JP2001014466A - Camera arranging method in moving image processor - Google Patents

Camera arranging method in moving image processor

Info

Publication number
JP2001014466A
JP2001014466A JP11186338A JP18633899A JP2001014466A JP 2001014466 A JP2001014466 A JP 2001014466A JP 11186338 A JP11186338 A JP 11186338A JP 18633899 A JP18633899 A JP 18633899A JP 2001014466 A JP2001014466 A JP 2001014466A
Authority
JP
Japan
Prior art keywords
camera
plane
optical axis
moving
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11186338A
Other languages
Japanese (ja)
Inventor
Mutsumi Watanabe
睦 渡辺
Hiroaki Nakai
宏章 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11186338A priority Critical patent/JP2001014466A/en
Publication of JP2001014466A publication Critical patent/JP2001014466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably detect the recognition of symmetry and the variation of a situation based on the movement of a recognizing object by arranging a camera so as to set the optical axis direction of a camera at a maximum angle within a settable range with respect to the direction of a plane regulated in the moving direction of the recognizing object. SOLUTION: In the case of initializing a coordinate form so as to set the optical axis of a camera to be a Z axis, an image pickup surface to be an x-y plane and an origin to be the center of the optical axis, as the result of center-projecting motion vectors (P(t), Q(t), R(t)) in the three-dimensional space of a material point P (X, Y, Z), a motion vector (optical flow) becomes (u(t), v(t)). A condition for maximizing the motion vector on the picture under a condition fixing a distance between the camera and the material point and the magnitude of the moving of the recognizing object in the three-dimensional space is R(t)=0. Tin this case, the moving direction of moving component toward the camera is matched with a Z-axis and an image pickup surface direction is reset so as to be in parallel with a plane fixed by two moving components orthogonal with this.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一連の画像を解析
することにより、例えば交通流の計測や、交通事故など
の災害発生の有無、不法侵入者の出現、生理状態の変化
などを監視する際に、対象の認識や状況の変化を安定に
検知するためのカメラ配置方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention analyzes a series of images to monitor, for example, the measurement of traffic flow, the occurrence of disasters such as traffic accidents, the appearance of illegal intruders, and the change of physiological conditions. In this case, the present invention relates to a camera arranging method for stably detecting target recognition and a change in situation.

【0002】[0002]

【従来の技術】近年、TVカメラの民生化による普及と
共に、PCの普及に伴う小型化、高速化が進行し、従来
は専用ハードウェアを用いて実現していた画像処理応用
機能がPCをベースにしたシステムで安価に実現できる
環境が整ってきた。一方で、交通事故や空き巣などの不
在時における犯罪などは増加傾向にあり、画像を用いた
監視システムの要求が高まってきている。このような監
視・モニタシステムにおいては、TVカメラを監視区域
に一台または複数台設置し、人間がこの画像を見て状況
の変化をモニタリングする製品が一般的である。
2. Description of the Related Art In recent years, with the spread of TV cameras due to their commercialization, the spread of PCs has led to the miniaturization and speeding up. Image processing application functions that were conventionally realized using dedicated hardware are based on PCs. An environment that can be realized inexpensively with a system that has been developed has been established. On the other hand, crimes in the absence of traffic accidents, burglars, and the like are on an increasing trend, and the demand for surveillance systems using images is increasing. In such a surveillance / monitor system, a product in which one or more TV cameras are installed in a surveillance area, and a human observes the image and monitors a change in situation is generally used.

【0003】また、この状況変化検出を自動化するため
に、予め標準的な状態の画像を記録しておき、時々刻々
得られる画像との差分を行うことにより認識対象の動き
や状況の変化を検出する方式、または連続する画像間の
明度変化を差分により検出することにより認識対象の動
きや状況の変化を検出する方式が提案されている。
In order to automate the situation change detection, an image in a standard state is recorded in advance, and the movement of the recognition target and the change in the situation are detected by performing a difference from an image obtained every moment. There has been proposed a method of detecting a change in a motion or a situation of a recognition target by detecting a change in brightness between successive images based on a difference.

【0004】更に、画像から局所的な動きべクトル(オ
プティカルフロー)を検出することにより、認識対象の
動きや状況の変化を検出する方式も提案されている。
Further, a method has been proposed in which a local motion vector (optical flow) is detected from an image to detect a motion of a recognition target or a change in a situation.

【0005】[0005]

【発明が解決しようとする課題】従来の、認識対象の動
きや状況の変化を検出する方式においては、観測に用い
るカメラをどう配置すべきかに関する具体的な方策が無
かったため、カメラ位置や方向などの姿勢パラメータを
その場で試行錯誤的に設定せねばならず、設置・調整に
時間がかかるといった運用上の問題点があった。
In the conventional method for detecting the movement of a recognition target or a change in a situation, there is no specific method for arranging a camera used for observation. There is a problem in operation such that the attitude parameters of the camera must be set on the spot by trial and error, and it takes time to install and adjust.

【0006】本発明は、認識対象の動きに基づく対象の
認識や状況の変化を安定に検知するための簡便なカメラ
配置方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a simple camera arrangement method for stably detecting an object based on the movement of the object and detecting a change in situation.

【0007】[0007]

【課題を解決するための手段】本発明は、一連の画像を
処理することにより、物体の認識や状況の変化の検出を
行う動画像処理装置において、認識対象の移動する方向
で規定される平面の方向に対して、設定可能範囲内でで
きるだけ大きな角度にカメラの光軸方向を設定するよう
にカメラを配置することを特徴とする、動画像処理装置
におけるカメラ配置方法を提供する。
According to the present invention, there is provided a moving image processing apparatus for recognizing an object or detecting a change in a situation by processing a series of images. A camera arrangement method for a moving image processing apparatus, characterized in that the camera is arranged so that the optical axis direction of the camera is set at an angle as large as possible within a settable range with respect to the direction of.

【0008】本発明おいて、複数の独立に移動する対象
が存在する場合に、これら複数の対象の移動軌跡から下
した距離の総和が最小となる平面を推定し、設定可能範
囲内で、この平面の法線方向との差が最も小さい方向に
カメラの光軸方向が設定される。
In the present invention, when there are a plurality of objects that move independently, a plane that minimizes the sum of the distances from the trajectories of the plurality of objects is estimated, and within a settable range, The optical axis direction of the camera is set in a direction in which the difference from the normal direction of the plane is the smallest.

【0009】本発明では、認識すべき対象の移動方向及
びこれらの移動方向により限定される平面の方向が推定
される。
According to the present invention, the moving directions of the object to be recognized and the directions of the planes defined by these moving directions are estimated.

【0010】本発明では、認識対象の移動方向により規
定される平面方向に対して設定可能範囲内でできるだけ
大きな角度をなすようにカメラの光軸方向が設定され
る。
In the present invention, the optical axis direction of the camera is set so as to form an angle as large as possible within a settable range with respect to a plane direction defined by the moving direction of the recognition target.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態であるカメラ
配置方法が適用される動画像処理装置の構成を図1を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A configuration of a moving image processing apparatus to which a camera arrangement method according to an embodiment of the present invention is applied will be described with reference to FIG.

【0012】図1に示すように動画像処理装置は、オプ
ティカルフロー推定部11と、対応候補選択部12と、
3次元位置算出部13により構成される。
As shown in FIG. 1, the moving image processing apparatus includes an optical flow estimating unit 11, a correspondence candidate selecting unit 12,
The three-dimensional position calculator 13 is configured.

【0013】オプティカルフロー推定部11は、監視区
域に配置される複数のカメラの各カメラ毎に画面上の動
きベクトル(オプティカルフロー)を推定する。対応候
補選択部12は、オプティカルフロー推定部11の推定
結果を用いて、3次元位置を求めるべき候補点群を選択
する。3次元位置算出部13は、各カメラ毎の候補点群
を認識対象に対応づけを行い、3次元位置を算出する。
The optical flow estimating unit 11 estimates a motion vector (optical flow) on the screen for each of a plurality of cameras arranged in the monitoring area. The correspondence candidate selection unit 12 uses the estimation result of the optical flow estimation unit 11 to select a candidate point group from which a three-dimensional position is to be obtained. The three-dimensional position calculation unit 13 associates the candidate point group for each camera with the recognition target and calculates a three-dimensional position.

【0014】次に、上記の動画像処理装置におけるカメ
ラ配置方法を説明する。
Next, a description will be given of a camera arrangement method in the above-described moving image processing apparatus.

【0015】図2において、カメラの光軸をZ軸、撮像
面をx−y平面、原点を光軸中心となるように座標系を
初期設定した場合、質点P(X,Y,Z)の3次元空間
内の動きべクトル(p(t),Q(t),R(t))を
中心投影した結果は、下式に示すような画面上の動きベ
クトル(オプティカルフロー)(u(t),v(t))
となる。
In FIG. 2, when the coordinate system is initially set such that the optical axis of the camera is the Z axis, the imaging plane is the xy plane, and the origin is the center of the optical axis, the mass point P (X, Y, Z) The result of central projection of the motion vector (p (t), Q (t), R (t)) in the three-dimensional space is a motion vector (optical flow) (u (t ), V (t))
Becomes

【0016】(u(t),v(t))≡(Z(t)p
(t)−X(t)R(t)/Z(t)(Z(t)+R
(t)),Z(t)Q(t)−Y(t)R(t)/Z
(t)(Z(t)+R(t))) カメラ・質点間の距離及び3次元空間内の認識対象の動
きの大きさが一定の条件下で、この画面上の動きべクト
ルの大きさが最大になる条件は、上式より、R(t)=
0の場合、つまりカメラに向かう動き成分の方向をZ軸
に一致させ、これと直交する2つの動き成分で定まる平
面に平行になるように撮像面方向を再設定した場合とな
る。配置上の物理的な制約により、カメラから対象まで
の距離は一定以上離して設置せねばならない状況が一般
的だが、カメラの光軸方向に関しては比較的自由に設定
できる場合が多いため、上記の様に設定することにより
同一の対象に対して最も大きな動きを観測することが可
能になり、安定な動きの検出が実現できる。
(U (t), v (t)) ≡ (Z (t) p
(T) -X (t) R (t) / Z (t) (Z (t) + R
(T)), Z (t) Q (t) -Y (t) R (t) / Z
(T) (Z (t) + R (t))) The size of the motion vector on this screen under the condition that the distance between the camera and the mass point and the size of the motion of the recognition target in the three-dimensional space are constant. Is maximum from the above equation, R (t) =
In the case of 0, that is, the direction of the motion component toward the camera is made coincident with the Z axis, and the direction of the imaging surface is reset so as to be parallel to a plane defined by two motion components orthogonal to the Z axis. Due to physical restrictions on the arrangement, it is common that the distance from the camera to the target must be more than a certain distance, but in many cases, the direction of the optical axis of the camera can be set relatively freely. By setting as above, the largest motion can be observed for the same object, and stable motion detection can be realized.

【0017】対象を構成する質点が複数の場合であって
も、例えば交通流計測における自動車の様にこれらが全
て同一方向に移動する剛体の場合や、往復運動をするバ
ネ振り子の様に3次元空間内の動きの方向は変化せず向
きが周期的に変化する対象の場合は、上記と同様にカメ
ラを設置することにより、最も大きな動きを安定に観測
することが可能になる。
Even when there are a plurality of mass points constituting an object, for example, when the object is a rigid body that moves in the same direction as in an automobile in traffic flow measurement, or in a three-dimensional manner such as a reciprocating spring pendulum. In the case of a target whose direction of movement in space does not change but whose direction changes periodically, installing a camera in the same manner as described above makes it possible to observe the largest movement stably.

【0018】一方、例えばコマのように回転運動をする
対象を上方から観測する場合に関しては、対象を構成す
る質点毎に移動方向が変化するため、上記と同一の手段
でカメラ方向を設定することはできない。しかしこの場
合は、各質点の3次元空間内の移動べクトルは回転方向
に直交する単一平面内に限定されるため、この回転方向
と平行になるようにカメラの光軸方向を設定し、移動が
限定される平面に平行になるように撮像面方向を設定す
れば、同様に大きな動きを安定に観測することが可能に
なる。また、回転運動する対象では無くとも、例えば地
面上を移動する人物や車の群れを監視する場合の様に、
認識対象の移動が同一平面(動路面)内に限定されてい
るとみなせる場合は、この移動が限定される平面に平行
になるように撮像面方向を設定すればよい。これは、こ
の移動が限定される平面の方向に直交するようにカメラ
の光軸方向を設定することにより実現できる。
On the other hand, in the case of observing a rotating object such as a top from above, the moving direction changes for each material point constituting the object. Therefore, the camera direction must be set by the same means as described above. Can not. However, in this case, since the movement vector of each mass point in the three-dimensional space is limited to a single plane orthogonal to the rotation direction, the optical axis direction of the camera is set to be parallel to the rotation direction, If the imaging plane direction is set so as to be parallel to a plane where movement is limited, a large movement can be similarly stably observed. Also, even if it is not a target that rotates, for example, when monitoring a group of people or cars moving on the ground,
When it can be considered that the movement of the recognition target is limited within the same plane (the road surface), the imaging plane direction may be set so as to be parallel to the plane where the movement is limited. This can be realized by setting the optical axis direction of the camera so as to be orthogonal to the direction of the plane on which the movement is limited.

【0019】実際にこのような方向にカメラ方向及び撮
像面方向が設定できない様な制約がある場合は、設定可
能範囲内で、上記移動が限定される平面の方向で規定さ
れる最適方向との差が最も小さい方向に撮像面方向を設
定すること、つまり上記の最適方向との差が最も大きい
方向にカメラの光軸方向を設定することにより、動きを
安定に観測することが可能になる。
If there is a restriction that the camera direction and the imaging plane direction cannot be set in such a direction, the optimum direction defined by the direction of the plane where the movement is limited is set within the settable range. By setting the imaging plane direction in the direction in which the difference is the smallest, that is, by setting the optical axis direction of the camera in the direction in which the difference from the above-mentioned optimum direction is the largest, it becomes possible to observe the movement stably.

【0020】独立に移動する対象が複数ある場合など、
認識対象の移動が同一平面内に限定されているとみなせ
ない場合に関しても、例えば、これら複数の対象の移動
軌跡から下した距離の総和が最小となる平面を推定し、
カメラ方向及び撮像面方向の設定可能範囲内で、この平
面の法線方向との差が最も大きい方向に撮像面方向を設
定すること、つまりこの法線方向との差が最も小さい方
向にカメラの光軸方向を設定することにより、同様に動
きを安定に観測することが可能になる。
When there are a plurality of objects that move independently,
Even in the case where the movement of the recognition target cannot be regarded as being limited to the same plane, for example, estimating a plane in which the sum of the distances lowered from the trajectories of the plurality of objects is minimized,
Within the settable range of the camera direction and the imaging plane direction, setting the imaging plane direction in the direction having the largest difference from the normal direction of this plane, that is, setting the camera in the direction in which the difference from this normal direction is the smallest. By setting the direction of the optical axis, it is possible to observe the movement stably in the same manner.

【0021】[0021]

【発明の効果】本発明を用いることにより、火災などの
災害の発生や、不法侵入者の出現、生理状態の変化など
の様々な状況において、認識対象の動きに基づく対象の
認識や状況の変化を、安定に検知するための簡便なカメ
ラ配置方法を提供することが可能となり、この杜会的・
実用的効果は多大である。
By using the present invention, in various situations such as occurrence of disasters such as fires, appearance of illegal intruders, changes in physiological conditions, etc., recognition of an object based on the movement of the recognition object and changes in the situation. Can provide a simple camera placement method for stable detection of
The practical effects are enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のカメラ配置方法が適用される動画像処
理装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a moving image processing apparatus to which a camera arrangement method of the present invention is applied.

【図2】本発明による実施形態である、動画像処理装置
におけるカメラ配置方法を説明するための質点の動きの
画像上への投影を示す図。
FIG. 2 is a diagram illustrating projection of a motion of a mass point onto an image for explaining a camera arrangement method in a moving image processing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…オプティカルフロー推定部 12…対応候補選択部 13…3次元位置算出部 11 optical flow estimating unit 12 correspondence candidate selecting unit 13 three-dimensional position calculating unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5B057 AA16 AA19 BA19 DA06 DB02 5C054 AA01 CA04 CC02 CG06 EA01 EF06 FC13 FC15 FF02 HA12 HA18 HA26 5C084 AA02 AA07 AA08 AA19 BB14 CC16 CC19 DD12 EE01 EE02 GG61 GG68 GG78 HH10  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一連の画像を処理することにより、物体
の認識や状況の変化の検出を行う動画像処理装置におけ
るカメラ配置方法において、 認識対象の移動する方向で規定される平面の方向に対し
て、設定可能範囲内でできるだけ大きな角度にカメラの
光軸方向を設定するようにカメラを配置することを特徴
とするカメラ配置方法。
1. A camera arrangement method in a moving image processing apparatus for recognizing an object or detecting a change in a situation by processing a series of images, the method comprising the steps of: And arranging the camera such that the optical axis direction of the camera is set at an angle as large as possible within a settable range.
【請求項2】 複数の独立に移動する対象が存在する場
合に、これら複数の対象の移動軌跡から下した距離の総
和が最小となる平面を推定し、設定可能範囲内で、この
平面の法線方向との差が最も小さい方向にカメラの光軸
方向を設定することを特徴とする請求項1に記載のカメ
ラ配置方法。
2. When there are a plurality of independently moving objects, a plane that minimizes the sum of the distances from the movement trajectories of the plurality of objects is estimated, and the method of this plane is set within a settable range. 2. The camera arrangement method according to claim 1, wherein the optical axis direction of the camera is set in a direction having the smallest difference from the line direction.
【請求項3】 カメラに向かう動き成分の方向をカメラ
の光軸に一致させ、この光軸と直交する2つの動き成分
で定まる平面に平行に撮像面を設定する請求項1に記載
のカメラ配置方法。
3. The camera arrangement according to claim 1, wherein the direction of the motion component toward the camera is made coincident with the optical axis of the camera, and the imaging plane is set parallel to a plane defined by two motion components orthogonal to the optical axis. Method.
【請求項4】 前記認識対象の回転方向と平行になるよ
うにカメラの光軸方向を設定し、移動が限定される平面
に平行になるように撮像面を設定する請求項1に記載の
カメラ配置方法。
4. The camera according to claim 1, wherein an optical axis direction of the camera is set to be parallel to a rotation direction of the recognition target, and an imaging surface is set to be parallel to a plane where movement is limited. Placement method.
【請求項5】 前記設定可能範囲内で移動が限定される
平面の方向で規定される最適方向との差が最も大きい方
向にカメラの光軸方向を設定する請求項1に記載のカメ
ラ配置方法。
5. The camera arrangement method according to claim 1, wherein an optical axis direction of the camera is set in a direction having a largest difference from an optimum direction defined by a direction of a plane whose movement is limited within the settable range. .
JP11186338A 1999-06-30 1999-06-30 Camera arranging method in moving image processor Pending JP2001014466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11186338A JP2001014466A (en) 1999-06-30 1999-06-30 Camera arranging method in moving image processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186338A JP2001014466A (en) 1999-06-30 1999-06-30 Camera arranging method in moving image processor

Publications (1)

Publication Number Publication Date
JP2001014466A true JP2001014466A (en) 2001-01-19

Family

ID=16186613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186338A Pending JP2001014466A (en) 1999-06-30 1999-06-30 Camera arranging method in moving image processor

Country Status (1)

Country Link
JP (1) JP2001014466A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092328A (en) * 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology Method and apparatus for time division processing for moving image
JP2013097532A (en) * 2011-10-31 2013-05-20 Panasonic Corp Evaluation value calculation device and evaluation value calculation method
CN112885015A (en) * 2021-01-22 2021-06-01 深圳市奔凯安全技术股份有限公司 Regional intrusion detection method, system, storage medium and electronic equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092328A (en) * 2004-09-24 2006-04-06 National Institute Of Advanced Industrial & Technology Method and apparatus for time division processing for moving image
JP4660736B2 (en) * 2004-09-24 2011-03-30 独立行政法人産業技術総合研究所 Moving picture time division processing method and apparatus
JP2013097532A (en) * 2011-10-31 2013-05-20 Panasonic Corp Evaluation value calculation device and evaluation value calculation method
CN112885015A (en) * 2021-01-22 2021-06-01 深圳市奔凯安全技术股份有限公司 Regional intrusion detection method, system, storage medium and electronic equipment

Similar Documents

Publication Publication Date Title
CN111526285B (en) Image anti-shake method, electronic equipment and computer-readable storage medium
EP2826414B1 (en) Point-of-gaze detection device, point-of-gaze detection method, personal parameter calculating device, personal parameter calculating method, program, and computer-readable storage medium
US7583815B2 (en) Wide-area site-based video surveillance system
CN103688292B (en) Image display device and method for displaying image
JP2018522348A (en) Method and system for estimating the three-dimensional posture of a sensor
US20090028386A1 (en) Automatic tracking apparatus and automatic tracking method
US20170351327A1 (en) Information processing apparatus and method, and program
JP2019526846A (en) Passive optical detection method and system for vehicle
US20090208063A1 (en) Dynamic calibration method for single and multiple vedio capture devices
JPH11252440A (en) Method and device for ranging image and fixing camera to target point
US20170336439A1 (en) Real-time visual-inertial motion tracking fault detection
CN112348889B (en) Visual positioning method, and related device and equipment
CN109474817B (en) Optical sensing device, method and optical detection module
US9386280B2 (en) Method for setting up a monitoring camera
KR20140121345A (en) Surveillance Camera Unit And Method of Operating The Same
JP2001014466A (en) Camera arranging method in moving image processor
JP5278273B2 (en) Surveillance camera system and abnormality detection method thereof
KR20170006210A (en) Surveillance method
KR20220050722A (en) method of mapping monitoring point in CCTV video for video surveillance system
WO2021251171A1 (en) Information processing device, information processing method, and program
JP2001012946A (en) Dynamic image processor and processing method
CN116615763A (en) Method, computer program, machine readable medium and control unit for determining camera pose in a multi-camera system
JP2003219398A (en) Disaster supervisory apparatus
JP2021033343A (en) Person detection device, method, and program
WO2022224402A1 (en) Position detection device, position detection method, and position detection program