JP2001015814A - Substrate for mounting optical component, manufacture therefor and optical module - Google Patents

Substrate for mounting optical component, manufacture therefor and optical module

Info

Publication number
JP2001015814A
JP2001015814A JP18582099A JP18582099A JP2001015814A JP 2001015814 A JP2001015814 A JP 2001015814A JP 18582099 A JP18582099 A JP 18582099A JP 18582099 A JP18582099 A JP 18582099A JP 2001015814 A JP2001015814 A JP 2001015814A
Authority
JP
Japan
Prior art keywords
mounting
substrate
optical
marker
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18582099A
Other languages
Japanese (ja)
Inventor
Yuji Masuda
雄治 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18582099A priority Critical patent/JP2001015814A/en
Priority to US09/605,242 priority patent/US6227723B1/en
Publication of JP2001015814A publication Critical patent/JP2001015814A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for mounting an optical component of a structure, wherein the substrate can favorably be utilized to a even though an electrical signal for driving an optical semiconductor element is the high-frequency signal and moreover, the optical semiconductor element can be provided on the substrate with high accuracy and at the same time, the substrate is very excellent in performance and reliability, the manufacturing method of the substrate and an optical module. SOLUTION: This substrate is a substrate S for mounting an optical component, wherein a V-shaped groove 6 to be made to provide with an optical waveguide body is formed in a substrate 1 and markers 10 for mounting positioned to the groove 6 and conductors for driving an optical semiconductor element 13 which is made to provide on the substrate S on the basis of the markers 10, are formed on the substrate 1. With the conductors 7 and 8 provided on both of a first insulating film 2 formed on the substrate 1 and a second insulating film 4 formed thicker than the film 2 on the substrate 1, the markers 10 are formed on the film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光伝送や光通信等
に好適に用いられる光部品実装用基板及びその製造方法
並びに光モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component mounting substrate suitably used for optical transmission and optical communication, a method for manufacturing the same, and an optical module.

【0002】[0002]

【従来の技術】従来より、基板上に作製する光半導体素
子の実装用(位置合わせ用)マーカーは、光ファイバ搭
載用のV溝と同時に作製することがある。例えば図6
(a),(b)に示すように、基板51に異方性エッチ
ングで形成された形成されたV溝マーカー52は、光フ
ァイバ搭載用のV溝53と同一マスクにてフォトリソグ
ラフィ用のパターンを形成するので、V溝マーカー52
と光ファイバ搭載用のV溝53との相対位置精度はフォ
トマスクの精度で決定され、位置精度のずれはほとんど
生じない。
2. Description of the Related Art Conventionally, a marker for mounting (positioning) an optical semiconductor element manufactured on a substrate is sometimes manufactured simultaneously with a V-groove for mounting an optical fiber. For example, FIG.
As shown in (a) and (b), a V-groove marker 52 formed on a substrate 51 by anisotropic etching is a photolithographic pattern using the same mask as a V-groove 53 for mounting an optical fiber. Is formed, the V-groove marker 52
The relative positional accuracy between the optical fiber and the V-groove 53 for mounting the optical fiber is determined by the accuracy of the photomask, and the positional accuracy hardly shifts.

【0003】また、上記マーカーを光半導体素子実装用
の電極と同時に作製することもある。例えば図7
(a),(b)に示すように、光半導体素子実装用の電
極58と同一の電極材料で形成されたマーカー54は、
フォトリソグラフィ用のパターンをそのまま反映させて
形成するので、光半導体素子の実装精度を向上させるた
めに複雑な形状にすることが容易である。
In some cases, the above-mentioned marker is produced simultaneously with an electrode for mounting an optical semiconductor element. For example, FIG.
As shown in (a) and (b), the marker 54 formed of the same electrode material as the electrode 58 for mounting the optical semiconductor element is used.
Since the pattern is formed by directly reflecting the pattern for photolithography, it is easy to form a complicated shape in order to improve the mounting accuracy of the optical semiconductor element.

【0004】また、例えば図8(a),(b)に示すよ
うに、基板51の主面に形成された絶縁膜57の一部を
エッチングすることにより開口状のマーカー55とする
ことも知られている。
Further, as shown in FIGS. 8A and 8B, it is also known that an opening-shaped marker 55 is formed by etching a part of an insulating film 57 formed on a main surface of a substrate 51. Have been.

【0005】さらに、図9(a),(b)に示すよう
に、光ファイバ搭載用のV溝53を形成するためのパタ
ーン、光半導体素子の実装用電極58と光半導体素子の
駆動用電極59を形成するためのパターン、及びマーカ
ー56を形成するためのパターンを同時に作成する、い
わゆる自己整合マーカーを形成することも知られている
(例えば、特開平10−170773号公報を参照)。
Further, as shown in FIGS. 9A and 9B, a pattern for forming a V-groove 53 for mounting an optical fiber, an electrode 58 for mounting an optical semiconductor element and a driving electrode for an optical semiconductor element. It is also known to form a so-called self-aligned marker that simultaneously creates a pattern for forming the marker 59 and a pattern for forming the marker 56 (for example, see Japanese Patent Application Laid-Open No. 10-170773).

【0006】[0006]

【発明が解決しようとする課題】図6に示したようなV
溝マーカーの場合、最終的に形成される光ファイバ搭載
用V溝とV溝マーカーは、フォトリソグラフィ工程にお
いて同一マスクで形成するので相対位置のずれはない。
SUMMARY OF THE INVENTION As shown in FIG.
In the case of the groove marker, the optical fiber mounting V-groove and the V-groove marker which are finally formed are formed with the same mask in the photolithography process, so that their relative positions do not shift.

【0007】しかしながら、V溝マーカーの形状は異方
性エッチングにより作製することが一般的であるので、
図10(a),(b)に示すように、平面でのマスク形
状が円形であっても、図10(c),(d)に示すよう
に、面の選択エッチングにより平面が特定な四角形状に
エッチングされ、その形状が限定される。また、実装精
度を上げるために複数のV溝マーカーの組み合わせで光
半導体素子の実装用マーカーを形成することも考えられ
るが、複数の実装用マーカーを組み合わせると、実装用
マーカー部全体としては大きなものとなる。そのため、
光半導体素子の実装時に実装精度を上げるのに、実装用
マーカー全体を拡大して観察することが困難になる。
However, since the shape of the V-groove marker is generally produced by anisotropic etching,
As shown in FIGS. 10 (a) and 10 (b), even if the mask shape in the plane is circular, the plane is selectively etched by a specific square as shown in FIGS. 10 (c) and 10 (d). The shape is etched, and the shape is limited. It is also conceivable to form a mounting marker for an optical semiconductor element by combining a plurality of V-groove markers in order to increase mounting accuracy. However, when a plurality of mounting markers are combined, the entire mounting marker section becomes large. Becomes for that reason,
In order to increase the mounting accuracy when mounting the optical semiconductor element, it is difficult to enlarge and observe the entire mounting marker.

【0008】また、図7、図8に示した電極マーカー及
び絶縁膜マーカーの場合、マーカー形状は実装精度がよ
くなるような形状を考慮することができ、かつ、実装用
マーカー全体として大きくする必要がなくなるので、光
半導体素子の実装時に実装用マーカーを拡大して観察す
ることが可能となる。
Further, in the case of the electrode marker and the insulating film marker shown in FIGS. 7 and 8, it is necessary to consider the shape of the marker so as to improve the mounting accuracy, and it is necessary to make the entire mounting marker larger. Therefore, the mounting marker can be enlarged and observed when the optical semiconductor element is mounted.

【0009】しかしながら、図11(a)(図7に対
応)、(b)(図8図に対応)に示すように、光半導体
素子の実装用マーカー54,55は光ファイバ搭載用の
V溝53とは別マスクで作製するので、相対位置精度は
マスクアライメント装置の位置合わせ精度程度(1〜2
μm)の誤差が生じる。
However, as shown in FIGS. 11 (a) (corresponding to FIG. 7) and (b) (corresponding to FIG. 8), the mounting markers 54 and 55 of the optical semiconductor element are provided with V-grooves for mounting optical fibers. Since the mask is manufactured using a different mask from that of the mask 53, the relative positional accuracy is about the same as the alignment accuracy of the mask alignment device (1-2.
μm).

【0010】さらに、図9に示した自己整合マーカーの
場合、光ファイバ搭載用V溝パターンと同一マスクにて
作製するので、小さく複雑な光半導体素子の実装用マー
カーパターンを位置精度良く作製することができる。
Furthermore, in the case of the self-aligned marker shown in FIG. 9, since the self-aligned marker is manufactured using the same mask as the V-groove pattern for mounting the optical fiber, a small and complicated mounting marker pattern for the optical semiconductor element can be manufactured with high positional accuracy. Can be.

【0011】しかしながら、光通信の発達に伴い光半導
体素子の駆動用電気信号の高周波化が求められている
が、上記技術では対応が困難であった。すなわち、光半
導体素子の駆動用電気信号の高周波化ために、基板の一
部に厚膜の絶縁膜を有した光半導体実装用基板として
も、基板上に凹凸ができ、これにより光ファイバ搭載用
のV溝パターンや小さく複雑な実装用マーカーパターン
を精度良く作製することができなかったのである。
[0011] However, with the development of optical communication, there is a demand for a higher frequency of an electric signal for driving an optical semiconductor element, but it has been difficult to cope with the above technology. In other words, in order to increase the frequency of the electrical signal for driving the optical semiconductor element, even a substrate for mounting an optical semiconductor having a thick insulating film on a part of the substrate can have irregularities on the substrate, thereby forming an optical fiber. The V-groove pattern and the small and complicated mounting marker pattern could not be produced with high accuracy.

【0012】そこで、本発明では、光半導体素子の駆動
用電気信号が高周波であっても、好適に対応が可能で、
しかも光半導体素子を高精度に配設できるとともに、性
能及び信頼性に非常に優れた光部品実装用基板及びその
製造方法並びに光モジュールを提供することを目的とす
る。
Therefore, the present invention can suitably cope with a high-frequency electric signal for driving an optical semiconductor element.
Moreover, it is an object of the present invention to provide an optical component mounting substrate, a method of manufacturing the same, and an optical module, which are capable of disposing optical semiconductor elements with high precision and which are extremely excellent in performance and reliability.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光部品実装用基板は、基板上に、光導波体
を配設させるV溝と、該V溝に対し位置決めされた実装
用マーカーと、該実装用マーカーに基づいて光半導体素
子を配設させる駆動用導体とが形成されたものであっ
て、駆動用導体は基板上に形成された第1絶縁膜、及び
該第1絶縁膜より厚く形成された第2絶縁膜の双方に配
設されているとともに、第1絶縁膜に実装用マーカーが
形成されていることを特徴とする。
In order to achieve the above object, an optical component mounting board according to the present invention has a V-shaped groove on which an optical waveguide is provided, and a V-shaped groove positioned on the V-shaped groove. A mounting marker and a driving conductor for disposing an optical semiconductor element based on the mounting marker are formed, the driving conductor being a first insulating film formed on a substrate, and It is provided on both of the second insulating films formed to be thicker than one insulating film, and a mounting marker is formed on the first insulating film.

【0014】また、本発明の光部品実装用基板の製造方
法は、特に、V溝形成用パターン及び実装用マーカー形
成用パターンが形成されたフォトマスクを用い、V溝及
び実装用マーカーを形成したことを特徴とする。
In the method of manufacturing a substrate for mounting an optical component according to the present invention, a V-groove and a mounting marker are formed using a photomask on which a V-groove forming pattern and a mounting marker forming pattern are formed. It is characterized by the following.

【0015】また、本発明の光モジュールは、上記光部
品実装用基板のV溝に光導波体を、第1絶縁膜に形成さ
れた駆動用導体に光導波体と光結合させる光半導体素子
を各々配設して成ることを特徴とする。
Further, the optical module of the present invention is an optical semiconductor device which optically couples an optical waveguide in the V-groove of the optical component mounting substrate and a driving conductor formed in the first insulating film with the optical waveguide. It is characterized by being arranged respectively.

【0016】[0016]

【発明の実施の形態】以下に、本発明の実施形態につい
て図面に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】図1に示すように、本発明による光部品実
装用基板Sは、シリコン単結晶等から成る所定方位を主
面とする基板1上に、光導波体である後記する光ファイ
バを配設させるV溝6と、このV溝6に対して位置決め
された実装用マーカー10と、この実装用マーカー10
に基づき配設させる後記する光半導体素子の駆動用導体
(7:発光素子の搭載用電極パターン,8a〜8c:発
光素子の駆動用電極パターン、17:モニター用受光素
子の搭載用電極パターン,18a〜18c:発光素子の
駆動用電極パターン)とが形成されている。また、図
中、9は半田パターンである。
As shown in FIG. 1, an optical component mounting substrate S according to the present invention is provided with an optical fiber, which will be described later, which is an optical waveguide, on a substrate 1 made of silicon single crystal or the like and having a main surface having a predetermined orientation. V-groove 6 to be set, mounting marker 10 positioned with respect to this V-groove 6, and mounting marker 10
(Hereinafter referred to as a driving conductor for an optical semiconductor element, which will be described later) (7: electrode pattern for mounting the light emitting element, 8a to 8c: electrode pattern for driving the light emitting element, 17: electrode pattern for mounting the light receiving element for monitoring, 18a To 18c: a driving electrode pattern of the light emitting element). In the drawing, reference numeral 9 denotes a solder pattern.

【0018】そして、上記駆動用導体が基板1上に形成
された第1絶縁膜2、及び第1絶縁膜2より厚く形成さ
れた第2絶縁膜4の双方に配設されており、第1絶縁膜
2に開口状の実装用マーカー10が形成されている。
The driving conductor is provided on both the first insulating film 2 formed on the substrate 1 and the second insulating film 4 formed thicker than the first insulating film 2. An opening-shaped mounting marker 10 is formed in the insulating film 2.

【0019】ここで、第1絶縁膜2は数百Å〜数千Å程
度の厚みに形成され非常に薄く、光半導体素子からの発
生した熱を放出しやすいように形成されており、この薄
い膜の形成時に上記実装用マーカー10の開口部とV溝
6の形成用パターンを同時に形成する。また、第2絶縁
膜4は5μm〜10μm程度の厚みに形成されており、
第1絶縁膜に比して厚く形成されている。この理由は、
5μmより薄いと光半導体素子を高周波駆動させる際
に、電界が基板側に吸収され損失が大きくなるからであ
り、10μmより厚くなると後記する斜面の形成が困難
となるからである。
Here, the first insulating film 2 is formed to a thickness of about several hundreds to several thousand degrees, is very thin, and is formed so as to easily release heat generated from the optical semiconductor element. When the film is formed, the opening of the mounting marker 10 and the pattern for forming the V-groove 6 are simultaneously formed. The second insulating film 4 is formed to a thickness of about 5 μm to 10 μm,
It is formed thicker than the first insulating film. The reason for this is
If the thickness is less than 5 μm, the electric field is absorbed by the substrate side when driving the optical semiconductor element at a high frequency, and the loss increases. If the thickness is more than 10 μm, it becomes difficult to form a slope described later.

【0020】次に、上記光部品実装用基板Sの製造方法
について図2及び図3に基づいて説明する。
Next, a method of manufacturing the optical component mounting substrate S will be described with reference to FIGS.

【0021】最初に、基板1の上面を熱酸化し、熱酸化
膜を形成する。その後、図2(a1)、(a2)に示す
ように、光ファイバ搭載部における熱酸化膜を除去し、
光半導体素子の搭載側だけの熱酸化膜2を残す。そし
て、基板1の上面全体にシリコン窒化膜3を成膜する。
First, the upper surface of the substrate 1 is thermally oxidized to form a thermal oxide film. Then, as shown in FIGS. 2A1 and 2A2, the thermal oxide film on the optical fiber mounting portion is removed,
The thermal oxide film 2 only on the side on which the optical semiconductor element is mounted is left. Then, a silicon nitride film 3 is formed on the entire upper surface of the substrate 1.

【0022】次に、図2(b1)、(b2)に示すよう
に、光ファイバ搭載部にV溝形成用パターンを、光半導
体素子実装部に光半導体素子の実装用マーカーパターン
を、それぞれ同一のフォトマスクに形成し、このフォト
マスクを用い、これらの領域のみシリコン窒化膜を除去
し、高精度に位置合わせされた開口パターン10(実装
用マーカー),15(V溝形成用パターン)を形成す
る。
Next, as shown in FIGS. 2 (b1) and 2 (b2), the V-groove forming pattern is the same on the optical fiber mounting portion, and the mounting marker pattern for the optical semiconductor device is the same on the optical semiconductor device mounting portion. And using the photomask, the silicon nitride film is removed only in these regions to form opening patterns 10 (mounting markers) and 15 (V-groove forming patterns) aligned with high precision. I do.

【0023】次に、図2(c1)、(c2)に示すよう
に、基板1の上面全体に厚膜の絶縁膜を形成し、光半導
体素子の駆動用電極を形成する領域下のみに厚い絶縁膜
4を形成する。このとき、去する絶縁膜4は等方性エッ
チングにて行なう。
Next, as shown in FIGS. 2 (c1) and 2 (c2), a thick insulating film is formed on the entire upper surface of the substrate 1 and is thick only under a region where a driving electrode of the optical semiconductor element is formed. An insulating film 4 is formed. At this time, the insulating film 4 to be removed is subjected to isotropic etching.

【0024】次に、図2(d1)、(d2)に示すよう
に、シリコン窒化膜による保護膜5を基板1の上面全体
に成膜する。ここで、絶縁膜4は等方性エッチングを施
してあるのでそのためにエッジ部は斜めに形成されてい
る。その結果、シリコン窒化膜による保護膜5が厚膜の
絶縁膜4のエッジ部等で途切れることなく保護が可能と
なる。
Next, as shown in FIGS. 2 (d1) and 2 (d2), a protective film 5 made of a silicon nitride film is formed on the entire upper surface of the substrate 1. Here, since the insulating film 4 has been subjected to isotropic etching, the edge portion is formed obliquely. As a result, the protection film 5 made of the silicon nitride film can be protected without interruption at the edge of the thick insulating film 4 or the like.

【0025】次に、図3(e1)、(e2)に示すよう
に、光ファイバ搭載部のシリコン窒化膜による保護膜5
を最初に成膜したシリコン窒化膜3を残して除去し、図
2(b1)、(b2)で形成した光ファイバ搭載用V溝
形成用パターン15を露出させる。
Next, as shown in FIGS. 3 (e1) and 3 (e2), the protective film 5 made of a silicon nitride film on the optical fiber mounting portion.
Is removed leaving the silicon nitride film 3 formed first, exposing the V-groove forming pattern 15 for mounting an optical fiber formed in FIGS. 2 (b1) and 2 (b2).

【0026】前記シリコン窒化膜3に形成した光ファイ
バ搭載用のV溝形成用パターン15をシリコンのエッチ
ングマスクとして光ファイバ搭載用のV溝6を水酸化カ
リウム(KOH)等のアルカリ溶液による異方性エッチ
ングにて精度良く形成する。
Using the V-groove forming pattern 15 for mounting the optical fiber formed on the silicon nitride film 3 as a silicon etching mask, the V-groove 6 for mounting the optical fiber is anisotropically treated with an alkali solution such as potassium hydroxide (KOH). It is formed with high precision by reactive etching.

【0027】光ファイバ搭載用V溝6を形成するとき
に、光半導体素子の実装用マーカー10をシリコン窒化
膜による保護膜5にて保護することにより、実装用マー
カー10の下部のシリコンエッチングを防止することが
可能となり、実装用マーカー10の形状を維持すること
ができる。その結果、実装用マーカー10の形状を光半
導体素子の実装時に実装精度が向上するような複雑な形
状を作製することができる。
When the optical fiber mounting V-groove 6 is formed, the mounting marker 10 of the optical semiconductor element is protected by the protective film 5 made of a silicon nitride film, thereby preventing silicon etching below the mounting marker 10. And the shape of the mounting marker 10 can be maintained. As a result, it is possible to produce a complex shape of the mounting marker 10 such that the mounting accuracy is improved when the optical semiconductor element is mounted.

【0028】次に、図3(f1)、(f2)に示すよう
に、光ファイバ搭載部のシリコン窒化膜3と光半導体素
子実装部のシリコン窒化膜5を除去する。このとき、光
半導体素子実装部に形成したシリコン窒化膜3は除去し
ない。
Next, as shown in FIGS. 3 (f1) and (f2), the silicon nitride film 3 in the optical fiber mounting portion and the silicon nitride film 5 in the optical semiconductor device mounting portion are removed. At this time, the silicon nitride film 3 formed on the optical semiconductor element mounting portion is not removed.

【0029】次に、図3(g1)、(g2)に示すよう
に、光半導体素子実装部に実装用電極パターン7,17
および光半導体素子の駆動用電極パターン8,18を形
成し、光半導体素子の実装用電極パターン7,17上に
光半導体素子の接合用はんだ9を形成する。光半導体素
子の駆動用電極パターン8,18は図3(c1)、(c
2)にて形成した厚膜の第2絶縁膜4上と、一部はその
斜面部及び第1絶縁膜2上に形成して光半導体素子の実
装用電極パターン7,17と接続している。
Next, as shown in FIGS. 3 (g1) and (g2), the mounting electrode patterns 7, 17 are mounted on the optical semiconductor element mounting portion.
Then, drive electrode patterns 8 and 18 for the optical semiconductor element are formed, and solder 9 for bonding the optical semiconductor element is formed on the electrode patterns 7 and 17 for mounting the optical semiconductor element. The drive electrode patterns 8 and 18 of the optical semiconductor element are shown in FIGS.
The thick second insulating film 4 formed in 2) and a part thereof are formed on the slope and the first insulating film 2 and are connected to the mounting electrode patterns 7 and 17 of the optical semiconductor element. .

【0030】最後に、図3(h1)、(h2)に示すよ
うに、光ファイバストッパー矩形溝11を形成する。
Finally, as shown in FIGS. 3 (h1) and (h2), an optical fiber stopper rectangular groove 11 is formed.

【0031】ここで、実装用マーカーの形状例について
説明する。図5(a)に示すように、円形のマーカーや
図5(b)に示すリング状のマーカーでもよいが、角度
ずれをできるだけ生じないように、各種の形状に容易に
形成可能である。すなわち、例えば、図5(c)〜
(f)のような形状にすることができ、図5(c)に示
す楕円形のマーカーや楕円リング状のマーカーでもよ
く、また、図5(e)に示す正八角形等の多角形のマー
カーや図5(f)に示す多角形リング状のマーカーでも
よい。
Here, an example of the shape of the mounting marker will be described. As shown in FIG. 5A, a circular marker or a ring-shaped marker shown in FIG. 5B may be used, but it can be easily formed into various shapes so as to minimize the occurrence of angular displacement. That is, for example, FIG.
5 (c), and may be an elliptical marker or an elliptical ring marker shown in FIG. 5 (c), or a polygonal marker such as a regular octagon shown in FIG. 5 (e). Alternatively, a polygonal ring-shaped marker shown in FIG.

【0032】次に、本発明の光モジュールについて説明
する。図4に示すように、光モジュールMは、上記製造
方法にて得られた光部品実装用基板SのV溝6に光ファ
イバ12を、第1絶縁膜2に形成された駆動用導体であ
る実装用電極パターン7上に半田パターン9を介して発
光素子13を、実装電極パターン17上に半田パターン
9を介してモニター用受光素子14をそれぞれ配設し、
さらに、これら光半導体素子をボンディングワイヤによ
り駆動用電極パターン8(8b),18(18b)に接
続させ、発光素子13と光ファイバ12の端部との光結
合を可能としている。
Next, the optical module of the present invention will be described. As shown in FIG. 4, the optical module M is a drive conductor in which the optical fiber 12 is formed in the V groove 6 of the optical component mounting substrate S obtained by the above manufacturing method, and the first insulating film 2 is formed. A light emitting element 13 is provided on the mounting electrode pattern 7 via the solder pattern 9, and a monitor light receiving element 14 is provided on the mounting electrode pattern 17 via the solder pattern 9, respectively.
Further, these optical semiconductor elements are connected to the driving electrode patterns 8 (8b) and 18 (18b) by bonding wires, so that the light emitting element 13 and the end of the optical fiber 12 can be optically coupled.

【0033】かくして、光半導体素子を高周波駆動させ
る際に、厚い第2絶縁膜の存在により、駆動用電界が基
板に届かないようにすることで、損失を極力少なくする
ことができる。また、光導波体搭載用のV溝と光半導体
素子の実装用マーカーとの相対位置ずれがなく、光半導
体素子を高精度に実装でき、さらに、光半導体素子の実
装時に実装精度が向上するような複雑な実装用マーカー
を簡便に形成することができる。これにより、光結合効
率の優れた光モジュールを提供できる。
Thus, when the optical semiconductor element is driven at high frequency, the loss can be minimized by preventing the driving electric field from reaching the substrate due to the presence of the thick second insulating film. Also, there is no relative displacement between the V-groove for mounting the optical waveguide and the mounting marker of the optical semiconductor element, so that the optical semiconductor element can be mounted with high accuracy, and the mounting accuracy is improved when mounting the optical semiconductor element. A complicated mounting marker can be easily formed. Thereby, an optical module having excellent optical coupling efficiency can be provided.

【0034】[0034]

【実施例】以下に、本発明による半導体実装用基板の作
製方法の実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor mounting substrate according to the present invention will be described below.

【0035】まず、シリコン単結晶から成る基板上に厚
さ1μmの熱酸化膜(酸化シリコン膜)を作製した。次
に、光ファイバ搭載用のV溝を形成する周辺の熱酸化膜
を除去した。次に、基板全面にシリコン窒化膜を0.5
μmの厚みに成膜し、光ファイバ搭載用V溝パターンと
実装用マーカーパターンを形成した。実装用マーカー
は、熱酸化膜を除去しなかった部分に形成した。次に、
基板全面に厚さ10μmの絶縁膜であるシリコン酸化膜
を成膜した。光半導体駆動用電極周辺下部に相当する部
分を残して等方性エッチングを行なった。
First, a thermal oxide film (silicon oxide film) having a thickness of 1 μm was formed on a substrate made of silicon single crystal. Next, the thermal oxide film around the V-groove for mounting the optical fiber was removed. Next, a silicon nitride film is formed on the entire surface of the substrate by 0.5.
A film was formed to a thickness of μm to form a V-groove pattern for mounting an optical fiber and a marker pattern for mounting. The mounting marker was formed in a portion where the thermal oxide film was not removed. next,
A silicon oxide film as an insulating film having a thickness of 10 μm was formed on the entire surface of the substrate. Isotropic etching was performed except for the portion corresponding to the lower part of the periphery of the optical semiconductor driving electrode.

【0036】次に、基板全面にシリコン窒化膜を保護膜
として0.5μm成膜し、光ファイバ搭載用V溝パター
ン周辺のシリコン窒化膜を保護膜の厚さ分だけ0.5μ
m除去した。次に、最初に成膜したシリコン窒化膜に形
成した光フィイバ搭載用V溝パターンをエッチングマス
クとしてシリコンをKOH(濃度43重量%,温度60
℃)に漬して異方性エッチングを行い、光ファイバ搭載
用V溝を形成した。次に、光半導体実装用電極と駆動用
電極部及び周辺部に成膜したシリコン窒化膜による保護
膜と光ファイバ搭載用V溝の形成用エッチングマスクの
シリコン窒化膜を除去した。次に、半導体実装用及び駆
動用電極を下層/上層の順で、Ti/Pt/Auを10
00Å/2000Å/2000Åの構成で形成した。半
導体実装用電極8上に半田(Au80/Sn20(厚み
約3μm))で形成した。最後に、光ファイバストッパ
ー矩形溝を機械加工し切断を行なった。
Next, a silicon nitride film is formed as a protective film to a thickness of 0.5 μm on the entire surface of the substrate, and the silicon nitride film around the optical fiber mounting V-groove pattern is formed to a thickness of 0.5 μm by the thickness of the protective film.
m. Next, silicon is used as KOH (concentration 43% by weight, temperature 60 ° C.) using the V-groove pattern for mounting the optical fiber formed on the silicon nitride film formed first as an etching mask.
C.) to perform anisotropic etching to form an optical fiber mounting V-groove. Next, the protective film made of a silicon nitride film formed on the optical semiconductor mounting electrode, the driving electrode portion and the peripheral portion, and the silicon nitride film of the etching mask for forming the optical fiber mounting V-groove were removed. Next, Ti / Pt / Au is added to the semiconductor mounting and driving electrodes in the order of lower layer / upper layer by 10%.
It was formed in a configuration of 00/2000/2000. Solder (Au80 / Sn20 (thickness: about 3 μm)) was formed on the semiconductor mounting electrode 8. Finally, the optical fiber stopper rectangular groove was machined and cut.

【0037】これにより、光ファイバ搭載用のV溝と光
半導体素子との相対位置ずれがなく、かつ光半導体素子
の実装時に実装精度が向上するような複雑な形状の実装
用マーカーを形成することができた。
With this, it is possible to form a mounting marker having a complicated shape such that there is no relative displacement between the V-groove for mounting the optical fiber and the optical semiconductor element and the mounting accuracy is improved when mounting the optical semiconductor element. Was completed.

【0038】[0038]

【発明の効果】以上、詳述したように、本発明によれ
ば、光半導体素子の駆動用導体が基板上に形成された第
1絶縁膜、及び第1絶縁膜より厚く形成された第2絶縁
膜の双方に配設されているので、光半導体素子の駆動用
電気信号の高周波化を計ることができる。
As described in detail above, according to the present invention, the driving conductor of the optical semiconductor element is formed on the substrate by the first insulating film and the second insulating film is formed thicker than the first insulating film. Since it is provided on both sides of the insulating film, it is possible to increase the frequency of the electric signal for driving the optical semiconductor element.

【0039】また、同一フォトマスクにて光半導体素子
の実装用マーカーとV溝形成用パターンを形成すること
ができるので、実装用マーカーとV溝との位置関係を高
精度に作製することができ、さらに、光半導体素子の実
装時に実装精度が向上するような複雑な実装用マーカー
を簡便に形成することができ、ひいては、光半導体素子
と光導波体の光結合効率の高い光モジュールを提供でき
る。
Further, since the mounting marker and the V-groove forming pattern of the optical semiconductor element can be formed using the same photomask, the positional relationship between the mounting marker and the V-groove can be manufactured with high precision. Further, it is possible to easily form a complicated mounting marker for improving the mounting accuracy at the time of mounting the optical semiconductor element, and it is possible to provide an optical module having high optical coupling efficiency between the optical semiconductor element and the optical waveguide. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光部品実装用基板の一実施形態を
模式的に説明する斜視図である。
FIG. 1 is a perspective view schematically illustrating an embodiment of an optical component mounting board according to the present invention.

【図2】本発明に係る光部品実装用基板の製造工程の一
例を説明する工程図であり、(a1)〜(d1)は模式
的な平面図、(a2)〜(d2)は模式的な側面図であ
る。
FIG. 2 is a process diagram illustrating an example of a manufacturing process of the optical component mounting board according to the present invention, wherein (a1) to (d1) are schematic plan views, and (a2) to (d2) are schematic diagrams. FIG.

【図3】本発明に係る光部品実装用基板の製造工程の一
例を説明する工程図であり、(e1)〜(h1)は模式
的な平面図、(e2)〜(h2)は模式的な側面図であ
る。
FIG. 3 is a process diagram illustrating an example of a manufacturing process of the optical component mounting board according to the present invention, wherein (e1) to (h1) are schematic plan views, and (e2) to (h2) are schematic. FIG.

【図4】本発明に係る光モジュールの一実施形態を模式
的に説明する斜視図である。
FIG. 4 is a perspective view schematically illustrating an embodiment of the optical module according to the present invention.

【図5】(a)〜(f)はそれぞれ本発明に係る実装用
マーカーの一実施形態を模式的に説明する平面図であ
る。
5A to 5F are plan views schematically illustrating one embodiment of a mounting marker according to the present invention.

【図6】従来の光部品実装用基板を説明する模式図であ
り、(a)は平面図、(b)は側面図である。
6A and 6B are schematic views illustrating a conventional optical component mounting board, wherein FIG. 6A is a plan view and FIG. 6B is a side view.

【図7】従来の光部品実装用基板を説明する模式図であ
り、(a)は平面図、(b)は側面図である。
FIGS. 7A and 7B are schematic views illustrating a conventional optical component mounting board, wherein FIG. 7A is a plan view and FIG. 7B is a side view.

【図8】従来の光部品実装用基板を説明する模式図であ
り、(a)は平面図、(b)は側面図である。
8A and 8B are schematic diagrams illustrating a conventional optical component mounting board, wherein FIG. 8A is a plan view and FIG. 8B is a side view.

【図9】従来の光部品実装用基板を説明する模式図であ
り、(a)は平面図、(b)は側面図である。
FIGS. 9A and 9B are schematic views illustrating a conventional optical component mounting substrate, wherein FIG. 9A is a plan view and FIG. 9B is a side view.

【図10】従来技術において、実装用マーカーが四角形
状に制限されることを示した模式図であり、(a),
(c)は平面図、(b),(d)は断面図である。
FIG. 10 is a schematic view showing that the mounting marker is limited to a quadrangular shape in the related art.
(C) is a plan view, and (b) and (d) are cross-sectional views.

【図11】従来技術において、実装用マーカーを光半導
体素子の実装用電極と同時に形成すると、光ファイバ搭
載用のV溝に対して実装用マーカーの相対位置がずれる
ことを説明した模式図であり、(a),(b)はそれぞ
れ平面図である。
FIG. 11 is a schematic view illustrating that in the related art, when the mounting marker is formed simultaneously with the mounting electrode of the optical semiconductor element, the relative position of the mounting marker is shifted with respect to the V-groove for mounting the optical fiber. , (A) and (b) are plan views, respectively.

【符号の説明】[Explanation of symbols]

1:基板 2:第1絶縁膜 4:第2絶縁膜 5:保護膜 6:V溝 7,17:実装用電極パターン(駆動用導体) 8,18:駆動用電極パターン(駆動用導体) 9:はんだ 10:実装用マーカー S:光部品実装用基板 M:光モジュール 1: substrate 2: first insulating film 4: second insulating film 5: protective film 6: V groove 7, 17: mounting electrode pattern (driving conductor) 8, 18: driving electrode pattern (driving conductor) 9 : Solder 10: Mounting marker S: Optical component mounting substrate M: Optical module

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、光導波体を配設させるV溝
と、該V溝に対し位置決めされた実装用マーカーと、該
実装用マーカーに基づいて光半導体素子を配設させる駆
動用導体とが形成された光部品実装用基板であって、前
記駆動用導体は前記基板上に形成された第1絶縁膜、及
び該第1絶縁膜より厚く形成された第2絶縁膜の双方に
配設されているとともに、前記第1絶縁膜に前記実装用
マーカーが形成されていることを特徴とする光部品実装
用基板。
1. A V-groove for disposing an optical waveguide on a substrate, a mounting marker positioned with respect to the V-groove, and a driving conductor for disposing an optical semiconductor element based on the mounting marker. Wherein the driving conductor is disposed on both the first insulating film formed on the substrate and the second insulating film formed thicker than the first insulating film. An optical component mounting substrate, wherein the mounting marker is formed on the first insulating film.
【請求項2】 V溝形成用パターン及び実装用マーカー
形成用パターンが形成されたフォトマスクを用い、前記
V溝及び前記実装用マーカーを形成したことを特徴とす
る請求項1に記載の光部品実装用基板の製造方法。
2. The optical component according to claim 1, wherein the V-groove and the mounting marker are formed using a photomask on which a V-groove forming pattern and a mounting marker forming pattern are formed. A method for manufacturing a mounting substrate.
【請求項3】 請求項1に記載の光部品実装用基板のV
溝に光導波体を、前記第1絶縁膜に形成された駆動用導
体に前記光導波体と光結合させる光半導体素子を各々配
設して成る光モジュール。
3. The V of the optical component mounting board according to claim 1.
An optical module comprising: an optical waveguide in a groove; and an optical semiconductor element for optically coupling the optical waveguide to a driving conductor formed in the first insulating film.
JP18582099A 1999-06-30 1999-06-30 Substrate for mounting optical component, manufacture therefor and optical module Withdrawn JP2001015814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18582099A JP2001015814A (en) 1999-06-30 1999-06-30 Substrate for mounting optical component, manufacture therefor and optical module
US09/605,242 US6227723B1 (en) 1999-06-30 2000-06-28 Substrate for mounting an optical component and optical module provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18582099A JP2001015814A (en) 1999-06-30 1999-06-30 Substrate for mounting optical component, manufacture therefor and optical module

Publications (1)

Publication Number Publication Date
JP2001015814A true JP2001015814A (en) 2001-01-19

Family

ID=16177461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18582099A Withdrawn JP2001015814A (en) 1999-06-30 1999-06-30 Substrate for mounting optical component, manufacture therefor and optical module

Country Status (1)

Country Link
JP (1) JP2001015814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033714A (en) * 2002-10-15 2004-04-28 주식회사일진 tramsmitting module for optical communication
US8324632B2 (en) 2003-08-28 2012-12-04 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US8824047B2 (en) 2007-10-24 2014-09-02 Nitto Denko Corporation Polarizing plate, optical film and image display
JP2017069267A (en) * 2015-09-28 2017-04-06 京セラ株式会社 Optical element mounting package and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033714A (en) * 2002-10-15 2004-04-28 주식회사일진 tramsmitting module for optical communication
US8324632B2 (en) 2003-08-28 2012-12-04 Panasonic Corporation Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device
US8824047B2 (en) 2007-10-24 2014-09-02 Nitto Denko Corporation Polarizing plate, optical film and image display
JP2017069267A (en) * 2015-09-28 2017-04-06 京セラ株式会社 Optical element mounting package and electronic device

Similar Documents

Publication Publication Date Title
JPH11109184A (en) Optical device mounting base and optical module
CN112534322B (en) Laser patterning adapter with waveguide and etched connector
JP2006209068A (en) Optical waveguide, optical waveguide module, and method for manufacturing optical waveguide module
US6227723B1 (en) Substrate for mounting an optical component and optical module provided with the same
JPH08220385A (en) Manufacture of self-aligned optical fiber-optical element coupling device
JP2006065163A (en) Optical waveguide device
KR20030078516A (en) Optical waveguide platform and manufacturing method thereof
JPH05304306A (en) Electrooptic module and manufacture thereof
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
EP1211532A2 (en) Optical device for mounting optical elements
JP2001015814A (en) Substrate for mounting optical component, manufacture therefor and optical module
JP2002169064A (en) Substrate for mounting optical parts, its method of manufacture, and optical module
JP4506216B2 (en) Optical coupling device and manufacturing method thereof
JPH07151940A (en) Optical coupling structure and its production
CN112558217A (en) Electro-optical device and manufacturing method thereof
CN112558333A (en) Electro-optical device and manufacturing method thereof
JPH10206699A (en) Substrate for light transmission module, its manufacture, and light transmission module
JP2001356230A (en) Optical waveguide parts and optical module using the same
JPH10170773A (en) Manufacture of optical device-packaged substrate, and optical module
WO2023162259A1 (en) Optical waveguide element, and optical modulation device and optical transmission apparatus using same
JP2001044308A (en) Substrate for mounting optical device, manufacture thereof, and optical module
JP2001242349A (en) Substrate for packaging optical parts and optical module using the same
JP2010061171A (en) Optical coupling device and its manufacturing method
JP4671480B2 (en) Optical mounting substrate manufacturing method and optical module manufacturing method
JP2001124961A (en) Optical component mounting substrate and manufacturing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050112