
での蛋白の発現、生産をHEK293EBNA細胞を宿主に行っ
た。以下、詳細を述べる。
(Example 3) Expression of novel human ADAM-type metalloprotease in animal cells The novel human ADAM-type metalloprotease includes a secretory signal sequence, a propeptide, a metalloprotease-like domain, a disintegrin-like domain, and a TSP-1 repeat sequence. Has a domain structure of It is considered that protein expression from at least a secretory signal to a metalloproteinase-like domain is required for the display of metalloprotease activity. Thus, HEK293EBNA cells were used as host cells for the expression and production of proteins from the N-terminus to the Gln residue just before the first Cys residue of the disintegrin-like domain for MDTS4 and MDTS5. The details will be described below.

【0025】(実施例3-1)発現ベクターの改良 pCEP4(Invitrogen社製)を制限酵素ClaI、NsiIで切断
し、平滑末端化後、自己連結反応を行い、EBNA1発現ユ
ニットを除去した発現ベクターpCEP4dを作製した。この
ベクターを制限酵素NheI、BamHIで切断し、アガロース
ゲル抽出した約7.7Kbaの断片に、配列番号12で示される
核酸と配列番号13で示される核酸をアニールさせた重鎖
オリゴヌクレオチドを挿入して、目的の配列を有するク
ローンを選択し、pCEP4d-FLAGと命名した。このベクタ
ーを鋳型、配列番号14で示されるオリゴDNA、配列番号1
5で示されるオリゴDNAをプライマーとして、PyroBest D
NAポリメラーゼを用いてPCR反応を行った。生じた約0.4
kbpのDNA断片を制限酵素SpeIで切断し、XbaIで切断した
pCEP4d-FLAG(約7.7Kbp)に挿入し、目的通りプロモー
ターよりクローニングサイトのXbaI、NheI、NotI、BamH
I認識配列そしてFLAGタグという順になっているクロー
ンを選択して、pCEP4dE2-FLAGを完成した。
(Example 3-1) Improvement of expression vector pCEP4d (manufactured by Invitrogen) was digested with restriction enzymes ClaI and NsiI, blunt-ended, and then self-ligated to remove the expression vector pCEP4d. Was prepared. This vector was digested with restriction enzymes NheI and BamHI, and a heavy chain oligonucleotide obtained by annealing the nucleic acid represented by SEQ ID NO: 12 and the nucleic acid represented by SEQ ID NO: 13 to a fragment of about 7.7 Kba extracted by agarose gel was inserted. A clone having the desired sequence was selected and named pCEP4d-FLAG. Using this vector as a template, oligo DNA represented by SEQ ID NO: 14, SEQ ID NO: 1
PyroBest D using the oligo DNA shown in 5 as a primer
A PCR reaction was performed using NA polymerase. About 0.4
The kbp DNA fragment was cut with the restriction enzyme SpeI and cut with XbaI.
Insert into pCEP4d-FLAG (about 7.7 Kbp) and cloning sites XbaI, NheI, NotI, BamH from the promoter as desired.
A clone in the order of I recognition sequence and FLAG tag was selected to complete pCEP4dE2-FLAG.

【0026】以下の実施例3-2乃至実施例3-3において、
インフレームにFLAGタグがC末端に付加するようにデザ
インしたDNA断片を、これらの発現プラスミドの制限酵
素部位に挿入した。 (実施例3-2)MDTS4プロテアーゼ発現プラスミドの構築 MDTS4のプロテアーゼ活性を検討するべく、MDTS4の分泌
シグナル、プロペプチド、プロテアーゼドメインを含む
MDTS4の配列番号4の1番から470番のアミノ酸に相当する
蛋白質を発現することにした。そのために必要となる配
列番号5の1番から1410番の塩基配列を含むDNA断片をPyr
oBestTM DNAポリメラーゼを用いてPCRにより取得した。
ヒト胎盤のMarathon-ReadyTM cDNA(Clontech社製)を
鋳型、配列番号16で示されるオリゴDNAと配列番号17で
示されるオリゴDNAをプライマーとして、94℃1分の後、
98℃10秒、60℃30秒、72℃2分のサイクルを40回、72℃7
分の条件でPCRを行った。こうして生成した5'側にXbaI
認識配列およびKozak配列を、3'側にBamHI認識配列が付
加された目的断片をPCR-Bluntにサブクローンして配列
を確認した後、制限酵素XbaI、BamHIで切断し、pCEP4E2
-FLAGのXbaI、BamHI部位に挿入して、pCEP-MDTS4PR-FLA
Gを完成した。
In the following Examples 3-2 to 3-3,
DNA fragments designed to add a FLAG tag to the C-terminus in frame were inserted into the restriction enzyme sites of these expression plasmids. (Example 3-2) Construction of MDTS4 Protease Expression Plasmid To examine the protease activity of MDTS4, MDTS4 contains a secretory signal, propeptide, and protease domain of MDTS4
It was decided to express a protein corresponding to amino acids 1 to 470 of SEQ ID NO: 4 of MDTS4. The DNA fragment containing the nucleotide sequence from No. 1 to No. 1410 of SEQ ID NO: 5
Obtained by PCR using oBest DNA polymerase.
Using a human placenta Marathon-Ready cDNA (manufactured by Clontech) as a template, the oligo DNA of SEQ ID NO: 16 and the oligo DNA of SEQ ID NO: 17 as primers, at 94 ° C. for 1 minute,
40 cycles of 98 ° C for 10 seconds, 60 ° C for 30 seconds, and 72 ° C for 2 minutes, 72 ° C for 7 seconds
PCR was performed under the conditions of minutes. XbaI on the 5 'side generated in this way
Recognition sequence and Kozak sequence, after confirming the sequence by subcloning the target fragment having a BamHI recognition sequence added to the 3 ′ side into PCR-Blunt, cutting with restriction enzymes XbaI and BamHI, pCEP4E2
-Insert into the XbaI and BamHI sites of FLAG, pCEP-MDTS4PR-FLA
G completed.

【0027】(実施例3-3)MDTS5プロテアーゼ発現プラ
スミドの構築 (実施例2)で生成したDNA断片Aは、配列番号10で示す
MDTS5のアミノ酸配列の1番から481番のアミノ酸を発現
するのに必要な配列番号11の1番から1443番の塩基配列
を含有しており、5'側にNheI認識配列およびKozak配列
を、3'側にNotI認識配列が付加されている。この断片A
をpCR-Bluntにサブクローンして配列を確認した後、制
限酵素NheI、NotIで切断し、pCEP4dE2-FLAGのNheI-NotI
部位に挿入して、発現プラスミドpCEP-MDTS5PR-FLAGを
完成した。
(Example 3-3) Construction of MDTS5 Protease Expression Plasmid DNA fragment A generated in (Example 2) is represented by SEQ ID NO: 10.
It contains the nucleotide sequence of No. 1 to No. 1443 of SEQ ID NO: 11 necessary for expressing the amino acid No. 1 to No. 481 of the amino acid sequence of MDTS5, the NheI recognition sequence and Kozak sequence on the 5 ′ side, 3 The NotI recognition sequence is added to the 'side. This fragment A
After subcloning into pCR-Blunt and confirming the sequence, digestion with restriction enzymes NheI and NotI, NheI-NotI of pCEP4dE2-FLAG
The expression plasmid pCEP-MDTS5PR-FLAG was completed.

【0028】(実施例3-4)MDTS4、MDTS5プロテアーゼ
の動物細胞株での発現 MDTS4、MDTS5いずれに関しても、(実施例3-2〜3-3)に
おいてpCEP4dE2-FLAGを骨格として作製した発現プラス
ミドをFuGENETM6 Transfection Reagent(Boeringer Ma
nnheim社製)を用いて添付指示書に従いHEK293-EBNA細
胞に導入した。プラスミド導入後、2-3日培養を継続し
て得た培養上清中、もしくは200μg/mlのHygromycin B
を添加した培地で選択された細胞の培養上清に目的蛋白
が存在することを、C末端に付加したFLAGタグに対する
抗体(マウス抗FLAGモノクローナル抗体(M2;Sigma社
製))を用いたウエスタンブロッティングで確認した。
すなわち、上記培養上清をSDS/10%〜20% アクリルアミ
ドゲル(第一化学薬品社製)を用いて電気泳動後、ブロ
ッティング装置を用いてPVDF膜に転写した。転写後のPV
DF膜に、ブロックエース(大日本製薬社製)を添加して
ブロッキングした後、マウス抗FLAGモノクローナル抗体
(M2;Sigma社製)、西洋わさびパーオキシダーゼ標識
ウサギ抗マウスIgGポリクローナル抗体(Zymed社製もし
くはTAGO社製)を順次反応させた。または、ブロッキン
グ後、ビオチン化M2抗体(Sigma社製)、西洋わさびパ
ーオキシダーゼ標識ストレプトアビジン(Amasham社
製)を順次反応させた。反応後、ECLウエスタンブロッ
ティング検出システム(アマシャムファルマシア社製)
を用いて該プロテアーゼの発現を確認した。
Example 3-4 Expression of MDTS4 and MDTS5 Proteases in Animal Cell Lines Regarding both MDTS4 and MDTS5, an expression plasmid prepared using pCEP4dE2-FLAG as a backbone in (Examples 3-2 to 3-3) Of FuGENE TM 6 Transfection Reagent (Boeringer Ma
nnheim) according to the attached instructions. After introduction of the plasmid, the culture supernatant obtained by continuing the culture for 2-3 days, or 200 μg / ml of Hygromycin B
The presence of the target protein in the culture supernatant of the cells selected in the medium supplemented with the medium was confirmed by Western blotting using an antibody against the FLAG tag added to the C-terminus (mouse anti-FLAG monoclonal antibody (M2; manufactured by Sigma)). Confirmed.
That is, the above culture supernatant was subjected to electrophoresis using SDS / 10% to 20% acrylamide gel (manufactured by Daiichi Kagaku) and then transferred to a PVDF membrane using a blotting device. PV after transfer
After blocking by adding Block Ace (manufactured by Dainippon Pharmaceuticals) to the DF membrane, mouse anti-FLAG monoclonal antibody (M2; manufactured by Sigma), horseradish peroxidase-labeled rabbit anti-mouse IgG polyclonal antibody (Zymed or (Manufactured by TAGO). Alternatively, after blocking, biotinylated M2 antibody (manufactured by Sigma) and horseradish peroxidase-labeled streptavidin (manufactured by Amasham) were sequentially reacted. After the reaction, ECL western blotting detection system (Amersham Pharmacia)
Was used to confirm the expression of the protease.

【0029】(実施例4)動物細胞を宿主に発現したMDT
S4、MDTS5プロテアーゼの酵素活性の検出 (実施例4-1)MDTS4、MDTS5プロテアーゼの精製 (実施例3-4)でHEK293-EBNA細胞を宿主に発現、生産し
た目的蛋白を含む培養液上清からの目的蛋白の精製は、
C末端にFLAGタグが付加していることを利用して、アフ
ィニィティ精製した。すなわち、培養上清をカラムに詰
めたM2-agarose(Sigma社製)にアプライし、20 mM Tri
s-HCl(pH7.4)/150 mM NaCl(以下、TBSという)で洗浄
した後、100μg/ml FLAG peptide(Sigma社製)含有のT
BSで、溶出し、分画した。精製したHEK293-EBNA細胞発
現MDTS4、MDTS5プロテアーゼ蛋白をSDS/10%〜20% アク
リルアミドゲルを用いて電気泳動後、銀染色および抗FL
AG抗体(M2)を用いたウエスタンブロッティングでの確
認実験の結果、いずれに関しても、furin様プロテアー
ゼでプロセスされて生じたと考えられる分子と、プロセ
スされていない分子が検出された。SDS/10%〜20% アク
リルアミドゲルおける見かけの分子量は、それぞれ、MD
TS4が約34KDaと約53KDa、MDTS5が約32KDaと約60KDaであ
った。furinプロテアーゼでプロセスされたMDTS4は配列
番号4で表されるアミノ酸配列の第236番から470番のア
ミノ酸配列と推定され、furinプロテアーゼでプロセス
されたMDTS5は配列番号10で表されるアミノ酸配列の第2
50番から481番のアミノ酸配列と推定される。これらの
分子量は当該アミノ酸配列から推定される値と矛盾しな
いものであった。
(Example 4) MDT expressing animal cells in a host
Detection of enzyme activity of S4 and MDTS5 protease (Example 4-1) Purification of MDTS4 and MDTS5 protease (Example 3-4) Expression of HEK293-EBNA cells in a host from host culture supernatant containing target protein produced and produced Purification of the target protein of
Affinity purification was performed using the fact that a FLAG tag was added to the C-terminus. That is, the culture supernatant was applied to M2-agarose (manufactured by Sigma) packed in a column, and 20 mM Trial was added.
After washing with s-HCl (pH 7.4) / 150 mM NaCl (hereinafter referred to as “TBS”), T containing 100 μg / ml FLAG peptide (manufactured by Sigma) was used.
Eluted and fractionated with BS. After electrophoresing purified HEK293-EBNA cells expressing MDTS4 and MDTS5 protease proteins using SDS / 10% -20% acrylamide gel, silver staining and anti-FL
As a result of the confirmation experiment by Western blotting using the AG antibody (M2), in each case, a molecule considered to be produced by processing with a furin-like protease and a molecule not processed were detected. The apparent molecular weight of SDS / 10% -20% acrylamide gel is MD
TS4 was about 34KDa and about 53KDa, and MDTS5 was about 32KDa and about 60KDa. MDTS4 processed with furin protease is estimated to be the 236th to 470th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 4, and MDTS5 processed with furin protease has the amino acid sequence represented by SEQ ID NO: 10. Two
Presumed to be the amino acid sequence of positions 50 to 481. These molecular weights were consistent with the values deduced from the amino acid sequence.

【0030】(実施例4-2) MDTS4、MDTS5プロテアーゼ
の酵素活性の検出 配列番号20で示される合成ペプチドAを基質として、酵
素活性を検討した。すなわち、上記で精製したプロテア
ーゼ蛋白と該合成ペプチドを、TBS中室温で反応させた
後、YMC packed R&D RODS-5(4.6I.D.X25cm)カラムを使
用したHPLCで解析した。検出波長は220nmを用い、溶離
液A:0%アセトニトリル/0.085%トリフルオロ酢酸B:14
%アセトニトリル/0.085%トリフルオロ酢酸で、流速1ml
/mlでA→Bのリニアグラジエント(20分)で分離した。そ
の結果、MDTS4、MDTS5プロテアーゼにおいて、ペプチド
Aのピークが縮小または消失し、分解産物のピークが検
出された(図1)。また、この現象は終濃度10mMのEDTA
を反応液に添加することで完全に阻害された。これらの
ことから、 MDTS4、MDTS5プロテアーゼが実際に金属プ
ロテアーゼ活性を有することが示された。
Example 4-2 Detection of Enzyme Activity of MDTS4 and MDTS5 Proteases The enzymatic activity was examined using synthetic peptide A represented by SEQ ID NO: 20 as a substrate. That is, the purified protease protein was reacted with the synthetic peptide in TBS at room temperature, and analyzed by HPLC using a YMC packed R & D RODS-5 (4.6 IDX 25 cm) column. Using a detection wavelength of 220 nm, eluent A: 0% acetonitrile / 0.085% trifluoroacetic acid B: 14
% Acetonitrile / 0.085% trifluoroacetic acid, flow rate 1 ml
Separation was performed with a linear gradient of A → B at 20 ml / min. As a result, in MDTS4 and MDTS5 proteases,
The peak of A shrank or disappeared, and the peak of the degradation product was detected (FIG. 1). Also, this phenomenon is due to EDTA at a final concentration of 10 mM.
Was completely inhibited by adding to the reaction solution. From these, it was shown that MDTS4 and MDTS5 proteases actually have metalloprotease activity.

【0031】[0031]

【発明の効果】本発明で得られた新規金属なプロテアー
ゼ及び蛋白質は、金属プロテアーゼの活性を選択的に制
御することを特徴としており、その蛋白質の医薬用途と
しては該金属プロテアーゼ活性の亢進、低下、変性等の
異常に起因するあるいは該異常を発現・併発する疾患、
例えば、癌、関節炎、変形性関節症などが挙げられる。
The novel metalloprotease and protein obtained by the present invention are characterized by selectively controlling the activity of the metalloprotease, and the use of the protein as a medicament is to increase or decrease the metalloprotease activity. , Diseases caused by abnormalities such as degeneration or expressing / combining the abnormalities,
For example, cancer, arthritis, osteoarthritis and the like can be mentioned.

【0032】[0032]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、control、MDTS4、MDTS5プロテアーゼ
のペプチド切断実験の結果を示す。
FIG. 1 shows the results of a peptide cleavage experiment of control, MDTS4 and MDTS5 proteases.

【配列表】 SEQUENCE LISTING <110> Yamanouchi Pharmaceutical Co., Ltd. <120> 新規な金属プロテアーゼ <130> 0000002897 <160> 22 <170> PatentIn Ver. 2.0 <210> 1 <211> 27 <212> DNA <213> Homo sapiens <400> 1 ccatcctaat acgactcact atagggc 27 <210> 2 <211> 23 <212> DNA <213> Homo sapiens <400> 2 actcactata gggctcgagc ggc 23 <210> 3 <211> 2670 <212> DNA <213> Homo sapiens <400> 3 atgctccccg cccccgccgc cccccggtgg cctccgctcc tgctgctgct gctgctgctg 60 ctgccgctgg cccgcggcgc cccggcccgg cccgcagccg gggggcaggc ctcggagctg 120 gtggtgccca cgcggttgcc cggcagcgcg ggcgagctcg cgctccacct gtccgccttc 180 ggcaagggct tcgtgctgcg cctggcgccc gacgacagct tcctggcgcc cgagttcaag 240 atcgagcgcc tcgggggctc cggccgggcg accgggggcg agcgggggct gcgcggctgc 300 ttcttctccg gcaccgtgaa tggggagccc gagtcgctgg cggcggtcag cctgtgccgc 360 gggctgagcg gctccttcct gctggacggc gaggagttca ccatccagcc gcagggcgcg 420 gggggctccc tggctcagcc gcaccgcctg cagcgctggg gtcccgccgg agcccgcccc 480 ctcccgcgag gacccgagtg ggaggtggag acgggagagg gtcagaggca ggagagagga 540 gaccaccagg aggacagcga ggaggagagc caagaagagg aggcagaagg cgctagcgag 600 ccgccaccgc ccctgggggc cacgagtagg accaagcggt ttgtgtctga ggcgcgcttc 660 gtgaagacgc tgctggtggc cgatgcgtcc atggctgcct tctacggggc cgacctgcag 720 aaccacatcc tgacgttaat gtctgtggca gcccgaatct acaagcaccc cagcatcaag 780 aattccatca acctgatggt ggtaaaagtg ctgatcgtag aagatgaaaa atggggccca 840 gaggtgtccg acaatggggg gcttacactg cgtaacttct gcaactggca gcggcgtttc 900 aaccagccca gcgaccgcca cccagagcac tacgacacgg ccatcctgct caccagacag 960 aacttctgtg ggcaggaggg gctgtgtgac accctgggtg tggcagacat cgggaccatt 1020 tgtgacccca acaaaagctg ctccgtgatc gaggatgagg ggctccaggc ggcccacacc 1080 ctggcccatg aactagggca cgtcctcagc atgccccacg acgactccaa gccctgcaca 1140 cggctcttcg ggcccatggg caagcaccac gtgatggcac cgctgttcgt ccacctgaac 1200 cagacgctgc cctggtcccc ctgcagcgcc atgtatctca cagagcttct ggacggcggg 1260 cacggagact gtctcctgga tgcccctgct gcggccctgc ccctccccac aggcctcccg 1320 ggccgcatgg ccctgtacca gctggaccag cagtgcaggc agatctttgg gccggatttc 1380 cgccactgcc ccaacacctc tgctcaggac gtctgcgccc agctttggtg ccacactgat 1440 ggggctgagc ccctgtgcca cacgaagaat ggcagcctgc cctgggctga cggcacgccg 1500 tgcgggcctg ggcacctctg ctcagaaggc agctgtctac ctgaggagga agtggagagg 1560 cccaagcccg tggtagatgg aggctgggca ccgtggggac cctggggaga atgttctcgg 1620 acctgtggag gaggagtaca gttttcacac cgtgagtgca aggaccccga gcctcagaat 1680 ggaggaagat actgcctggg tcggagagcc aagtaccagt catgccacac ggaggaatgc 1740 ccccctgacg ggaaaagctt cagggagcag cagtgtgaga agtataatgc ctacaattac 1800 actgacatgg acgggaatct cctgcagtgg gtccccaagt atgctggggt gtccccccgg 1860 gaccgctgca agttgttctg ccgagcccgg gggaggagcg agttcaaagt gttcgaggcc 1920 aaggtgattg atggcaccct gtgtgggcca gaaacactgg ccatctgtgt ccgtggccag 1980 tgtgtcaagg ccggctgtga ccatgtggtg gactcgcctc ggaagctgga caaatgcggg 2040 gtgtgtgggg gcaaaggcaa ctcctgcagg aaggtctccg ggtccctcac ccccaccaat 2100 tatggctaca atgacattgt caccatccca gctggtgcca ctaatattga cgtgaagcag 2160 cggagccacc cgggtgtgca gaacgatggg aactacctgg cgctgaagac ggctgatggg 2220 cagtacctgc tcaacggcaa cctggccatc tctgccatag agcaggacat cttggtgaag 2280 gggaccatcc tgaagtacag cggctccatc gccaccctgg agcgcctgca gagcttccgg 2340 cccttgccag agcctctgac agtgcagctc ctgacagtcc ctggcgaggt cttcccccca 2400 aaagtcaaat acaccttctt tgttcctaat gacgtggact ttagcatgca gagcagcaaa 2460 gagagagcaa ccaccaacat catccagccg ctgctccacg cacagtgggt gctgggggac 2520 tggtctgagt gctctagcac ctgcggggcc ggctggcaga ggcgaactgt agagtgcagg 2580 gacccctcca gccaggcctc tgccacctgc aacaaggctc tgaaacccga ggatgccaag 2640 ccctgcgaaa gccagctgtg ccccctgtga 2670 <210> 4 <211> 950 <212> PRT <213> Homo sapiens <400> 4 Met Gly Asn Ala Glu Arg Ala Pro Gly Ser Arg Ser Phe Gly Pro Val 1 5 10 15 Pro Thr Leu Leu Leu Leu Ala Ala Ala Leu Leu Ala Val Ser Asp Ala 20 25 30 Leu Gly Arg Pro Ser Glu Glu Asp Glu Glu Leu Val Val Pro Glu Leu 35 40 45 Glu Arg Ala Pro Gly His Gly Thr Thr Arg Leu Arg Leu His Ala Phe 50 55 60 Asp Gln Gln Leu Asp Leu Glu Leu Arg Pro Asp Ser Ser Phe Leu Ala 65 70 75 80 Pro Gly Phe Thr Leu Gln Asn Val Gly Arg Lys Ser Gly Ser Glu Thr 85 90 95 Pro Leu Pro Glu Thr Asp Leu Ala His Cys Phe Tyr Ser Gly Thr Val 100 105 110 Asn Gly Asp Pro Ser Ser Ala Ala Ala Leu Ser Leu Cys Glu Gly Val 115 120 125 Arg Gly Ala Phe Tyr Leu Leu Gly Glu Ala Tyr Phe Ile Gln Pro Leu 130 135 140 Pro Ala Ala Ser Glu Arg Leu Ala Thr Ala Ala Pro Gly Glu Lys Pro 145 150 155 160 Pro Ala Pro Leu Gln Phe His Leu Leu Arg Arg Asn Arg Gln Gly Asp 165 170 175 Val Gly Gly Thr Cys Gly Val Val Asp Asp Glu Pro Arg Pro Thr Gly 180 185 190 Lys Ala Glu Thr Glu Asp Glu Asp Glu Gly Thr Glu Gly Glu Asp Glu 195 200 205 Gly Pro Gln Trp Ser Pro Gln Asp Pro Ala Leu Gln Gly Val Gly Gln 210 215 220 Pro Thr Gly Thr Gly Ser Ile Arg Lys Lys Arg Phe Val Ser Ser His 225 230 235 240 Arg Tyr Val Glu Thr Met Leu Val Ala Asp Gln Ser Met Ala Glu Phe 245 250 255 His Gly Ser Gly Leu Lys His Tyr Leu Leu Thr Leu Phe Ser Val Ala 260 265 270 Ala Arg Leu Tyr Lys His Pro Ser Ile Arg Asn Ser Val Ser Leu Val 275 280 285 Val Val Lys Ile Leu Val Ile His Asp Glu Gln Lys Gly Pro Glu Val 290 295 300 Thr Ser Asn Ala Ala Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Lys 305 310 315 320 Gln His Asn Pro Pro Ser Asp Arg Asp Ala Glu His Tyr Asp Thr Ala 325 330 335 Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Ser Gln Thr Cys Asp Thr 340 345 350 Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ser Arg Ser Cys 355 360 365 Ser Val Ile Glu Asp Asp Gly Leu Gln Ala Ala Phe Thr Thr Ala His 370 375 380 Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Ala Lys Gln Cys 385 390 395 400 Ala Ser Leu Asn Gly Val Asn Gln Asp Ser His Met Met Ala Ser Met 405 410 415 Leu Ser Asn Leu Asp His Ser Gln Pro Trp Ser Pro Cys Ser Ala Tyr 420 425 430 Met Ile Thr Ser Phe Leu Asp Asn Gly His Gly Glu Cys Leu Met Asp 435 440 445 Lys Pro Gln Asn Pro Ile Gln Leu Pro Gly Asp Leu Pro Gly Thr Ser 450 455 460 Tyr Asp Ala Asn Arg Gln Cys Gln Phe Thr Phe Gly Glu Asp Ser Lys 465 470 475 480 His Cys Pro Asp Ala Ala Ser Thr Cys Ser Thr Leu Trp Cys Thr Gly 485 490 495 Thr Ser Gly Gly Val Leu Val Cys Gln Thr Lys His Phe Pro Trp Ala 500 505 510 Asp Gly Thr Ser Cys Gly Glu Gly Lys Trp Cys Ile Asn Gly Lys Cys 515 520 525 Val Asn Lys Thr Asp Arg Lys His Phe Asp Thr Pro Phe His Gly Ser 530 535 540 Trp Gly Met Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly 545 550 555 560 Gly Val Gln Tyr Thr Met Arg Glu Cys Asp Asn Pro Val Pro Lys Asn 565 570 575 Gly Gly Lys Tyr Cys Glu Gly Lys Arg Val Arg Tyr Arg Ser Cys Asn 580 585 590 Leu Glu Asp Cys Pro Asp Asn Asn Gly Lys Thr Phe Arg Glu Glu Gln 595 600 605 Cys Glu Ala His Asn Glu Phe Ser Lys Ala Ser Phe Gly Ser Gly Pro 610 615 620 Ala Val Glu Trp Ile Pro Lys Tyr Ala Gly Val Ser Pro Lys Asp Arg 625 630 635 640 Cys Lys Leu Ile Cys Gln Ala Lys Gly Ile Gly Tyr Phe Phe Val Leu 645 650 655 Gln Pro Lys Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Thr Ser 660 665 670 Val Cys Val Gln Gly Gln Cys Val Lys Ala Gly Cys Asp Arg Ile Ile 675 680 685 Asp Ser Lys Lys Lys Phe Asp Lys Cys Gly Val Cys Gly Gly Asn Gly 690 695 700 Ser Thr Cys Lys Lys Ile Ser Gly Ser Val Thr Ser Ala Lys Pro Gly 705 710 715 720 Tyr His Asp Ile Ile Thr Ile Pro Thr Gly Ala Thr Asn Ile Glu Val 725 730 735 Lys Gln Arg Asn Gln Arg Gly Ser Arg Asn Asn Gly Ser Phe Leu Ala 740 745 750 Ile Lys Ala Ala Asp Gly Thr Tyr Ile Leu Asn Gly Asp Tyr Thr Leu 755 760 765 Ser Thr Leu Glu Gln Asp Ile Met Tyr Lys Gly Val Val Leu Arg Tyr 770 775 780 Ser Gly Ser Ser Ala Ala Leu Glu Arg Ile Arg Ser Phe Ser Pro Leu 785 790 795 800 Lys Glu Pro Leu Thr Ile Gln Val Leu Thr Val Gly Asn Ala Leu Arg 805 810 815 Pro Lys Ile Lys Tyr Thr Tyr Phe Val Lys Lys Lys Lys Glu Ser Phe 820 825 830 Asn Ala Ile Pro Thr Phe Ser Ala Trp Val Ile Glu Glu Trp Gly Glu 835 840 845 Cys Ser Lys Ser Cys Glu Leu Gly Trp Gln Arg Arg Leu Val Glu Cys 850 855 860 Arg Asp Ile Asn Gly Gln Pro Ala Ser Glu Cys Ala Lys Glu Val Lys 865 870 875 880 Pro Ala Ser Thr Arg Pro Cys Ala Asp His Pro Cys Pro Gln Trp Gln 885 890 895 Leu Gly Glu Trp Ser Ser Cys Ser Lys Thr Cys Gly Lys Gly Tyr Lys 900 905 910 Lys Arg Ser Leu Lys Cys Leu Ser His Asp Gly Gly Val Leu Ser His 915 920 925 Glu Ser Cys Asp Pro Leu Lys Lys Pro Lys His Phe Ile Asp Phe Cys 930 935 940 Thr Met Ala Glu Cys Ser 945 950 <210> 5 <211> 2853 <212> DNA <213> Homo sapiens <400> 5 atggggaacg cggagcgggc tccggggtct cggagctttg ggcccgtacc cacgctgctg 60 ctgctcgccg cggcgctact ggccgtgtcg gacgcactcg ggcgcccctc cgaggaggac 120 gaggagctag tggtgccgga gctggagcgc gccccgggac acgggaccac gcgcctccgc 180 ctgcacgcct ttgaccagca gctggatctg gagctgcggc ccgacagcag ctttttggcg 240 cccggcttca cgctccagaa cgtggggcgc aaatccgggt ccgagacgcc gcttccggaa 300 accgacctgg cgcactgctt ctactccggc accgtgaatg gcgatcccag ctcggctgcc 360 gccctcagcc tctgcgaggg cgtgcgcggc gccttctacc tgctggggga ggcgtatttc 420 atccagccgc tgcccgccgc cagcgagcgc ctcgccaccg ccgccccagg ggagaagccg 480 ccggcaccac tacagttcca cctcctgcgg cggaatcggc agggcgacgt aggcggcacg 540 tgcggggtcg tggacgacga gccccggccg actgggaaag cggagaccga agacgaggac 600 gaagggactg agggcgagga cgaagggcct cagtggtcgc cgcaggaccc ggcactgcaa 660 ggcgtaggac agcccacagg aactggaagc ataagaaaga agcgatttgt gtccagtcac 720 cgctatgtgg aaaccatgct tgtggcagac cagtcgatgg cagaattcca cggcagtggt 780 ctaaagcatt accttctcac gttgttttcg gtggcagcca gattgtacaa acaccccagc 840 attcgtaatt cagttagcct ggtggtggtg aagatcttgg tcatccacga tgaacagaag 900 gggccggaag tgacctccaa tgctgccctc actctgcgga acttttgcaa ctggcagaag 960 cagcacaacc cacccagtga ccgggatgca gagcactatg acacagcaat tcttttcacc 1020 agacaggact tgtgtgggtc ccagacatgt gatactcttg ggatggctga tgttggaact 1080 gtgtgtgatc cgagcagaag ctgctccgtc atagaagatg atggtttaca agctgccttc 1140 accacagccc atgaattagg ccacgtgttt aacatgccac atgatgatgc aaagcagtgt 1200 gccagcctta atggtgtgaa ccaggattcc cacatgatgg cgtcaatgct ttccaacctg 1260 gaccacagcc agccttggtc tccttgcagt gcctacatga ttacatcatt tctggataat 1320 ggtcatgggg aatgtttgat ggacaagcct cagaatccca tacagctccc aggcgatctc 1380 cctggcacct cgtacgatgc caaccggcag tgccagttta catttgggga ggactccaaa 1440 cactgccccg atgcagccag cacatgtagc accttgtggt gtaccggcac ctctggtggg 1500 gtgctggtgt gtcaaaccaa acacttcccg tgggcggatg gcaccagctg tggagaaggg 1560 aaatggtgta tcaacggcaa gtgtgtgaac aaaaccgaca gaaagcattt tgatacgcct 1620 tttcatggaa gctggggaat gtgggggcct tggggagact gttcgagaac gtgcggtgga 1680 ggagtccagt acacgatgag ggaatgtgac aacccagtcc caaagaatgg agggaagtac 1740 tgtgaaggca aacgagtgcg ctacagatcc tgtaaccttg aggactgtcc agacaataat 1800 ggaaaaacct ttagagagga acaatgtgaa gcacacaacg agttttcaaa agcttccttt 1860 gggagtgggc ctgcggtgga atggattccc aagtacgctg gcgtctcacc aaaggacagg 1920 tgcaagctca tctgccaagc caaaggcatt ggctacttct tcgttttgca gcccaaggtt 1980 gtagatggta ctccatgtag cccagattcc acctctgtct gtgtgcaagg acagtgtgta 2040 aaagctggtt gtgatcgcat catagactcc aaaaagaagt ttgataaatg tggtgtttgc 2100 gggggaaatg gatctacttg taaaaaaata tcaggatcag ttactagtgc aaaacctgga 2160 tatcatgata tcatcacaat tccaactgga gccaccaaca tcgaagtgaa acagcggaac 2220 cagaggggat ccaggaacaa tggcagcttt cttgccatca aagctgctga tggcacatat 2280 attcttaatg gtgactacac tttgtccacc ttagagcaag acattatgta caaaggtgtt 2340 gtcttgaggt acagcggctc ctctgcggca ttggaaagaa ttcgcagctt tagccctctc 2400 aaagagccct tgaccatcca ggttcttact gtgggcaatg cccttcgacc taaaattaaa 2460 tacacctact tcgtaaagaa gaagaaggaa tctttcaatg ctatccccac tttttcagca 2520 tgggtcattg aagagtgggg cgaatgttct aagtcatgtg aattgggttg gcagagaaga 2580 ctggtagaat gccgagacat taatggacag cctgcttccg agtgtgcaaa ggaagtgaag 2640 ccagccagca ccagaccttg tgcagaccat ccctgccccc agtggcagct gggggagtgg 2700 tcatcatgtt ctaagacctg cgggaagggt tacaaaaaaa gaagcttgaa gtgtctgtcc 2760 catgatggag gggtgttatc tcatgagagc tgtgatcctt taaagaaacc taaacatttc 2820 atagactttt gcacaatggc agaatgcagt taa 2853 <210> 6 <211> 25 <212> DNA <213> Homo sapiens <400> 6 acctgtcctt tggtgagacg ccagc 25 <210> 7 <211> 26 <212> DNA <213> Homo sapiens <400> 7 atctggctgc caccgaaaac aacgtg 26 <210> 8 <211> 30 <212> DNA <213> Homo sapiens <400> 8 tcccccagca ggtagaaggc gccgcgcacg 30 <210> 9 <211> 30 <212> DNA <213> Homo sapiens <400> 9 ccgagctggg atcgccattc acggtgccgg 30 <210> 10 <211> 1205 <212> PRT <213> Homo sapiens <400> 10 Met Val Leu Leu Ser Leu Trp Leu Ile Ala Ala Ala Leu Val Glu Val 1 5 10 15 Arg Thr Ser Ala Asp Gly Gln Ala Gly Asn Glu Glu Met Val Gln Ile 20 25 30 Asp Leu Pro Ile Lys Arg Tyr Arg Glu Tyr Glu Leu Val Thr Pro Val 35 40 45 Ser Thr Asn Leu Glu Gly Arg Tyr Leu Ser His Thr Leu Ser Ala Ser 50 55 60 His Lys Lys Arg Ser Ala Arg Asp Val Ser Ser Asn Pro Glu Gln Leu 65 70 75 80 Phe Phe Asn Ile Thr Ala Phe Gly Lys Asp Phe His Leu Arg Leu Lys 85 90 95 Pro Asn Thr Gln Leu Val Ala Pro Gly Ala Val Val Glu Trp His Glu 100 105 110 Thr Ser Leu Val Pro Gly Asn Ile Thr Asp Pro Ile Asn Asn His Gln 115 120 125 Pro Gly Ser Ala Thr Tyr Arg Ile Arg Lys Thr Glu Pro Leu Gln Thr 130 135 140 Asn Cys Ala Tyr Val Gly Asp Ile Val Asp Ile Pro Gly Thr Ser Val 145 150 155 160 Ala Ile Ser Asn Cys Asp Gly Leu Ala Gly Met Ile Lys Ser Asp Asn 165 170 175 Glu Glu Tyr Phe Ile Glu Pro Leu Glu Arg Gly Lys Gln Met Glu Glu 180 185 190 Glu Lys Gly Arg Ile His Val Val Tyr Lys Arg Ser Ala Val Glu Gln 195 200 205 Ala Pro Ile Asp Met Ser Lys Asp Phe His Tyr Arg Glu Ser Asp Leu 210 215 220 Glu Gly Leu Asp Asp Leu Gly Thr Val Tyr Gly Asn Ile His Gln Gln 225 230 235 240 Leu Asn Glu Thr Met Arg Arg Arg Arg His Ala Gly Glu Asn Asp Tyr 245 250 255 Asn Ile Glu Val Leu Leu Gly Val Asp Asp Ser Val Val Arg Phe His 260 265 270 Gly Lys Glu His Val Gln Asn Tyr Leu Leu Thr Leu Met Asn Ile Val 275 280 285 Asn Glu Ile Tyr His Asp Glu Ser Leu Gly Val His Ile Asn Val Val 290 295 300 Leu Val Arg Met Ile Met Leu Gly Tyr Ala Lys Ser Ile Ser Leu Ile 305 310 315 320 Glu Arg Gly Asn Pro Ser Arg Ser Leu Glu Asn Val Cys Arg Trp Ala 325 330 335 Ser Gln Gln Gln Arg Ser Asp Leu Asn His Ser Glu His His Asp His 340 345 350 Ala Ile Phe Leu Thr Arg Gln Asp Phe Gly Pro Ala Gly Met Gln Gly 355 360 365 Tyr Ala Pro Val Thr Gly Met Cys His Pro Val Arg Ser Cys Thr Leu 370 375 380 Asn His Glu Asp Gly Phe Ser Ser Ala Phe Val Val Ala His Glu Thr 385 390 395 400 Gly His Val Leu Gly Met Glu His Asp Gly Gln Gly Asn Arg Cys Gly 405 410 415 Asp Glu Thr Ala Met Gly Ser Val Met Ala Pro Leu Val Gln Ala Ala 420 425 430 Phe His Arg Tyr His Trp Ser Arg Cys Ser Gly Gln Glu Leu Lys Arg 435 440 445 Tyr Ile His Ser Tyr Asp Cys Leu Leu Asp Asp Pro Phe Asp His Asp 450 455 460 Trp Pro Lys Leu Pro Glu Leu Pro Gly Ile Asn Tyr Ser Met Asp Glu 465 470 475 480 Gln Cys Arg Phe Asp Phe Gly Val Gly Tyr Lys Met Cys Thr Ala Phe 485 490 495 Arg Thr Phe Asp Pro Cys Lys Gln Leu Trp Cys Ser His Pro Asp Asn 500 505 510 Pro Tyr Phe Cys Lys Thr Lys Lys Gly Pro Pro Leu Asp Gly Thr Glu 515 520 525 Cys Ala Ala Gly Lys Trp Cys Tyr Lys Gly His Cys Met Trp Lys Asn 530 535 540 Ala Asn Gln Gln Lys Gln Asp Gly Asn Trp Gly Ser Trp Thr Lys Phe 545 550 555 560 Gly Ser Cys Ser Arg Thr Cys Gly Thr Gly Val Arg Phe Arg Thr Arg 565 570 575 Gln Cys Asn Asn Pro Met Pro Ile Asn Gly Gly Gln Asp Cys Pro Gly 580 585 590 Val Asn Phe Glu Tyr Gln Leu Cys Asn Thr Glu Glu Cys Gln Lys His 595 600 605 Phe Glu Asp Phe Arg Ala Gln Gln Cys Gln Gln Arg Asn Ser His Phe 610 615 620 Glu Tyr Gln Asn Thr Lys His His Trp Leu Pro Tyr Glu His Pro Asp 625 630 635 640 Pro Lys Lys Arg Cys His Leu Tyr Cys Gln Ser Lys Glu Thr Gly Asp 645 650 655 Val Ala Tyr Met Lys Gln Leu Val His Asp Gly Thr His Cys Ser Tyr 660 665 670 Lys Asp Pro Tyr Ser Ile Cys Val Arg Gly Glu Cys Val Lys Val Gly 675 680 685 Cys Asp Lys Glu Ile Gly Ser Asn Lys Val Glu Asp Lys Cys Gly Val 690 695 700 Cys Gly Gly Asp Asn Ser His Cys Arg Thr Val Lys Gly Thr Phe Thr 705 710 715 720 Arg Thr Pro Arg Lys Leu Gly Tyr Leu Lys Met Phe Asp Ile Pro Pro 725 730 735 Gly Ala Arg His Val Leu Ile Gln Glu Asp Glu Ala Ser Pro His Ile 740 745 750 Leu Ala Ile Lys Asn Gln Ala Thr Gly His Tyr Ile Leu Asn Gly Lys 755 760 765 Gly Glu Glu Ala Lys Ser Arg Thr Phe Ile Asp Leu Gly Val Glu Trp 770 775 780 Asp Tyr Asn Ile Glu Asp Asp Ile Glu Ser Leu His Thr Asp Gly Pro 785 790 795 800 Leu His Asp Pro Val Ile Val Leu Ile Ile Pro Gln Glu Asn Asp Thr 805 810 815 Arg Ser Ser Leu Thr Tyr Lys Tyr Ile Ile His Glu Asp Ser Val Pro 820 825 830 Thr Ile Asn Ser Asn Asn Val Ile Gln Glu Glu Leu Asp Thr Phe Glu 835 840 845 Trp Ala Leu Lys Ser Trp Ser Gln Cys Ser Lys Pro Cys Gly Gly Gly 850 855 860 Phe Gln Tyr Thr Lys Tyr Gly Cys Arg Arg Lys Ser Asp Asn Lys Met 865 870 875 880 Val His Arg Ser Phe Cys Glu Ala Asn Lys Lys Pro Lys Pro Ile Arg 885 890 895 Arg Met Cys Asn Ile Gln Glu Cys Thr His Pro Leu Trp Val Ala Glu 900 905 910 Glu Trp Glu His Cys Thr Lys Thr Cys Gly Ser Ser Gly Tyr Gln Leu 915 920 925 Arg Thr Val Arg Cys Leu Gln Pro Leu Leu Asp Gly Thr Asn Arg Ser 930 935 940 Val His Ser Lys Tyr Cys Met Gly Asp Arg Pro Glu Ser Arg Arg Pro 945 950 955 960 Cys Asn Arg Val Pro Cys Pro Ala Gln Trp Lys Thr Gly Pro Trp Ser 965 970 975 Glu Cys Ser Val Thr Cys Gly Glu Gly Thr Glu Val Arg Gln Val Leu 980 985 990 Cys Arg Ala Gly Asp His Cys Asp Gly Glu Lys Pro Glu Ser Val Arg 995 1000 1005 Ala Cys Gln Leu Pro Pro Cys Asn Asp Glu Pro Cys Leu Gly Asp Lys 1010 1015 1020 Ser Ile Phe Cys Gln Met Glu Val Leu Ala Arg Tyr Cys Ser Ile Pro 1025 1030 1035 1040 Gly Tyr Asn Lys Leu Cys Cys Glu Ser Cys Ser Lys Arg Ser Ser Thr 1045 1050 1055 Leu Pro Pro Pro Tyr Leu Leu Glu Ala Ala Glu Thr His Asp Asp Val 1060 1065 1070 Ile Ser Asn Pro Ser Asp Leu Pro Arg Ser Leu Val Met Pro Thr Ser 1075 1080 1085 Leu Val Pro Tyr His Ser Glu Thr Pro Ala Lys Lys Met Ser Leu Ser 1090 1095 1100 Ser Ile Ser Ser Val Gly Gly Pro Asn Ala Tyr Ala Ala Phe Arg Pro 1105 1110 1115 1120 Asn Ser Lys Pro Asp Gly Ala Asn Leu Arg Gln Arg Ser Ala Gln Gln 1125 1130 1135 Ala Gly Ser Lys Thr Val Arg Leu Val Thr Val Pro Ser Ser Pro Pro 1140 1145 1150 Thr Lys Arg Val His Leu Ser Ser Ala Ser Gln Met Ala Ala Ala Ser 1155 1160 1165 Phe Phe Ala Ala Ser Asp Ser Ile Gly Ala Ser Ser Gln Ala Arg Thr 1170 1175 1180 Ser Lys Lys Asp Gly Lys Ile Ile Asp Asn Arg Arg Pro Thr Arg Ser 1185 1190 1195 1200 Ser Thr Leu Glu Arg 1205 <210> 11 <211> 3618 <212> DNA <213> Homo sapiens <400> 11 atggttctcc tgtcactttg gttgatagca gccgctctgg tagaggttag gacttcagct 60 gatggacaag ctggtaatga agaaatggtg caaatagatt taccaataaa gagatataga 120 gagtatgagc tggtgactcc agtcagcaca aatctagaag gacgctatct ctcccatact 180 ctttctgcga gtcacaaaaa gaggtcagcg agggacgtgt cttccaaccc tgagcagttg 240 ttctttaaca tcacggcatt tggaaaagat tttcatctgc gactaaagcc caacactcaa 300 ctagtagctc ctggggctgt tgtggagtgg catgagacat ctctggtgcc tgggaatata 360 accgatccca ttaacaacca tcaaccagga agtgctacgt atagaatccg gaaaacagag 420 cctttgcaga ctaactgtgc ttatgttggt gacatcgtgg acattccagg aacctctgtt 480 gccatcagca actgtgatgg tctggctgga atgataaaaa gtgataatga agagtatttc 540 attgaaccct tggaaagagg taaacagatg gaggaagaaa aaggaaggat tcatgttgtc 600 tacaagagat cagctgtaga acaggctccc atagacatgt ccaaagactt ccactacaga 660 gagtcggacc tggaaggcct tgatgatcta ggtactgttt atggcaacat ccaccagcag 720 ctgaatgaaa caatgagacg ccgcagacac gcgggagaaa acgattacaa tatcgaggta 780 ctgctgggag tggatgactc tgtggtccgt ttccatggca aagagcacgt ccaaaactac 840 ctcctgaccc taatgaacat tgtgaatgaa atttaccatg atgagtccct cggagtgcat 900 ataaatgtgg tcctggtgcg catgataatg ctgggatatg caaagtccat cagcctcata 960 gaaaggggaa acccatccag aagcttggag aatgtgtgtc gctgggcgtc ccaacagcaa 1020 agatctgatc tcaaccactc tgaacaccat gaccatgcaa tttttttaac caggcaagac 1080 tttggacctg ctggaatgca aggatatgct ccagtcaccg gcatgtgtca tccagtgaga 1140 agttgtaccc tgaatcatga ggatggtttt tcatctgctt ttgtagtagc ccatgaaacg 1200 ggccatgtgt tgggaatgga gcatgatgga caaggcaaca ggtgtggtga tgagactgct 1260 atgggaagtg tcatggctcc cttggtacaa gcagcattcc atcgttacca ctggtcccga 1320 tgcagtggtc aagaactgaa aagatatatc cattcctatg actgtctcct tgatgaccct 1380 tttgatcatg attggcctaa actcccagaa cttcctggaa tcaattattc tatggatgag 1440 caatgtcgtt ttgattttgg tgttggctat aaaatgtgca ccgcgttccg aacctttgac 1500 ccatgtaaac agctgtggtg tagccatcct gataatccct acttttgtaa gactaaaaag 1560 ggacctccac ttgatgggac tgaatgtgct gctggaaaat ggtgctataa gggtcattgc 1620 atgtggaaga atgctaatca gcaaaaacaa gatggcaatt gggggtcatg gactaaattt 1680 ggctcctgtt ctcggacatg tggaactggt gttcgtttca gaacacgcca gtgcaataat 1740 cccatgccca tcaatggtgg tcaggattgt cctggtgtta attttgagta ccagctttgt 1800 aacacagaag aatgccaaaa acactttgag gacttcagag cacagcagtg tcagcagcga 1860 aactcccact ttgaatacca gaataccaaa caccactggt tgccatatga acatcctgac 1920 cccaagaaaa gatgccacct ttactgtcag tccaaggaga ctggagatgt tgcttacatg 1980 aaacaactgg tgcatgatgg aacgcactgt tcttacaaag atccatatag catatgtgtg 2040 cgaggagagt gtgtgaaagt gggctgtgat aaagaaattg gttctaataa ggttgaggat 2100 aagtgtggtg tctgtggagg agataattcc cactgccgaa ccgtgaaggg gacatttacc 2160 agaactccca ggaagcttgg gtaccttaag atgtttgata taccccctgg ggctagacat 2220 gtgttaatcc aagaagacga ggcttctcct catattcttg ctattaagaa ccaggctaca 2280 ggccattata ttttaaatgg caaaggggag gaagccaagt cgcggacctt catagatctt 2340 ggtgtggagt gggattataa cattgaagat gacattgaaa gtcttcacac cgatggacct 2400 ttacatgatc ctgttattgt tttgattata cctcaagaaa atgatacccg ctctagcctg 2460 acatataagt acatcatcca tgaagactct gtacctacaa tcaacagcaa caatgtcatc 2520 caggaagaat tagatacttt tgagtgggct ttgaagagct ggtctcagtg ttccaaaccc 2580 tgtggtggag gtttccagta cactaaatat ggatgccgta ggaaaagtga taataaaatg 2640 gtccatcgca gcttctgtga ggccaacaaa aagccgaaac ctattagacg aatgtgcaat 2700 attcaagagt gtacacatcc actctgggta gcagaagaat gggaacactg caccaaaacc 2760 tgtggaagtt ctggctatca gcttcgcact gtacgctgcc ttcagccact ccttgatggc 2820 accaaccgct ctgtgcacag caaatactgc atgggtgacc gtcccgagag ccgccggccc 2880 tgtaacagag tgccctgccc tgcacagtgg aaaacaggac cctggagtga gtgttcagtg 2940 acctgcggtg aaggaacgga ggtgaggcag gtcctctgca gggctgggga ccactgtgat 3000 ggtgaaaagc ctgagtcggt cagagcctgt caactgcctc cttgtaatga tgaaccatgt 3060 ttgggagaca agtccatatt ctgtcaaatg gaagtgttgg cacgatactg ctccatacca 3120 ggttataaca agttatgttg tgagtcctgc agcaagcgca gtagcaccct gccaccacca 3180 taccttctag aagctgctga aactcatgat gatgtcatct ctaaccctag tgacctccct 3240 agatctctag tgatgcctac atctttggtt ccttatcatt cagagacccc tgcaaagaag 3300 atgtctttga gtagcatctc ttcagtggga ggtccaaatg catatgctgc tttcaggcca 3360 aacagtaaac ctgatggtgc taatttacgc cagaggagtg ctcagcaagc aggaagtaag 3420 actgtgagac tggtcaccgt accatcctcc ccacccacca agagggtcca cctcagttca 3480 gcttcacaaa tggctgctgc ttccttcttt gcagccagtg attcaatagg tgcttcttct 3540 caggcaagaa cctcaaagaa agatggaaag atcattgaca acagacgtcc gacaagatca 3600 tccaccttag aaagatga 3618 <210> 12 <211> 50 <212> DNA <213> Homo sapiens <400> 12 ctagcgcggc cgcaggatcc gactacaagg acgacgatga caaatgataa 50 <210> 13 <211> 50 <212> DNA <213> Homo sapiens <400> 13 gatcttatca tttgtcatcg tcgtccttgt agtcggatcc tgcggccgcg 50 <210> 14 <211> 34 <212> DNA <213> Homo sapiens <400> 14 ggactagtct agaagctggg taccagctgc tagc 34 <210> 15 <211> 29 <212> DNA <213> Homo sapiens <400> 15 ggactagtgt cgaccggtca tggctgcgc 29 <210> 16 <211> 37 <212> DNA <213> Homo sapiens <400> 16 gctctagacc atggggaacg cggagcgggc tccgggg 37 <210> 17 <211> 30 <212> DNA <213> Homo sapiens <400> 17 ggatccctgc cggttggcat cgtacgaggt 30 <210> 18 <211> 42 <212> DNA <213> Homo sapiens <400> 18 gtggctagcg ccatggttct cctgtcactt tggttgatag ca 42 <210> 19 <211> 41 <212> DNA <213> Homo sapiens <400> 19 agagcggccg cttgctcatc catagaataa ttgattccag g 41 <210> 20 <211> 11 <212> PRT <213> Homo sapiens <400> 20 Asn Ile Thr Glu Gly Glu Ala Arg Gly Ser Val 1 5 10 <210> 21 <211> 27 <212> DNA <213> Homo sapiens <400> 21 tcctatgact gtctccttga tgaccct 27 <210> 22 <211> 35 <212> DNA <213> Homo sapiens <400> 22 gcggatcctc atctttctaa ggtggatgat cttgt 35[Sequence List] SEQUENCE LISTING <110> Yamanouchi Pharmaceutical Co., Ltd. <120> Novel metalloprotease <130> 0000002897 <160> 22 <170> PatentIn Ver. 2.0 <210> 1 <211> 27 <212> DNA <213> Homo sapiens <400> 1 ccatcctaat acgactcact atagggc 27 <210> 2 <211> 23 <212> DNA <213> Homo sapiens <400> 2 actcactata gggctcgagc ggc 23 <210> 3 <211> 2670 <212> DNA <213> Homo sapiens <400> 3 atgctccccg cccccgccgc cccccggtgg cctccgctcc tgctgctgct gctgctgctg 60 ctgccgctgg cccgcggcgc cccggcccgg cccgcagccg gggggcaggc ctcggagctg 120 gtggtgccca cgcggttgcc cggcagcgcg ggcgagctcg cgctccacct gtccgccttc 180 ggcaagggct tcgtgctgcg cctggcgccc gacgacagct tcctggcgcc cgagttcaag 240 atcgagcgcc tcgggggctc cggccgggcg accgggggcg agcgggggct gcgcggctgc 300 ttcttctccg gcaccgtgaa tggggagccc gagtcgctgg cggcggtcag cctgtgccgc 360 gggctgagcg gctccttcct gctggacggc gaggagttca ccatccagcc gcagggcgcg 420 gggggctccc tggctcagcc gcaccgcctg cagcgctggg gtcccgccgg agcccgcccc 480 ctcccgcgg gg ggcagggag gg aggca ggagagagga 540 gaccaccagg aggacagcga ggaggagagc caagaagagg aggcagaagg cgctagcgag 600 ccgccaccgc ccctgggggc cacgagtagg accaagcggt ttgtgtctga ggcgcgcttc 660 gtgaagacgc tgctggtggc cgatgcgtcc atggctgcct tctacggggc cgacctgcag 720 aaccacatcc tgacgttaat gtctgtggca gcccgaatct acaagcaccc cagcatcaag 780 aattccatca acctgatggt ggtaaaagtg ctgatcgtag aagatgaaaa atggggccca 840 gaggtgtccg acaatggggg gcttacactg cgtaacttct gcaactggca gcggcgtttc 900 aaccagccca gcgaccgcca cccagagcac tacgacacgg ccatcctgct caccagacag 960 aacttctgtg ggcaggaggg gctgtgtgac accctgggtg tggcagacat cgggaccatt 1020 tgtgacccca acaaaagctg ctccgtgatc gaggatgagg ggctccaggc ggcccacacc 1080 ctggcccatg aactagggca cgtcctcagc atgccccacg acgactccaa gccctgcaca 1140 cggctcttcg ggcccatggg caagcaccac gtgatggcac cgctgttcgt ccacctgaac 1200 cagacgctgc cctggtcccc ctgcagcgcc atgtatctca cagagcttct ggacggcggg 1260 cacggagact gtctcctgga tgcccctgct gcggccctgc ccctccccac aggcctcccg 1320 ggccgcatgg ccctgtacca gctggaccag cagtgcaggc agatctttgg gccggatt tc 1380 cgccactgcc ccaacacctc tgctcaggac gtctgcgccc agctttggtg ccacactgat 1440 ggggctgagc ccctgtgcca cacgaagaat ggcagcctgc cctgggctga cggcacgccg 1500 tgcgggcctg ggcacctctg ctcagaaggc agctgtctac ctgaggagga agtggagagg 1560 cccaagcccg tggtagatgg aggctgggca ccgtggggac cctggggaga atgttctcgg 1620 acctgtggag gaggagtaca gttttcacac cgtgagtgca aggaccccga gcctcagaat 1680 ggaggaagat actgcctggg tcggagagcc aagtaccagt catgccacac ggaggaatgc 1740 ccccctgacg ggaaaagctt cagggagcag cagtgtgaga agtataatgc ctacaattac 1800 actgacatgg acgggaatct cctgcagtgg gtccccaagt atgctggggt gtccccccgg 1860 gaccgctgca agttgttctg ccgagcccgg gggaggagcg agttcaaagt gttcgaggcc 1920 aaggtgattg atggcaccct gtgtgggcca gaaacactgg ccatctgtgt ccgtggccag 1980 tgtgtcaagg ccggctgtga ccatgtggtg gactcgcctc ggaagctgga caaatgcggg 2040 gtgtgtgggg gcaaaggcaa ctcctgcagg aaggtctccg ggtccctcac ccccaccaat 2100 tatggctaca atgacattgt caccatccca gctggtgcca ctaatattga cgtgaagcag 2160 cggagccacc cgggtgtgca gaacgatggg aactacctgg cgctgaagac ggctgatggg 222 0 cagtacctgc tcaacggcaa cctggccatc tctgccatag agcaggacat cttggtgaag 2280 gggaccatcc tgaagtacag cggctccatc gccaccctgg agcgcctgca gagcttccgg 2340 cccttgccag agcctctgac agtgcagctc ctgacagtcc ctggcgaggt cttcccccca 2400 aaagtcaaat acaccttctt tgttcctaat gacgtggact ttagcatgca gagcagcaaa 2460 gagagagcaa ccaccaacat catccagccg ctgctccacg cacagtgggt gctgggggac 2520 tggtctgagt gctctagcac ctgcggggcc ggctggcaga ggcgaactgt agagtgcagg 2580 gacccctcca gccaggcctc tgccacctgc aacaaggctc tgaaacccga ggatgccaag 2640 ccctgcgaaa gccagctgtg ccccctgtga 2670 <210> 4 <211> 950 <212> PRT <213> Homo sapiens <400> 4 Met Gly Asn Ala Glu Arg Ala Pro Gly Ser Arg Ser Phe Gly Pro Val 1 5 10 15 Pro Thr Leu Leu Leu Leu Ala Ala Ala Leu Leu Ala Val Ser Asp Ala 20 25 30 Leu Gly Arg Pro Ser Glu Glu Asp Glu Glu Leu Val Val Pro Glu Leu 35 40 45 Glu Arg Ala Pro Gly His Gly Thr Thr Arg Leu Arg Leu His Ala Phe 50 55 60 Asp Gln Gln Leu Asp Leu Glu Leu Arg Pro Asp Ser Ser Phe Leu Ala 65 70 75 80 Pro Gly Phe Thr Leu Gln Asn Val Gly Arg Lys Ser Gly Ser Glu Thr 85 90 95 Pro Leu Pro Glu Thr Asp Leu Ala His Cys Phe Tyr Ser Gly Thr Val 100 105 110 Asn Gly Asp Pro Ser Ser Ala Ala Ala Leu Ser Leu Cys Glu Gly Val 115 120 125 Arg Gly Ala Phe Tyr Leu Leu Gly Glu Ala Tyr Phe Ile Gln Pro Leu 130 135 140 Pro Ala Ala Ser Glu Arg Leu Ala Thr Ala Ala Pro Gly Glu Lys Pro 145 150 155 160 Pro Ala Pro Leu Gln Phe His Leu Leu Arg Arg Asn Arg Gln Gly Asp 165 170 175 Val Gly Gly Thr Cys Gly Val Val Asp Asp Glu Pro Arg Pro Thr Gly 180 185 190 Lys Ala Glu Thr Glu Asp Glu Asp Glu Gly Thr Glu Gly Glu Asp Glu 195 200 205 Gly Pro Gln Trp Ser Pro Gln Asp Pro Ala Leu Gln Gly Val Gly Gln 210 215 220 Pro Thr Gly Thr Gly Ser Ile Arg Lys Lys Arg Phe Val Ser Ser His 225 230 235 240 Arg Tyr Val Glu Thr Met Leu Val Ala Asp Gln Ser Met Ala Glu Phe 245 250 255 His Gly Ser Gly Leu Lys His Tyr Leu Leu Thr Leu Phe Ser Val Ala 260 265 270 Ala Arg Leu Tyr Lys His Pro Ser Ile Arg Asn Ser Val Ser Leu Val 275 280 285 Val Val Lys Ile Leu Val Ile His Asp Glu Gln Ly s Gly Pro Glu Val 290 295 300 Thr Ser Asn Ala Ala Leu Thr Leu Arg Asn Phe Cys Asn Trp Gln Lys 305 310 315 320 Gln His Asn Pro Pro Ser Asp Arg Asp Ala Glu His Tyr Asp Thr Ala 325 330 335 Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Ser Gln Thr Cys Asp Thr 340 345 350 Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp Pro Ser Arg Ser Cys 355 360 365 Ser Val Ile Glu Asp Asp Gly Leu Gln Ala Ala Phe Thr Thr Ala His 370 375 380 Glu Leu Gly His Val Phe Asn Met Pro His Asp Asp Ala Lys Gln Cys 385 390 395 400 Ala Ser Leu Asn Gly Val Asn Gln Asp Ser His Met Met Ala Ser Met 405 410 415 Leu Ser Asn Leu Asp His Ser Gln Pro Trp Ser Pro Cys Ser Ala Tyr 420 425 430 Met Ile Thr Ser Phe Leu Asp Asn Gly His Gly Glu Glu Cys Leu Met Asp 435 440 445 Lys Pro Gln Asn Pro Ile Gln Leu Pro Gly Asp Leu Pro Gly Thr Ser 450 455 460 Tyr Asp Ala Asn Arg Gln Cys Gln Phe Thr Phe Gly Glu Asp Ser Lys 465 470 475 480 His Cys Pro Asp Ala Ala Ser Thr Cys Ser Thr Leu Trp Cys Thr Gly 485 490 495 Thr Ser Gly Gly Val Leu Val Cys Gln Thr Lys H is Phe Pro Trp Ala 500 505 510 Asp Gly Thr Ser Cys Gly Glu Gly Lys Trp Cys Ile Asn Gly Lys Cys 515 520 525 Val Asn Lys Thr Asp Arg Lys His Phe Asp Thr Pro Phe His Gly Ser 530 535 540 Trp Gly Met Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly 545 550 555 560 Gly Val Gln Tyr Thr Met Arg Glu Cys Asp Asn Pro Val Pro Lys Asn 565 570 575 Gly Gly Lys Tyr Cys Glu Gly Lys Arg Val Arg Tyr Arg Ser Cys Asn 580 585 590 Leu Glu Asp Cys Pro Asp Asn Asn Gly Lys Thr Phe Arg Glu Glu Gln 595 600 605 Cys Glu Ala His Asn Glu Phe Ser Lys Ala Ser Phe Gly Ser Gly Pro 610 615 620 Ala Val Glu Trp Ile Pro Lys Tyr Ala Gly Val Ser Pro Lys Asp Arg 625 630 635 640 Cys Lys Leu Ile Cys Gln Ala Lys Gly Ile Gly Tyr Phe Phe Val Leu 645 650 655 Gln Pro Lys Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Thr Ser 660 665 670 Val Cys Val Gln Gly Gln Cys Val Lys Ala Gly Cys Asp Arg Ile Ile 675 680 685 Asp Ser Lys Lys Lys Phe Asp Lys Cys Gly Val Cys Gly Gly Asn Gly 690 695 700 Ser Thr Cys Lys Lys Ile Ser Gly Ser Val Thr SerAla Lys Pro Gly 705 710 715 715 720 Tyr His Asp Ile Ile Thr Ile Pro Thr Gly Ala Thr Asn Ile Glu Val 725 730 735 Lys Gln Arg Asn Gln Arg Gly Ser Arg Asn Asn Gly Ser Phe Leu Ala 740 745 750 Ile Lys Ala Ala Asp Gly Thr Tyr Ile Leu Asn Gly Asp Tyr Thr Leu 755 760 765 Ser Thr Leu Glu Gln Asp Ile Met Tyr Lys Gly Val Val Leu Arg Tyr 770 775 780 Ser Gly Ser Ser Ala Ala Leu Glu Arg Ile Arg Ser Phe Ser Pro Leu 785 790 795 800 Lys Glu Pro Leu Thr Ile Gln Val Leu Thr Val Gly Asn Ala Leu Arg 805 810 815 Pro Lys Ile Lys Tyr Thr Tyr Phe Val Lys Lys Lys Lys Glu Ser Phe 820 825 830 Asn Ala Ile Pro Thr Phe Ser Ala Trp Val Ile Glu Glu Trp Gly Glu 835 840 845 Cys Ser Lys Ser Cys Glu Leu Gly Trp Gln Arg Arg Leu Val Glu Cys 850 855 860 Arg Asp Ile Asn Gly Gln Pro Ala Ser Glu Cys Ala Lys Glu Val Lys 865 870 870 875 880 Pro Ala Ser Thr Arg Pro Cys Ala Asp His Pro Cys Pro Gln Trp Gln 885 890 895 Leu Gly Glu Trp Ser Ser Cys Ser Lys Thr Cys Gly Lys Gly Tyr Lys 900 905 910 Lys Arg Ser Leu Lys Cys Leu Ser His Asp Gly GlyVal Leu Ser His 915 920 925 Glu Ser Cys Asp Pro Leu Lys Lys Pro Lys His Phe Ile Asp Phe Cys 930 935 940 Thr Met Ala Glu Cys Ser 945 950 <210> 5 <211> 2853 <212> DNA <213> Homo sapiens <400> 5 atggggaacg cggagcgggc tccggggtct cggagctttg ggcccgtacc cacgctgctg 60 ctgctcgccg cggcgctact ggccgtgtcg gacgcactcg ggcgcccctc cgaggaggac 120 gaggagctag tggtgccgga gctggagcgc gccccgggac acgggaccac gcgcctccgc 180 ctgcacgcct ttgaccagca gctggatctg gagctgcggc ccgacagcag ctttttggcg 240 cccggcttca cgctccagaa cgtggggcgc aaatccgggt ccgagacgcc gcttccggaa 300 accgacctgg cgcactgctt ctactccggc accgtgaatg gcgatcccag ctcggctgcc 360 gccctcagcc tctgcgaggg cgtgcgcggc gccttctacc tgctggggga ggcgtatttc 420 atccagccgc tgcccgccgc cagcgagcgc ctcgccaccg ccgccccagg ggagaagccg 480 ccggcaccac tacagttcca cctcctgcgg cggaatcggc agggcgacgt aggcggcacg 540 tgcggggtcg tggacgacga gccccggccg actgggaaag cggagaccga agacgaggac 600 gaagggactg agggcgagga cgaagggcct cagtggtcgc cgcaggaccc ggcactgcaa 660 ggcgtaggac agcccacagg aactggaagc ataaga aaga agcgatttgt gtccagtcac 720 cgctatgtgg aaaccatgct tgtggcagac cagtcgatgg cagaattcca cggcagtggt 780 ctaaagcatt accttctcac gttgttttcg gtggcagcca gattgtacaa acaccccagc 840 attcgtaatt cagttagcct ggtggtggtg aagatcttgg tcatccacga tgaacagaag 900 gggccggaag tgacctccaa tgctgccctc actctgcgga acttttgcaa ctggcagaag 960 cagcacaacc cacccagtga ccgggatgca gagcactatg acacagcaat tcttttcacc 1020 agacaggact tgtgtgggtc ccagacatgt gatactcttg ggatggctga tgttggaact 1080 gtgtgtgatc cgagcagaag ctgctccgtc atagaagatg atggtttaca agctgccttc 1140 accacagccc atgaattagg ccacgtgttt aacatgccac atgatgatgc aaagcagtgt 1200 gccagcctta atggtgtgaa ccaggattcc cacatgatgg cgtcaatgct ttccaacctg 1260 gaccacagcc agccttggtc tccttgcagt gcctacatga ttacatcatt tctggataat 1320 ggtcatgggg aatgtttgat ggacaagcct cagaatccca tacagctccc aggcgatctc 1380 cctggcacct cgtacgatgc caaccggcag tgccagttta catttgggga ggactccaaa 1440 cactgccccg atgcagccag cacatgtagc accttgtggt gtaccggcac ctctggtggg 1500 gtgctggtgt gtcaaaccaa acacttcccg tgggcggatg gcacc agctg tggagaaggg 1560 aaatggtgta tcaacggcaa gtgtgtgaac aaaaccgaca gaaagcattt tgatacgcct 1620 tttcatggaa gctggggaat gtgggggcct tggggagact gttcgagaac gtgcggtgga 1680 ggagtccagt acacgatgag ggaatgtgac aacccagtcc caaagaatgg agggaagtac 1740 tgtgaaggca aacgagtgcg ctacagatcc tgtaaccttg aggactgtcc agacaataat 1800 ggaaaaacct ttagagagga acaatgtgaa gcacacaacg agttttcaaa agcttccttt 1860 gggagtgggc ctgcggtgga atggattccc aagtacgctg gcgtctcacc aaaggacagg 1920 tgcaagctca tctgccaagc caaaggcatt ggctacttct tcgttttgca gcccaaggtt 1980 gtagatggta ctccatgtag cccagattcc acctctgtct gtgtgcaagg acagtgtgta 2040 aaagctggtt gtgatcgcat catagactcc aaaaagaagt ttgataaatg tggtgtttgc 2100 gggggaaatg gatctacttg taaaaaaata tcaggatcag ttactagtgc aaaacctgga 2160 tatcatgata tcatcacaat tccaactgga gccaccaaca tcgaagtgaa acagcggaac 2220 cagaggggat ccaggaacaa tggcagcttt cttgccatca aagctgctga tggcacatat 2280 attcttaatg gtgactacac tttgtccacc ttagagcaag acattatgta caaaggtgtt 2340 gtcttgaggt acagcggctc ctctgcggca ttggaaagaa ttcgcagctt tagccctctc 2400 aaagagccct tgaccatcca ggttcttact gtgggcaatg cccttcgacc taaaattaaa 2460 tacacctact tcgtaaagaa gaagaaggaa tctttcaatg ctatccccac tttttcagca 2520 tgggtcattg aagagtgggg cgaatgttct aagtcatgtg aattgggttg gcagagaaga 2580 ctggtagaat gccgagacat taatggacag cctgcttccg agtgtgcaaa ggaagtgaag 2640 ccagccagca ccagaccttg tgcagaccat ccctgccccc agtggcagct gggggagtgg 2700 tcatcatgtt ctaagacctg cgggaagggt tacaaaaaaa gaagcttgaa gtgtctgtcc 2760 catgatggag gggtgttatc tcatgagagc tgtgatcctt taaagaaacc taaacatttc 2820 atagactttt gcacaatggc agaatgcagt taa 2853 <210> 6 <211> 25 <212> DNA <213> Homo sapiens <400> 6 acctgtcctt tggtgagacg ccagc 25 <210> 7 <211> 26 <212> DNA <213> Homo sapiens <400 > 7 atctggctgc caccgaaaac aacgtg 26 <210> 8 <211> 30 <212> DNA <213> Homo sapiens <400> 8 tcccccagca ggtagaaggc gccgcgcacg 30 <210> 9 <211> 30 <212> DNA <213> Homo sapiens <400 > 9 ccgagctggg atcgccattc acggtgccgg 30 <210> 10 <211> 1205 <212> PRT <213> Homo sapiens <400> 10 Met Val Leu Leu Ser Leu Trp Leu Ile Ala Ala Ala Leu Val Glu Val 1 5 10 15 Arg Thr Ser Ala Asp Gly Gln Ala Gly Asn Glu Glu Met Val Gln Ile 20 25 30 Asp Leu Pro Ile Lys Arg Tyr Arg Glu Tyr Glu Leu Val Thr Pro Val 35 40 45 Ser Thr Asn Leu Glu Gly Arg Tyr Leu Ser His Thr Leu Ser Ala Ser 50 55 60 His Lys Lys Arg Ser Ala Arg Asp Val Ser Ser Asn Pro Glu Gln Leu 65 70 75 80 Phe Phe Asn Ile Thr Ala Phe Gly Lys Asp Phe His Leu Arg Leu Lys 85 90 95 Pro Asn Thr Gln Leu Val Ala Pro Gly Ala Val Val Glu Trp His Glu 100 105 110 Thr Ser Leu Val Pro Gly Asn Ile Thr Asp Pro Ile Asn Asn His Gln 115 120 125 Pro Gly Ser Ala Thr Tyr Arg Ile Arg Lys Thr Glu Pro Leu Gln Thr 130 135 140 Asn Cys Ala Tyr Val Gly Asp Ile Val Asp Ile Pro Gly Thr Ser Val 145 150 155 160 Ala Ile Ser Asn Cys Asp Gly Leu Ala Gly Met Ile Lys Ser Asp Asn 165 170 175 Glu Glu Tyr Phe Ile Glu Pro Leu Glu Arg Gly Lys Gln Met Glu Glu 180 185 190 Glu Lys Gly Arg Ile His Val Val Tyr Lys Arg Ser Ala Val Glu Gln 195 200 205 Ala Pro Ile Asp Met Ser Lys Asp Phe His Tyr Arg Glu Ser A sp Leu 210 215 220 Glu Gly Leu Asp Asp Leu Gly Thr Val Tyr Gly Asn Ile His Gln Gln 225 230 235 240 Leu Asn Glu Thr Met Arg Arg Arg Arg His Ala Gly Glu Asn Asp Tyr 245 250 255 Asn Ile Glu Val Leu Leu Gly Val Asp Asp Ser Val Val Arg Phe His 260 265 270 270 Gly Lys Glu His Val Gln Asn Tyr Leu Leu Thr Leu Met Asn Ile Val 275 280 285 Asn Glu Ile Tyr His Asp Glu Ser Leu Gly Val His Ile Asn Val Val 290 295 300 Leu Val Arg Met Ile Met Leu Gly Tyr Ala Lys Ser Ile Ser Leu Ile 305 310 315 320 Glu Arg Gly Asn Pro Ser Arg Ser Leu Glu Asn Val Cys Arg Trp Ala 325 330 335 Ser Gln Gln Gln Arg Ser Asp Leu Asn His Ser Glu His His Asp His 340 345 350 Ala Ile Phe Leu Thr Arg Gln Asp Phe Gly Pro Ala Gly Met Gln Gly 355 360 365 Tyr Ala Pro Val Thr Gly Met Cys His Pro Val Arg Ser Cys Thr Leu 370 375 380 380 Asn His Glu Asp Gly Phe Ser Ser Ala Phe Val Val Ala His Glu Thr 385 390 395 400 400 Gly His Val Leu Gly Met Glu His Asp Gly Gln Gly Asn Arg Cys Gly 405 410 415 Asp Glu Thr Ala Met Gly Ser Val Met Ala Pro Leu Val GlnAla Ala 420 425 430 Phe His Arg Tyr His Trp Ser Arg Cys Ser Gly Gln Glu Leu Lys Arg 435 440 445 Tyr Ile His Ser Tyr Asp Cys Leu Leu Asp Asp Pro Phe Asp His Asp 450 455 460 Trp Pro Lys Leu Pro Glu Leu Pro Gly Ile Asn Tyr Ser Met Asp Glu 465 470 475 480 480 Gln Cys Arg Phe Asp Phe Gly Val Gly Tyr Lys Met Cys Thr Ala Phe 485 490 495 Arg Thr Phe Asp Pro Cys Lys Gln Leu Trp Cys Ser His Pro Asp Asn 500 505 510 Pro Tyr Phe Cys Lys Thr Lys Lys Gly Pro Pro Leu Asp Gly Thr Glu 515 520 525 Cys Ala Ala Gly Lys Trp Cys Tyr Lys Gly His Cys Met Trp Lys Asn 530 535 540 Ala Asn Gln Gln Lys Gln Asp Gly Asn Trp Gly Ser Trp Thr Lys Phe 545 550 555 560 Gly Ser Cys Ser Arg Thr Cys Gly Thr Gly Val Arg Phe Arg Thr Arg 565 570 575 Gln Cys Asn Asn Pro Met Pro Ile Asn Gly Gly Gln Asp Cys Pro Gly 580 585 585 590 Val Asn Phe Glu Tyr Gln Leu Cys Asn Thr Glu Glu Cys Gln Lys His 595 600 605 Phe Glu Asp Phe Arg Ala Gln Gln Cys Gln Gln Arg Asn Ser His Phe 610 615 620 Glu Tyr Gln Asn Thr Lys His His Trp Leu Pro Tyr Glu His ProAsp 625 630 635 640 Pro Lys Lys Arg Cys His Leu Tyr Cys Gln Ser Lys Glu Thr Gly Asp 645 650 655 Val Ala Tyr Met Lys Gln Leu Val His Asp Gly Thr His Cys Ser Tyr 660 665 670 Lys Asp Pro Tyr Ser Ile Cys Val Arg Gly Glu Cys Val Lys Val Gly 675 680 685 Cys Asp Lys Glu Ile Gly Ser Asn Lys Val Glu Asp Lys Cys Gly Val 690 695 700 Cys Gly Gly Asy Asp Asn Ser His Cys Arg Thr Val Lys Gly Thr Phe Thr 705 710 715 720 Arg Thr Pro Arg Lys Leu Gly Tyr Leu Lys Met Phe Asp Ile Pro Pro 725 730 735 Gly Ala Arg His Val Leu Ile Gln Glu Asp Glu Ala Ser Pro His Ile 740 745 750 Leu Ala Ile Lys Asn Gln Ala Thr Gly His Tyr Ile Leu Asn Gly Lys 755 760 765 Gly Glu Glu Alu Lys Ser Arg Thr Phe Ile Asp Leu Gly Val Glu Trp 770 775 780 Asp Tyr Asn Ile Glu Asp Asp Ile Glu Ser Leu His Thr Asp Gly Pro 785 790 795 800 Leu His Asp Pro Val Ile Val Leu Ile Ile Pro Gln Glu Asn Asp Thr 805 810 815 Arg Ser Ser Leu Thr Tyr Lys Tyr Ile Ile His Glu Asp Ser Val Pro 820 825 830 Thr Ile Asn Ser Asn Asn Val Ile Gln Glu Glu Leu Asp Thr Phe Glu 835 840 845 Trp Ala Leu Lys Ser Trp Ser Gln Cys Ser Lys Pro Cys Gly Gly Gly 850 855 860 Phe Gln Tyr Thr Lys Tyr Gly Cys Arg Arg Lys Ser Asp Asn Lys Met 865 870 875 875 880 Val His Arg Ser Phe Cys Glu Ala Asn Lys Lys Pro Lys Pro Ile Arg 885 890 895 Arg Met Cys Asn Ile Gln Glu Cys Thr His Pro Leu Trp Val Ala Glu 900 905 910 Glu Trp Glu His Cys Thr Lys Thr Cys Gly Ser Ser Gly Tyr Gln Leu 915 920 925 Arg Thr Val Arg Cys Leu Gln Pro Leu Leu Asp Gly Thr Asn Arg Ser 930 935 940 Val His Ser Lys Tyr Cys Met Gly Asp Arg Pro Glu Ser Arg Arg Pro 945 950 955 960 Cys Asn Arg Val Pro Cys Pro Ala Gln Trp Lys Thr Gly Pro Trp Ser 965 970 975 Glu Cys Ser Val Thr Cys Gly Glu Gly Thr Glu Val Arg Gln Val Leu 980 985 990 Cys Arg Ala Gly Asp His Cys Asp Gly Glu Lys Pro Glu Ser Val Arg 995 1000 1005 Ala Cys Gln Leu Pro Pro Cys Asn Asp Glu Pro Cys Leu Gly Asp Lys 1010 1015 1020 Ser Ile Phe Cys Gln Met Glu Val Leu Ala Arg Tyr Cys Ser Ile Pro 1025 1030 1035 1040 Gly Tyr Asn Lys Leu Cys Cys Glu Ser Cys Ser Lys Ar g Ser Ser Thr 1045 1050 1055 Leu Pro Pro Pro Tyr Leu Leu Glu Ala Ala Glu Thr His Asp Asp Val 1060 1065 1070 Ile Ser Asn Pro Ser Asp Leu Pro Arg Ser Leu Val Met Pro Thr Ser 1075 1080 1085 Leu Val Pro Tyr His Ser Glu Thr Pro Ala Lys Lys Met Ser Leu Ser 1090 1095 1100 Ser Ile Ser Ser Val Gly Gly Pro Asn Ala Tyr Ala Ala Phe Arg Pro 1105 1110 1115 1120 Asn Ser Lys Pro Asp Gly Ala Asn Leu Arg Gln Arg Ser Ala Gln Gln 1125 1130 1135 Ala Gly Ser Lys Thr Val Arg Leu Val Thr Val Pro Ser Ser Pro Pro 1140 1145 1150 Thr Lys Arg Val His Leu Ser Ser Ala Ser Gln Met Ala Ala Ala Ser 1155 1160 1165 Phe Phe Ala Ala Ser Asp Ser Ile Gly Ala Ser Ser Gln Ala Arg Thr 1170 1175 1180 Ser Lys Lys Asp Gly Lys Ile Ile Asp Asn Arg Arg Pro Thr Arg Ser 1185 1190 1195 1200 Ser Thr Leu Glu Arg 1205 <210> 11 <211> 3618 <212> DNA <213 > Homo sapiens <400> 11 atggttctcc tgtcactttg gttgatagca gccgctctgg tagaggttag gacttcagct 60 gatggacaag ctggtaatga agaaatggtg caaatagatt taccaataaa gagatataga 120 gagtatgagc tggtgactcc agtca gcaca aatctagaag gacgctatct ctcccatact 180 ctttctgcga gtcacaaaaa gaggtcagcg agggacgtgt cttccaaccc tgagcagttg 240 ttctttaaca tcacggcatt tggaaaagat tttcatctgc gactaaagcc caacactcaa 300 ctagtagctc ctggggctgt tgtggagtgg catgagacat ctctggtgcc tgggaatata 360 accgatccca ttaacaacca tcaaccagga agtgctacgt atagaatccg gaaaacagag 420 cctttgcaga ctaactgtgc ttatgttggt gacatcgtgg acattccagg aacctctgtt 480 gccatcagca actgtgatgg tctggctgga atgataaaaa gtgataatga agagtatttc 540 attgaaccct tggaaagagg taaacagatg gaggaagaaa aaggaaggat tcatgttgtc 600 tacaagagat cagctgtaga acaggctccc atagacatgt ccaaagactt ccactacaga 660 gagtcggacc tggaaggcct tgatgatcta ggtactgttt atggcaacat ccaccagcag 720 ctgaatgaaa caatgagacg ccgcagacac gcgggagaaa acgattacaa tatcgaggta 780 ctgctgggag tggatgactc tgtggtccgt ttccatggca aagagcacgt ccaaaactac 840 ctcctgaccc taatgaacat tgtgaatgaa atttaccatg atgagtccct cggagtgcat 900 ataaatgtgg tcctggtgcg catgataatg ctgggatatg caaagtccat cagcctcata 960 gaaaggggaa acccatccag aagcttggag aatgtgtgtc gct gggcgtc ccaacagcaa 1020 agatctgatc tcaaccactc tgaacaccat gaccatgcaa tttttttaac caggcaagac 1080 tttggacctg ctggaatgca aggatatgct ccagtcaccg gcatgtgtca tccagtgaga 1140 agttgtaccc tgaatcatga ggatggtttt tcatctgctt ttgtagtagc ccatgaaacg 1200 ggccatgtgt tgggaatgga gcatgatgga caaggcaaca ggtgtggtga tgagactgct 1260 atgggaagtg tcatggctcc cttggtacaa gcagcattcc atcgttacca ctggtcccga 1320 tgcagtggtc aagaactgaa aagatatatc cattcctatg actgtctcct tgatgaccct 1380 tttgatcatg attggcctaa actcccagaa cttcctggaa tcaattattc tatggatgag 1440 caatgtcgtt ttgattttgg tgttggctat aaaatgtgca ccgcgttccg aacctttgac 1500 ccatgtaaac agctgtggtg tagccatcct gataatccct acttttgtaa gactaaaaag 1560 ggacctccac ttgatgggac tgaatgtgct gctggaaaat ggtgctataa gggtcattgc 1620 atgtggaaga atgctaatca gcaaaaacaa gatggcaatt gggggtcatg gactaaattt 1680 ggctcctgtt ctcggacatg tggaactggt gttcgtttca gaacacgcca gtgcaataat 1740 cccatgccca tcaatggtgg tcaggattgt cctggtgtta attttgagta ccagctttgt 1800 aacacagaag aatgccaaaa acactttgag gacttcagag cacagcagt g tcagcagcga 1860 aactcccact ttgaatacca gaataccaaa caccactggt tgccatatga acatcctgac 1920 cccaagaaaa gatgccacct ttactgtcag tccaaggaga ctggagatgt tgcttacatg 1980 aaacaactgg tgcatgatgg aacgcactgt tcttacaaag atccatatag catatgtgtg 2040 cgaggagagt gtgtgaaagt gggctgtgat aaagaaattg gttctaataa ggttgaggat 2100 aagtgtggtg tctgtggagg agataattcc cactgccgaa ccgtgaaggg gacatttacc 2160 agaactccca ggaagcttgg gtaccttaag atgtttgata taccccctgg ggctagacat 2220 gtgttaatcc aagaagacga ggcttctcct catattcttg ctattaagaa ccaggctaca 2280 ggccattata ttttaaatgg caaaggggag gaagccaagt cgcggacctt catagatctt 2340 ggtgtggagt gggattataa cattgaagat gacattgaaa gtcttcacac cgatggacct 2400 ttacatgatc ctgttattgt tttgattata cctcaagaaa atgatacccg ctctagcctg 2460 acatataagt acatcatcca tgaagactct gtacctacaa tcaacagcaa caatgtcatc 2520 caggaagaat tagatacttt tgagtgggct ttgaagagct ggtctcagtg ttccaaaccc 2580 tgtggtggag gtttccagta cactaaatat ggatgccgta ggaaaagtga taataaaatg 2640 gtccatcgca gcttctgtga ggccaacaaa aagccgaaac ctattagacg aatg tgcaat 2700 attcaagagt gtacacatcc actctgggta gcagaagaat gggaacactg caccaaaacc 2760 tgtggaagtt ctggctatca gcttcgcact gtacgctgcc ttcagccact ccttgatggc 2820 accaaccgct ctgtgcacag caaatactgc atgggtgacc gtcccgagag ccgccggccc 2880 tgtaacagag tgccctgccc tgcacagtgg aaaacaggac cctggagtga gtgttcagtg 2940 acctgcggtg aaggaacgga ggtgaggcag gtcctctgca gggctgggga ccactgtgat 3000 ggtgaaaagc ctgagtcggt cagagcctgt caactgcctc cttgtaatga tgaaccatgt 3060 ttgggagaca agtccatatt ctgtcaaatg gaagtgttgg cacgatactg ctccatacca 3120 ggttataaca agttatgttg tgagtcctgc agcaagcgca gtagcaccct gccaccacca 3180 taccttctag aagctgctga aactcatgat gatgtcatct ctaaccctag tgacctccct 3240 agatctctag tgatgcctac atctttggtt ccttatcatt cagagacccc tgcaaagaag 3300 atgtctttga gtagcatctc ttcagtggga ggtccaaatg catatgctgc tttcaggcca 3360 aacagtaaac ctgatggtgc taatttacgc cagaggagtg ctcagcaagc aggaagtaag 3420 actgtgagac tggtcaccgt accatcctcc ccacccacca agagggtcca cctcagttca 3480 gcttcacaaa tggctgctgc ttccttcttt gcagccagtg attcaatagg tgcttcttct 3540 caggcaagaa cctcaaagaa agatggaaag atcattgaca acagacgtcc gacaagatca 3600 tccaccttag aaagatga 3618 <210> 12 <211> 50 <212> DNA <213> Homo sapiens <400> 12 ctagcgcggc cgcaggatcc gactacaagg <10> <50> DNA <ca> <213> Homo sapiens <400> 13 gatcttatca tttgtcatcg tcgtccttgt agtcggatcc tgcggccgcg 50 <210> 14 <211> 34 <212> DNA <213> Homo sapiens <400> 14 ggactagtct agaagctggg taccagctgc tagc 34 <210> 152 <21> 212> DNA <213> Homo sapiens <400> 15 ggactagtgt cgaccggtca tggctgcgc 29 <210> 16 <211> 37 <212> DNA <213> Homo sapiens <400> 16 gctctagacc atggggaacg cggagcgggc tccgggg 37 <210> 17 <211> 30 <212> DNA <213> Homo sapiens <400> 17 ggatccctgc cggttggcat cgtacgaggt 30 <210> 18 <211> 42 <212> DNA <213> Homo sapiens <400> 18 gtggctagcg ccatggttct cctgtcactt tggttgatag ca 42 <210> 19 <211 > 41 <212> DNA <213> Homo sapiens <400> 19 agagcggccg cttgctcatc catagaataa ttgattccag g 41 <210> 20 <211> 11 <212> PRT <213> Homo sapiens <400> 20 Asn Ile Thr Glu Gly Gl u Ala Arg Gly Ser Val 1 5 10 <210> 21 <211> 27 <212> DNA <213> Homo sapiens <400> 21 tcctatgact gtctccttga tgaccct 27 <210> 22 <211> 35 <212> DNA <213> Homo sapiens <400> 22 gcggatcctc atctttctaa ggtggatgat cttgt 35

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 5/10 C12N 9/50 9/50 C12Q 1/37 C12Q 1/37 C12N 5/00 A (72)発明者 笹又 美穂 茨城県つくば市御幸が丘21 山之内製薬株 式会社内 Fターム(参考) 4B024 AA01 AA11 BA14 CA04 DA03 EA04 GA11 HA15 4B050 CC03 DD07 LL01 LL03 4B063 QA01 QQ36 QR02 QR48 QS16 QS28 QS33 QX02 4B065 AA93X AA93Y BA02 CA33 CA44 CA46 4H045 AA11 AA20 BA10 CA40 DA76 EA50 FA72 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12N 5/10 C12N 9/50 9/50 C12Q 1/37 C12Q 1/37 C12N 5/00 A (72) Inventor Miho Sasamata 21 Miyukigaoka, Tsukuba City, Ibaraki Pref. BA02 CA33 CA44 CA46 4H045 AA11 AA20 BA10 CA40 DA76 EA50 FA72

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】配列番号4で表されるアミノ酸配列の第1
番から第470番のアミノ酸配列、若しくは、配列番号10
で表されるアミノ酸配列の第1番から第481番のアミノ酸
配列を含み、かつ、プロテアーゼ活性を有する金属プロ
テアーゼ、又は、該金属プロテアーゼの同効物である金
属プロテアーゼ。
(1) the first amino acid sequence represented by SEQ ID NO: 4;
The amino acid sequence from No. 470 to No. 470, or SEQ ID NO: 10
A metal protease having the amino acid sequence of the 1st to the 481st amino acid of the amino acid sequence represented by and having protease activity, or a metal protease which is an equivalent of the metal protease.
【請求項2】配列番号4若しくは10で表されるアミノ酸
配列を有する蛋白質。
2. A protein having an amino acid sequence represented by SEQ ID NO: 4 or 10.
【請求項3】請求項1記載の金属プロテアーゼ、若しく
は請求項2記載の蛋白質のアミノ酸配列をコードする遺
伝子。
[3] a gene encoding the amino acid sequence of the metalloprotease of [1] or the protein of [2];
【請求項4】請求項3記載の遺伝子を含むベクター。A vector comprising the gene according to claim 3. 【請求項5】請求項4記載のベクターを含む宿主細胞。(5) A host cell comprising the vector according to (4). 【請求項6】請求項5記載の宿主細胞を用いる請求項1
記載の金属プロテアーゼ及び請求項2記載の蛋白質の製
造方法。
[6] The host cell according to [5], wherein the host cell is used.
A method for producing the metalloprotease according to claim 1 and the protein according to claim 2.
【請求項7】請求項1記載の金属プロテアーゼ及び請求
項2記載の蛋白質に対する抗体。
7. An antibody against the metalloprotease according to claim 1 and the protein according to claim 2.
【請求項8】請求項1記載の金属プロテアーゼ又は請求
項2記載の蛋白質と被験化合物とを接触させ、当該金属
プロテアーゼの活性を修飾する物質をスクリーニングす
る方法。
8. A method for screening a substance that modifies the activity of the metal protease by bringing the metalloprotease of claim 1 or the protein of claim 2 into contact with a test compound.
JP11196584A 1999-07-09 1999-07-09 New metal protease Pending JP2001017183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11196584A JP2001017183A (en) 1999-07-09 1999-07-09 New metal protease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11196584A JP2001017183A (en) 1999-07-09 1999-07-09 New metal protease

Publications (1)

Publication Number Publication Date
JP2001017183A true JP2001017183A (en) 2001-01-23

Family

ID=16360178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11196584A Pending JP2001017183A (en) 1999-07-09 1999-07-09 New metal protease

Country Status (1)

Country Link
JP (1) JP2001017183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104390A2 (en) * 2002-06-06 2003-12-18 The Cleveland Clinic Foundation Adamts nucleic acids and proteins
WO2013164970A1 (en) 2012-05-01 2013-11-07 富士フイルム株式会社 Method for incubating pluripotent stem cells and polypeptide to be used therefor
WO2015037623A1 (en) 2013-09-10 2015-03-19 富士フイルム株式会社 Culture method for pluripotent stem cells and kit and medium for culture of pluripotent stem cells used therein
WO2015064661A1 (en) 2013-10-31 2015-05-07 富士フイルム株式会社 Polypeptide composition, and culture method for pluripotent stem cell using same
US10487307B2 (en) 2013-09-10 2019-11-26 Fujifilm Corporation Culture method for pluripotent stem cells

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104390A2 (en) * 2002-06-06 2003-12-18 The Cleveland Clinic Foundation Adamts nucleic acids and proteins
WO2003104390A3 (en) * 2002-06-06 2004-06-10 Cleveland Clinic Foundation Adamts nucleic acids and proteins
WO2013164970A1 (en) 2012-05-01 2013-11-07 富士フイルム株式会社 Method for incubating pluripotent stem cells and polypeptide to be used therefor
US10407662B2 (en) 2012-05-01 2019-09-10 Fujifilm Corporation Method of culturing pluripotent stem cell, and polypeptide to be used therefor
WO2015037623A1 (en) 2013-09-10 2015-03-19 富士フイルム株式会社 Culture method for pluripotent stem cells and kit and medium for culture of pluripotent stem cells used therein
US10487307B2 (en) 2013-09-10 2019-11-26 Fujifilm Corporation Culture method for pluripotent stem cells
WO2015064661A1 (en) 2013-10-31 2015-05-07 富士フイルム株式会社 Polypeptide composition, and culture method for pluripotent stem cell using same
US9938505B2 (en) 2013-10-31 2018-04-10 Fujifilm Corporation Polypeptide composition and culture method for pluripotent stem cell using same

Similar Documents

Publication Publication Date Title
KR101691692B1 (en) Modified proteases that inhibit complement activation
US7193073B2 (en) Aggrecanase
US7312321B2 (en) Antibody to human enzymes of the metalloprotease family
TW201139677A (en) Protease screening methods and proteases identified thereby
US20030108998A1 (en) Aggrecan degrading metallo proteases
JP2002522081A (en) Proteases and related proteins
EP1234875B1 (en) Novel metalloprotease having aggrecanase activity
KR20040077928A (en) Aggrecanase molecules
JP2005505260A (en) Protein modification and maintenance molecules
EP1347048B1 (en) Novel protease
JP2001017183A (en) New metal protease
JP2001008687A (en) Novel metal protease and its gene
US20020155535A1 (en) Novel human cysteine protease
JP2004500812A (en) Protease
US20080102484A1 (en) Dendritic cell transmembrane serine protease
JP3521331B2 (en) Novel polypeptide
JP2003146905A (en) New metalloprotease having aggrecanase activity
JP2001286289A (en) New metalloprotease having thrombospondin domain and nucleic acid composition encoding the same
JP2003038188A (en) New polypeptide having vascularization inhibiting activity
WO1997015592A1 (en) Novel human cysteine protease

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040914