JP2001013453A - Optical device - Google Patents

Optical device

Info

Publication number
JP2001013453A
JP2001013453A JP11181447A JP18144799A JP2001013453A JP 2001013453 A JP2001013453 A JP 2001013453A JP 11181447 A JP11181447 A JP 11181447A JP 18144799 A JP18144799 A JP 18144799A JP 2001013453 A JP2001013453 A JP 2001013453A
Authority
JP
Japan
Prior art keywords
light
intensity distribution
optical axis
light intensity
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11181447A
Other languages
Japanese (ja)
Inventor
Tateki Orino
干城 折野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11181447A priority Critical patent/JP2001013453A/en
Publication of JP2001013453A publication Critical patent/JP2001013453A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent performance from being lowered because of unstable control in an optical axis direction and the adjustment error of an optical axis even when a beam splitter having angle dependency is used in convergent luminous flux or divergent luminous flux. SOLUTION: The luminous flux emitted from a laser diode light source 21 is reflected from the polarized light separating plane 20a of a composite prism 23, transmitted and sent toward an opposed device from a lens group 25 having positive power after the spherical aberration thereof is corrected by a lens 22 having positive power and a lens 23 having a negative power. On the other hand, received light from the opposed device is made incident from the group 25 having the positive power, transmitted through the light intensity distribution correcting plane 20b of the prism 20 and received by a four-divided sensor 24 after the symmetry of light intensity distribution thereof is secured. By transmitting the received light through both of the planes 20a and 20b, the asymmetry of the light intensity distribution occurring when the received light is transmitted through the plane 20a is negated. Thus, the light intensity distribution of the beam spot of the received light on the light receiving surface of the sensor 24 can be made symmetric as for two orthogonally crossed axes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空間光通信装置や
光ピックアップ装置等に使用されるビームスプリッタを
有する光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device having a beam splitter used for a spatial optical communication device, an optical pickup device, and the like.

【0002】[0002]

【従来の技術】従来から、光学系の収束光束中又は発散
光束中において、出射光と入射光を分岐するためにビー
ムスプリッタを使用した光学装置を搭載した空間光通信
装置が、特願平5−133716号公報に開示されてい
る。これは2台の同一構造の通信装置を空間を隔てて対
向設置して、大気中に光ビームを投光して双方向通信を
行うものである。
2. Description of the Related Art Conventionally, a spatial optical communication device equipped with an optical device using a beam splitter for splitting outgoing light and incident light in a convergent light beam or a divergent light beam of an optical system has been disclosed in Japanese Patent Application No. Hei. -133716. In this method, two communication devices having the same structure are installed facing each other with a space therebetween, and a light beam is projected into the atmosphere to perform two-way communication.

【0003】図12は第1の従来例の空間光通信装置の
構成図を示し、投光光軸と受光光軸との交叉位置に偏光
ビームスプリッタ1が配置されており、この偏向スプリ
ッタ1はその偏光分離面1aに平行光束が入射角45°
で入射したときに、最も効率の良い偏光分離特性を示す
ようになっている。偏光ビームスプリッタ1の受光側に
は、図13に示すようにガラス表面の中央部に楕円形ミ
ラー部2aを有し、入射光束の10%を反射する受光ビ
ームスプリッタ2が配置されている。また、紙面に垂直
な偏光方向を有する直線偏光の信号光を出射するレーザ
ーダイオード光源3と、正のパワーを有するレンズ群4
とから投光部が構成されており、 正のパワーを有するレ
ンズ群5とアバランシェフォトダイオード6とから本信
号検出用受光部が構成され、正のパワーを有するレンズ
群7と4分割センサ8とから位置検出用受光部が構成さ
れている。
FIG. 12 shows a configuration diagram of a first conventional spatial optical communication device, in which a polarizing beam splitter 1 is disposed at a crossing point of a light projecting optical axis and a light receiving optical axis. A parallel light beam is incident on the polarization separation surface 1a at an incident angle of 45 °.
When the light is incident on the substrate, the most efficient polarization separation characteristics are exhibited. As shown in FIG. 13, on the light receiving side of the polarizing beam splitter 1, a light receiving beam splitter 2 having an elliptical mirror portion 2a at the center of the glass surface and reflecting 10% of the incident light beam is arranged. A laser diode light source 3 for emitting linearly polarized signal light having a polarization direction perpendicular to the paper surface; and a lens group 4 having a positive power.
And a lens group 5 having a positive power and an avalanche photodiode 6 constitute a light receiving section for signal detection, and a lens group 7 having a positive power, a quadrant sensor 8 and Constitute a light detecting unit for position detection.

【0004】投光光Laの偏光ビームスプリッタ1から
の出射側には、光軸方向可変部9が配置されており、光
軸方向可変部9には通信光学系の光軸Oに対して45°
の傾角を基準状態として、光軸方向可変ミラー10が配
置されている。更に、4分割センサ8からの位置ずれ信
号を処理する信号処理部12と、この信号処理部12か
らの光軸ずれ信号に基づいて光軸方向可変部9に光軸方
向補正信号を送る光軸方向制御部13とが備えられてい
る。
An optical axis direction variable section 9 is disposed on the emission side of the projected light La from the polarization beam splitter 1, and the optical axis direction variable section 9 has an optical axis direction variable section 45 with respect to the optical axis O of the communication optical system. °
The optical axis direction variable mirror 10 is disposed with the inclination angle of the optical axis direction as a reference state. Further, a signal processing unit 12 for processing a position shift signal from the four-divided sensor 8 and an optical axis for sending an optical axis direction correction signal to the optical axis direction variable unit 9 based on the optical axis shift signal from the signal processing unit 12 A direction control unit 13 is provided.

【0005】このような構成により、レーザーダイオー
ド光源3からの出射光は、正のパワーを有するレンズ群
4により略平行光束となり、偏光ビームスプリッタ1の
偏光分離面1aで反射され、更に光軸方向可変ミラー1
0によって反射されて、投光光Laとしてこの装置Aか
ら同様の構成の装置Bに送信される。
With such a configuration, the light emitted from the laser diode light source 3 is converted into a substantially parallel light beam by the lens group 4 having a positive power, reflected by the polarization splitting surface 1a of the polarization beam splitter 1, and furthermore in the optical axis direction. Variable mirror 1
The light is reflected by 0, and is transmitted from the device A to the device B having the same configuration as the projection light La.

【0006】装置Bから出射された光束は受光光Lbと
して装置Aに入射し、光軸方向可変ミラー10で反射さ
れ、偏光ビームスプリッタ1を透過して、受光ビームス
プリッタ2に至る。受光ビームスプリッタ2による反射
光は、その10%が正のパワーを有するレンズ群7によ
り4分割センサ8に集光し、一方で全受光量の約90%
は受光ビームスプリッタ2を透過して、正のパワーを有
するレンズ群5によりアバランシェフォトダイオード6
に集光する。
The light beam emitted from the device B enters the device A as received light Lb, is reflected by the optical axis direction variable mirror 10, passes through the polarization beam splitter 1, and reaches the light reception beam splitter 2. 10% of the light reflected by the light receiving beam splitter 2 is condensed on the four-divided sensor 8 by the lens group 7 having a positive power, while about 90% of the total received light amount
Is transmitted through the light receiving beam splitter 2 and is transmitted through the avalanche photodiode 6 by the lens group 5 having a positive power.
Focus on

【0007】4分割センサ8の受光面上での受光ビーム
スポットTの位置ずれ信号は、信号処理部12を介して
光軸ずれ信号として光軸方向制御部13に送られ、光軸
方向制御部13から光軸方向可変部9に光軸方向補正信
号が送られる。この光軸方向補正信号に基づいてミラー
駆動部のモータが回転し、光軸方向可変ミラー10が図
14に示すように、2つの回転軸10a及び10bの周
りに回動する。
The position shift signal of the light receiving beam spot T on the light receiving surface of the four-divided sensor 8 is sent to the optical axis direction control unit 13 as an optical axis shift signal via the signal processing unit 12, and the optical axis direction control unit An optical axis direction correction signal is sent from 13 to the optical axis direction variable section 9. Based on this optical axis direction correction signal, the motor of the mirror driving unit rotates, and the optical axis direction variable mirror 10 rotates around two rotation axes 10a and 10b as shown in FIG.

【0008】図15、図16はこのときの4分割センサ
8の受光面上の受光ビームスポットTの走査方向を示
し、光軸方向可変ミラー10の回転軸10aの周りの回
動は、受光ビームスポットTを図15の矢印に示すよう
に4分割センサ8の受光面の上下方向に移動し、光軸方
向可変ミラー10の回転軸10bの周りの回動は、受光
ビームスポットTを図16の矢印に示すように受光面の
右上45°又は左上45°方向に移動する。
FIGS. 15 and 16 show the scanning direction of the light receiving beam spot T on the light receiving surface of the four-divided sensor 8 at this time, and the rotation of the optical axis direction variable mirror 10 around the rotation axis 10a is the light receiving beam. The spot T is moved up and down on the light receiving surface of the four-divided sensor 8 as shown by the arrow in FIG. 15, and the rotation of the optical axis direction variable mirror 10 around the rotation axis 10b moves the light receiving beam spot T in FIG. As shown by an arrow, the light-receiving surface moves in the upper right 45 ° or upper left 45 ° direction.

【0009】このようなスポット移動の組み合わせによ
って、受光ビームスポットTの中心が4分割センサ8の
受光部有効域8aの中央、即ち無感度領域である十字状
分離帯8bのクロスポイントに一致するように、光軸方
向可変ミラー10の傾きを調整して光軸方向補正制御を
行う。
By such a combination of spot movements, the center of the light-receiving beam spot T coincides with the center of the light-receiving portion effective area 8a of the four-divided sensor 8, that is, the cross point of the cross-shaped separation band 8b which is an insensitive area. Next, the inclination of the optical axis direction variable mirror 10 is adjusted to perform optical axis direction correction control.

【0010】そして、この光軸方向補正制御を空間を隔
てて対向設置している2台の双方向光通信装置A、Bに
おいて互いに動作することによって、双方の送信ビーム
の広がりの中央部を対向装置のビーム取込口に常に一致
する状態を維持することができる。同時に、双方の装置
における受信光をアバランシェフォトダイオード6の受
光有効域内に集光することができる。
By operating this optical axis direction correction control in two bidirectional optical communication devices A and B opposed to each other with a space therebetween, the central portions of the spreads of both transmission beams are opposed to each other. It is possible to maintain a state that always coincides with the beam inlet of the apparatus. At the same time, the light received by both devices can be collected within the effective light receiving area of the avalanche photodiode 6.

【0011】ここで、偏光ビームスプリッタ1の材質を
G、その屈折率をng 、相対的に高屈折率物質から成る
薄膜層をH、低屈折率物質から成る薄膜層をL、それら
の屈折率をそれぞれnh 及びnl 、薄膜層の光学的膜厚
をnd 、設計基準波長をλkとし、偏光ビームスプリッ
タ1の偏光分離面1aを構成する誘電体多層膜の構成
を、光の進行順にG/H/L/・・・/H/L/Hの1
7層膜として、各数値を次の通りとしている。
Here, the material of the polarizing beam splitter 1 is G, its refractive index is ng, the thin film layer made of a relatively high refractive index material is H, the thin film layer made of a low refractive index material is L, and their refractive indices are Are respectively nh and nl, the optical thickness of the thin film layer is nd, the design reference wavelength is λk, and the configuration of the dielectric multilayer film constituting the polarization splitting surface 1a of the polarization beam splitter 1 is G / H 1 of /L/.../H/L/H
The numerical values of the seven-layer film are as follows.

【0012】G;ng =1.74(S−TIH4;株式
会社OHARA製) H;TiO2 、nh =2.26、nd =223nm L;SiO2 、nl =1.45、nd =223nm λk =780nm
G; ng = 1.74 (S-TIH4; manufactured by OHARA Co., Ltd.) H; TiO 2 , nh = 2.26, nd = 223 nm L; SiO 2 , nl = 1.45, nd = 223 nm λk = 780 nm

【0013】この誘電体多層膜を蒸着したプリズムを屈
折率nb =1.56の光透過性接着剤により、同一材質
(S−TIH4)のプリズムと接合して、偏光ビームス
プリッタ1を形成している。
The prism on which the dielectric multilayer film is deposited is joined to a prism of the same material (S-TIH4) with a light-transmitting adhesive having a refractive index of nb = 1.56 to form a polarizing beam splitter 1. I have.

【0014】図17はこの偏光ビームスプリッタ1の偏
光分離面1aに、平行光束が入射角45°で入射したと
きの偏光分離特性を示す。ここで、S偏光成分の反射率
をRS、P偏光成分の透過率をTPで表している。波長
510〜820nmまでの範囲で、これらの反射率RS
と透過率TPとが共に100%に近く、偏光分離性が極
めて良好な偏光分離特性を示す偏光ビームスプリッタ1
となっている。
FIG. 17 shows a polarization splitting characteristic when a parallel light beam is incident on the polarization splitting surface 1a of the polarizing beam splitter 1 at an incident angle of 45 °. Here, the reflectance of the S-polarized light component is represented by RS, and the transmittance of the P-polarized light component is represented by TP. In the range from wavelength 510 to 820 nm, these reflectances RS
And the transmittance TP are both close to 100%, and the polarization beam splitter 1 exhibits polarization separation characteristics with extremely good polarization separation properties.
It has become.

【0015】図18は第2の従来例の構成図を示し、小
型化又は簡素化の必要性から、アフォーカル部と、 受光
素子及び発光素子の直前の正のパワーを有するレンズ群
とを廃止し、正のパワーを有するレンズ群17を偏光ビ
ームスプリッタ1の前方に配置して、Fナンバ=2.0
となる光学装置としている。
FIG. 18 shows a configuration diagram of a second conventional example. The afocal portion and a lens group having a positive power immediately before the light receiving element and the light emitting element are eliminated from the necessity of miniaturization or simplification. Then, a lens group 17 having a positive power is disposed in front of the polarizing beam splitter 1, and the F number = 2.0
Optical device.

【0016】図19は収束光束中又は発散光束中に配置
したこの偏光ビームスプリッタ1の偏光分離特性の波長
780nmにおける角度依存性を示し、横軸の角度は偏
光ビームスプリッタ1のガラス中における値で表してい
る。偏光分離面1aへの入射角45°を角度中心とした
ときに、−4゜よりも小傾角側の入射光束と、+4゜よ
りも大傾角側の入射光束とにおいて、P偏光成分の透過
率TPの非対称性が著しい。また、同様に入射角45°
を中心として−7゜よりも小傾角側の入射光束と、+7
゜よりも大傾角側の入射光束とにおいて、S偏光成分の
反射率RSの非対称性が著しい。偏光ビームスプリッタ
1の偏光分離特性にはこのような角度依存性があり、従
ってFナンバ2.0に相当する光線入射角は37゜〜5
3°までの範囲となる。
FIG. 19 shows the angle dependence at 780 nm of the polarization splitting characteristic of the polarizing beam splitter 1 arranged in a convergent light beam or a divergent light beam, and the angle on the horizontal axis is the value in the glass of the polarizing beam splitter 1. Represents. When the incident angle 45 ° on the polarization separation surface 1a is set as the angle center, the transmittance of the P-polarized light component between the incident light beam on the tilt angle side smaller than -4 ° and the incident light beam on the tilt angle side larger than + 4 °. The asymmetry of TP is significant. Similarly, the incident angle is 45 °
With respect to the incident light beam at a tilt angle smaller than -7 ° with respect to
The asymmetry of the reflectance RS of the S-polarized light component is remarkable with the incident light beam on the tilt angle side larger than ゜. The polarization splitting characteristic of the polarization beam splitter 1 has such an angle dependence, and therefore, the light incident angle corresponding to the F number 2.0 is 37 ° to 5 °.
The range is up to 3 °.

【0017】レーザーダイオード光源3からの投光光L
aの一部が、 正のパワーを有するレンズ群17内の各レ
ンズ面に反射され、その反射光が偏光分離面1aを透過
してアバランシェフォトダイオード6に戻ると、本信号
通信におけるクロストークの原因となり、また4分割セ
ンサ8に戻ると光軸方向補正制御における誤動作の原因
となる。
The projected light L from the laser diode light source 3
When a part of a is reflected by each lens surface in the lens group 17 having positive power, and the reflected light returns to the avalanche photodiode 6 after passing through the polarization splitting surface 1a, the crosstalk in the signal communication is reduced. If it returns to the four-divided sensor 8, it may cause a malfunction in the optical axis direction correction control.

【0018】この戻り光束を極力少なくするためには、
受光光Lbとして利用する透過光束をP偏光光束とし、
レーザーダイオード光源3からの投光光LaをS偏光光
束とする関係で、偏光ビームスプリッタ1の偏光分離面
1aに入射するときが、最も効率の良い偏光分離効果を
発揮する。従って、図18に示す構成の光学系を紙面の
後方に、45°傾斜させた同一構造の2台の光学装置を
対向配置させて通信を行う。
In order to minimize this return light flux,
The transmitted light beam used as the received light Lb is a P-polarized light beam,
Since the light La emitted from the laser diode light source 3 is converted into an S-polarized light beam, when the light is incident on the polarization separation surface 1a of the polarization beam splitter 1, the most efficient polarization separation effect is exhibited. Therefore, communication is performed by disposing two optical devices having the same structure in which the optical system having the configuration shown in FIG.

【0019】[0019]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、4分割センサ8を位置検出用受光素子
として利用する場合に、受光ビームスポットTが小さ過
ぎると、4分割センサ8の無感度領域である十字状分離
帯8bに受光ビームスポットTが落ち込んで出力が無く
なったり、十字状分離帯8bを横切るときに検出出力が
急激に変化して制御が不安定になる。一方、受光ビーム
スポットTが大き過ぎると、感度が悪くなって高周波成
分の揺れに制御が追随しきれなくなる。
However, in the above-mentioned conventional example, when the four-divided sensor 8 is used as a light-receiving element for position detection, if the light receiving beam spot T is too small, the insensitive area of the four-divided sensor 8 is not used. The light receiving beam spot T falls into the cross-shaped separation band 8b, and the output disappears, or the detection output changes rapidly when crossing the cross-shaped separation band 8b, and the control becomes unstable. On the other hand, if the light receiving beam spot T is too large, the sensitivity becomes poor, and the control cannot follow the fluctuation of the high frequency component.

【0020】このような光軸方向補正制御における不都
合を解決するために、受光ビームスポットTに適切な広
がりを持たせることが望ましく、集光点よりもデフォー
カスした位置に4分割センサ8の受光面位置を設定する
場合が一般的である。従って、従来の光学装置において
は、4分割センサ8の受光面上で非対称な光強度分布の
受光ビームスポットTを受光することになり、光強度分
布が非対称な場合には、受光ビームスポットTが十字状
分離帯8bを横切る方向によって光軸ずれの検出感度が
異なり、これが光軸方向補正制御の不安定要素となる。
In order to solve such inconvenience in the optical axis direction correction control, it is desirable that the light receiving beam spot T has an appropriate spread. In general, the position of the surface is set. Therefore, in the conventional optical device, the light receiving beam spot T having an asymmetric light intensity distribution is received on the light receiving surface of the four-divided sensor 8, and when the light intensity distribution is asymmetric, the light receiving beam spot T The detection sensitivity of the optical axis shift differs depending on the direction crossing the cross-shaped separation band 8b, and this becomes an unstable element of the optical axis direction correction control.

【0021】また、このような光学装置を組み立てる際
に、位置検出用光学系の光軸と投光光学系の光軸との光
軸調整を行うためには、一般的にコーナキューブリフレ
クタ又はミラータイプのコーナリフレクタ等の反射工具
が使用されている。このような反射工具による反射光
は、反射工具を構成する3つの反射面の交点を通る光軸
を対称軸として、 入射光の光強度分布とは反転する光強
度分布となるために、組立調整時の光軸と実使用時の光
軸とが異なり、これが位置検出誤差となって光軸調整誤
差の原因となる。
In order to adjust the optical axis of the position detecting optical system and the optical axis of the light projecting optical system when assembling such an optical device, a corner cube reflector or a mirror is generally used. A reflective tool such as a corner reflector of a type is used. The light reflected by such a reflection tool has a light intensity distribution that is inverted with respect to the light intensity distribution of the incident light, with the optical axis passing through the intersection of the three reflection surfaces constituting the reflection tool as the axis of symmetry. The optical axis at the time and the optical axis at the time of actual use are different, and this becomes a position detection error and causes an optical axis adjustment error.

【0022】本発明の目的は、上述の問題点を解消し、
光分岐手段を収束光束中又は発散光束中で使用しても、
光軸方向制御の不安定や光軸調整誤差による性能低下を
回避することができる小型かつ簡素な構成の光学装置を
提供することにある。
An object of the present invention is to solve the above-mentioned problems,
Even if the light branching means is used in a convergent light beam or a divergent light beam,
It is an object of the present invention to provide an optical device having a small and simple configuration that can avoid instability of optical axis direction control and performance degradation due to an optical axis adjustment error.

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る光学装置は、投光手段と、受光手段と、
正のパワーを有するレンズ群と、投光光軸及び受光光軸
が交叉する位置に配した光分岐手段とを有する光学装置
において、前記光分岐手段及び前記受光手段の間に光強
度分布補正手段を備え、前記正のパワーを有するレンズ
群と前記光分岐手段を経て前記光強度分布補正手段を透
過又は反射する受光光の光軸に垂直な断面内における光
透過率分布又は光反射率分布を、直交する2つの軸に関
して対称としたことを特徴とする。
An optical device according to the present invention for achieving the above object comprises a light projecting means, a light receiving means,
In an optical device having a lens group having a positive power and a light branching unit arranged at a position where a light projecting optical axis and a light receiving optical axis intersect, a light intensity distribution correcting unit between the light branching unit and the light receiving unit A light transmittance distribution or a light reflectance distribution in a cross section perpendicular to the optical axis of the received light transmitted or reflected by the light intensity distribution correcting means through the lens group having the positive power and the light branching means. , With respect to two orthogonal axes.

【0024】[0024]

【発明の実施の形態】本発明を図1〜図11に図示の実
施例に基づいて詳細に説明する。図1は第1の実施例の
光学装置の構成図を示し、自装置の光軸ずれを検出し、
その光軸ずれ検出情報に基づいて、通信光学系の光軸ず
れを補正する光軸方向補正機構を有する空間光通信装置
に用いられる光学装置である。本実施例の光学装置で
は、同様の製作方法で光分岐部材と光強度分布補正部材
が作成され、光分岐部材の光分岐面を光軸に対して角度
+θだけ傾斜させたときに、 光強度分布補正を部材の光
強度分布補正面を光軸に対して角度−θだけ傾斜させて
配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a configuration diagram of an optical device according to a first embodiment, which detects an optical axis shift of the own device,
An optical device used in a spatial optical communication device having an optical axis direction correction mechanism for correcting an optical axis deviation of a communication optical system based on the optical axis deviation detection information. In the optical device of the present embodiment, the light branching member and the light intensity distribution correcting member are created by the same manufacturing method, and when the light branching surface of the light branching member is inclined by an angle + θ with respect to the optical axis, the light intensity increases. The light intensity distribution correction surface of the member for the distribution correction is arranged to be inclined by an angle -θ with respect to the optical axis.

【0025】本実施例の光学装置においては、偏光分離
面20aと光強度分布補正面20bが形成された複合プ
リズム20が、投光光軸と受光光軸の交叉位置にその偏
光分離面20aが至るように、また偏光分離面20aと
光強度分布補正面20bとの交叉位置が受光光軸よりも
投光側に位置するように配置されている。
In the optical device of this embodiment, the composite prism 20 having the polarization splitting surface 20a and the light intensity distribution correcting surface 20b is provided at the intersection of the light projecting optical axis and the light receiving optical axis. It is arranged so that the intersection between the polarization splitting surface 20a and the light intensity distribution correction surface 20b is located closer to the light projection side than the light receiving optical axis.

【0026】複合プリズム20は3個の三角柱状プリズ
ムが直方体形状に接合されており、接合部には誘電多層
膜によって光分岐面である偏光分離面20aと光強度分
布補正面20bとが形成され、偏光分離面20aは受光
光軸に対して角度+45°だけ傾斜し、光強度分布補正
面20bを受光光軸に対して角度−45°だけ傾斜した
関係とされている。
The composite prism 20 has three triangular prisms joined in a rectangular parallelepiped shape, and a polarization splitting surface 20a, which is a light splitting surface, and a light intensity distribution correction surface 20b are formed at the joint by a dielectric multilayer film. The polarization splitting surface 20a is inclined at an angle of + 45 ° with respect to the light receiving optical axis, and the light intensity distribution correction surface 20b is inclined at an angle of -45 ° with respect to the light receiving optical axis.

【0027】複合プリズム20の投光光軸側には、発光
素子としてのレーザーダイオード光源21と、正のパワ
ーを有するレンズ22と、負のパワーを有するレンズ2
3とから成る投光部が配置され、投光側と受光側とにお
けるプリズム長の差から生ずる光路差により投光側で大
きくなる球面収差を、レンズ22と負のパワーを有する
レンズ23により補正している。
A laser diode light source 21 as a light emitting element, a lens 22 having a positive power, and a lens 2 having a negative power
3 is disposed, and a spherical aberration that increases on the light projecting side due to an optical path difference caused by a difference in prism length between the light projecting side and the light receiving side is corrected by the lens 22 and the lens 23 having negative power. are doing.

【0028】また、受光光軸側には位置検出受光素子と
しての4分割センサ24から成る受光部が配置されてお
り、複合プリズム20の受光光束の出射側には、受光側
で光収差補正の最適化を行う正のパワーを有するレンズ
群25が配置されている。
A light-receiving portion comprising a four-divided sensor 24 as a position detecting light-receiving element is disposed on the light-receiving optical axis side. A lens group 25 having a positive power for optimization is arranged.

【0029】このような構成により、レーザーダイオー
ド光源21を出射した光束は、正のパワーを有するレン
ズ22及び負のパワーを有するレンズ23により球面収
差が補正され、複合プリズム20の偏光分離面20aに
おいて反射され、正のパワーを有するレンズ群25から
対向装置へ向けて送信伝送される。一方、対向装置から
の受信光は正のパワーを有するレンズ群25から入射
し、複合プリズム20の光強度分布補正面20bを透過
して光強度分布の対称性が確保されて、4分割センサ2
4に受光する。
With such a configuration, the light beam emitted from the laser diode light source 21 is corrected for spherical aberration by the lens 22 having a positive power and the lens 23 having a negative power. The reflected light is transmitted and transmitted from the lens group 25 having positive power to the opposing device. On the other hand, the light received from the opposing device is incident from the lens group 25 having a positive power, passes through the light intensity distribution correction surface 20b of the composite prism 20, and the symmetry of the light intensity distribution is ensured.
4 receives light.

【0030】このように、受光光Lbは偏光分離面20
aと光強度分布補正面20bを共に通過することによっ
て、偏光分離面20aを透過したときに発生する光強度
分布の非対称性が打ち消されて、4分割センサ24の受
光面上における受光ビームスポットTの光強度分布を、
直交する2つの光軸に関して対称とすることができる。
As described above, the received light Lb is applied to the polarization separation surface 20.
a and the light intensity distribution correction surface 20b, the asymmetry of the light intensity distribution generated when the light passes through the polarization separation surface 20a is canceled out, and the light receiving beam spot T on the light receiving surface of the four-divided sensor 24 is canceled out. The light intensity distribution of
It can be symmetric about two orthogonal optical axes.

【0031】上述の実施例では、光分岐部材と光強度分
布補正部材を一体化した複合プリズム20を使用した
が、従来例と同様の2個のビームスプリッタを使用し
て、2つの偏光分離面の成す角度が直角となるように、
更にその交叉位置が受光光軸よりも投光側に位置するよ
うに配置して、接合又は分離した構成としても、同様の
効果を得ることができる。従って、このような光学装置
を光軸方向補正機構を有する空間光通信装置や光ピック
アップ装置等に応用することにより、光軸方向補正性能
を維持しながら小型化又は簡素化を実施するとができ
る。
In the above-described embodiment, the compound prism 20 in which the light splitting member and the light intensity distribution correcting member are integrated is used. However, the same two beam splitters as in the conventional example are used, and the two polarization splitting surfaces are used. To make a right angle,
Further, the same effect can be obtained even if the crossing position is arranged so as to be located on the light projecting side with respect to the light receiving optical axis to be joined or separated. Therefore, by applying such an optical device to a spatial optical communication device or an optical pickup device having an optical axis direction correction mechanism, downsizing or simplification can be performed while maintaining optical axis direction correction performance.

【0032】図2は第1の実施例の変形例の構成図を示
し、平行平板状の偏光ビームスプリッタ26と、同様の
方法で製作した平行平板ガラスから成る光強度分布補正
部材27が使用されており、偏光ビームスプリッタ26
の投光側に正のパワーを有するレンズ群28が配置され
ている。
FIG. 2 is a block diagram of a modification of the first embodiment, in which a parallel plate-shaped polarizing beam splitter 26 and a light intensity distribution correcting member 27 made of a parallel plate glass manufactured by the same method are used. And the polarizing beam splitter 26
A lens group 28 having a positive power is disposed on the light-projecting side.

【0033】そして、偏光ビームスプリッタ26に形成
した偏光分離面26aが、受光光軸に対して角度+24
°で傾斜しているときには、光強度分布補正部材27に
形成した光強度分布補正部材27aを受光光軸に対して
角度−24°に傾斜させている。更に、偏光分離面26
aと光強度分布補正面27aとの交叉位置が、受光光軸
よりも投光部側に位置するように配置されている。この
ような構成の光学装置においても、図1の実施例と同様
の効果を得ることができる。
The polarization splitting surface 26a formed on the polarization beam splitter 26 has an angle of +24 with respect to the light receiving optical axis.
When the light intensity distribution correcting member 27 is inclined at an angle of °, the light intensity distribution correcting member 27a formed on the light intensity distribution correcting member 27 is inclined at an angle of −24 ° with respect to the light receiving optical axis. Furthermore, the polarization separation surface 26
a and the light intensity distribution correction surface 27a are arranged such that the crossing position is located closer to the light emitting portion than the light receiving optical axis. With the optical device having such a configuration, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0034】図3は第2の実施例の構成図を示し、本実
施例も光軸方向補正機構を有する空間光通信装置に使用
される。第1の実施例と同様に、投光部の発光素子とし
てレーザーダイオード光源21が使用され、受光部の位
置検出用受光素子として4分割センサ24が使用されて
いる。そして、投光光とLaと受光光Lbとを分離する
ための分岐手段としての光分岐部には、従来例と同様の
偏光分離面30aを有する偏光ビームスプリッタ30が
使用され、投光光Laの出射側には正のパワーを有する
レンズ群31が配置され、4分割センサ24と偏光ビー
ムスプリッタ30との間に、円板状平行ガラスから成る
光強度分布補正部材32が配置されて、Fナンバ=2.
0の光学装置とされている。
FIG. 3 shows the configuration of the second embodiment. This embodiment is also used in a spatial optical communication device having an optical axis direction correcting mechanism. As in the first embodiment, a laser diode light source 21 is used as a light emitting element of the light projecting unit, and a four-division sensor 24 is used as a light receiving element for detecting the position of the light receiving unit. A polarization beam splitter 30 having a polarization splitting surface 30a similar to that of the conventional example is used in a light branching unit as a branching unit for separating the projected light La from the received light Lb. A lens group 31 having a positive power is disposed on the exit side of the light source, and a light intensity distribution correction member 32 made of a disc-shaped parallel glass is disposed between the four-split sensor 24 and the polarization beam splitter 30. Number = 2.
0 optical device.

【0035】図4(a) 、(b) は光強度分布補正手段によ
り光強度分布の非対称性を補正する説明図である。Fナ
ンバが2.0の発散光束又は集光光束中において、角度
依存性を有する偏光ビームスプリッタ30と4分割セン
サ24との間の集光光束L1を横切る断面内の光透過率
分布について説明する。
FIGS. 4 (a) and 4 (b) are explanatory diagrams for correcting the asymmetry of the light intensity distribution by the light intensity distribution correcting means. A light transmittance distribution in a cross section of a divergent light beam or a condensed light beam having an F number of 2.0, which crosses the converged light beam L1 between the polarization beam splitter 30 and the four-split sensor 24 having an angle dependence will be described. .

【0036】図4(a) において、4分割センサ24と偏
光ビームスプリッタ30の間の光軸上の任意の点P1を
含み、偏光分離面30aと同一方向で、光軸に対して4
5°傾いている断面を断面S1とする。紙面を含む平面
とこの断面S1とが交叉する線を通る軸をW軸とする。
W軸を回転軸として断面S1を90゜回転して正面から
見たときの等透過率線N1は、受光側の集光点P2から
断面S1への垂線の交点P3を中心とする同心円とな
る。断面S1の面内の光線有効範囲A1を楕円で示す。
断面S1内における入射光のP偏光成分の透過率の角度
依存特性をW軸に沿って等透過率線N1の小円側から大
円側へ向かう光線入射角を横軸として、透過率分布を表
したグラフが、図19の透過率分布曲線TPに相当す
る。
In FIG. 4A, an arbitrary point P1 on the optical axis between the four-split sensor 24 and the polarization beam splitter 30 is included.
The section inclined by 5 ° is referred to as section S1. An axis passing through a line at which the plane including the paper surface and the cross section S1 intersect is defined as a W axis.
The iso-transmittance line N1 when the section S1 is rotated by 90 ° about the W axis as a rotation axis and viewed from the front is a concentric circle centered on the intersection P3 of a perpendicular from the condensing point P2 on the light receiving side to the section S1. . The effective ray range A1 in the plane of the cross section S1 is indicated by an ellipse.
The angle dependence of the transmittance of the P-polarized light component of the incident light in the cross section S1 is represented by the transmittance distribution along the W axis, with the light incident angle from the small circle side to the large circle side of the equal transmittance line N1 taken along the horizontal axis. The graph shown corresponds to the transmittance distribution curve TP in FIG.

【0037】また、図4(b) において点P1を通り光軸
に垂直な断面を断面S2とする。この断面S2内で点P
1を通り光軸に垂直な軸をY軸とする。Y軸を回転軸と
して断面S2を90°回転して正面から見た時の等透過
率線N2は、交点P3から断面S2への垂線の交点P4
を楕円の長軸と短軸との交点とし、同心円状の等透過率
線N1に対してY軸方向にsin45゜を乗じた形状の
同心楕円になる。
In FIG. 4B, a section passing through the point P1 and perpendicular to the optical axis is defined as a section S2. The point P in this section S2
An axis passing through 1 and perpendicular to the optical axis is defined as a Y axis. The uniform transmittance line N2 when the section S2 is rotated by 90 ° about the Y axis as a rotation axis and viewed from the front is an intersection P4 of a perpendicular from the intersection P3 to the section S2.
Is the intersection of the major axis and the minor axis of the ellipse, and a concentric ellipse having a shape obtained by multiplying the concentric isotransmittance line N1 by sin 45 ° in the Y-axis direction.

【0038】ここで、複数の楕円において、全ての長軸
と短軸が重なり、長軸と短軸との交点が1点となる楕円
群を「同心楕円」と呼ぶ。断面S2の面内の光線有効範
囲A2を円で示す。断面S2の面内における入射光のP
偏光成分の透過率の角度依存特性を、Y軸に沿って上側
光線から下側光線へ向かう光線角度を横軸として、透過
率分布を表したグラフ図が図19の透過率分布曲線TP
に相当する。
Here, in a plurality of ellipses, a group of ellipses in which the major axis and the minor axis are overlapped and the intersection of the major axis and the minor axis is one point is called "concentric ellipse". The effective ray range A2 in the plane of the cross section S2 is indicated by a circle. P of incident light in the plane of section S2
The transmittance distribution curve TP in FIG. 19 is a graph showing the transmittance distribution, with the angle dependence of the transmittance of the polarized light component as the horizontal axis, the ray angle from the upper ray to the lower ray along the Y axis.
Is equivalent to

【0039】光強度分布補正手段はこのような光強度分
布の非対称性を補正するためのものであり、第2の実施
例では4分割センサ24と偏光ビームスプリッタ30と
間に光強度分布補正部材32が配置されている。なお、
光分岐手段からの透過光を受光光Lbとして利用する場
合について説明しているが、光分岐手段からの反射光を
受光光Lbとして利用する場合についても、同様の原理
を適用することができる。
The light intensity distribution correcting means is for correcting such asymmetry of the light intensity distribution. In the second embodiment, a light intensity distribution correcting member is provided between the four-division sensor 24 and the polarization beam splitter 30. 32 are arranged. In addition,
Although the case where the transmitted light from the light branching unit is used as the received light Lb has been described, the same principle can be applied to the case where the reflected light from the light branching unit is used as the received light Lb.

【0040】図5(a) は本実施例の光強度分布補正部材
32の正面図を示し、光強度分布補正部材32は光強度
分布補正面32aにおいて図4(a) の同心楕円状の等透
過率線N2と、光軸との交点P5を通ってY軸に垂直な
軸に関して、対称な等透過率線N3を描くことができ、
図5(b) に示すようにY軸に沿ったP偏光成分の透過率
分布C1と、光軸に関して対称な透過率分布C2となる
ように、透過率が連続的に変化する光強度分布補正面3
2aを形成している。
FIG. 5A is a front view of the light intensity distribution correcting member 32 of the present embodiment. The light intensity distribution correcting member 32 has a concentric elliptical shape shown in FIG. A symmetrical transmittance line N3 can be drawn with respect to an axis perpendicular to the Y axis through the intersection P5 between the transmittance line N2 and the optical axis,
As shown in FIG. 5B, the light intensity distribution correction in which the transmittance continuously changes so that the transmittance distribution C1 of the P-polarized component along the Y axis and the transmittance distribution C2 symmetrical with respect to the optical axis. Face 3
2a is formed.

【0041】このような光強度分布補正部材32をその
光線有効範囲A3を、図4(b) の光線有効範囲A2と一
致させて光学装置を構成することにより、4分割センサ
24の受光面で受光光Lbを受光したときに、受光面上
の受光ビームスポットTを、直交する2軸に関して対称
な光強度分布とすることができる。
By constructing the optical device such that the light intensity distribution correcting member 32 has its effective ray range A3 coincident with the effective ray range A2 in FIG. 4B, the light receiving surface of the four-divided sensor 24 is formed. When the received light Lb is received, the received light beam spot T on the light receiving surface can have a light intensity distribution symmetric with respect to two orthogonal axes.

【0042】また、図6(a) 、(b) に示すように、同心
楕円状の透過率境界線N4となる光強度分布で、Y軸に
沿ったP偏光成分の透過率分布C3が階段状に変化する
ように、光強度分布補正部材32を形成してもよい。
As shown in FIGS. 6 (a) and 6 (b), in the light intensity distribution which becomes the concentric elliptical transmittance boundary line N4, the transmittance distribution C3 of the P-polarized light component along the Y axis is stepwise. The light intensity distribution correction member 32 may be formed so as to change in shape.

【0043】更に、図7に示すように光強度分布補正面
32aと光軸との交点P5から、同心楕円の中心P6ま
での距離と等しい距離に同心楕円の中心があり、Y軸に
垂直な上下方向の2個所に透過率境界線N4と同様の等
透過率線を描くように、光透過率が階段状に変化する光
強度分布補正部材32を形成してもよい。
Further, as shown in FIG. 7, the center of the concentric ellipse is located at a distance equal to the distance from the intersection P5 between the light intensity distribution correction surface 32a and the optical axis to the center P6 of the concentric ellipse, and is perpendicular to the Y axis. The light intensity distribution correction member 32 in which the light transmittance changes stepwise may be formed so as to draw the same transmittance line as the transmittance boundary line N4 at two locations in the vertical direction.

【0044】このような光強度分布補正部材32を光学
装置に応用すれば、4分割センサ24の受光面上におい
て、光強度分布についてのみならずスポット形状につい
ても、直交する2軸に関して対称な受光ビームスポット
Tとすることができる。
When such a light intensity distribution correcting member 32 is applied to an optical device, the light receiving surface of the four-divided sensor 24 has not only a light intensity distribution but also a spot shape that is symmetrical with respect to two orthogonal axes. It can be a beam spot T.

【0045】図8は第3の実施例の構成図を示し、第2
の実施例は入射光が光強度分布補正面32a透過したと
きに、光強度分布の非対称性を打ち消す光強度分布補正
部材32であるが、この第3の実施例は光強度分布補正
面への入射光を反射したときに、偏光ビームスプリッタ
30からの出射光における光強度分布の非対称性を打ち
消す長方形の平行ガラスから成る光強度分布補正部材3
3が使用されている。この光強度分布補正部材33は4
分割センサ24と偏光ビームスプリッタ30との間に光
軸に対して45°傾けて配置され、この光強度分布補正
部材33の反射光側に4分割センサ24が配置されてい
る。
FIG. 8 shows the configuration of the third embodiment.
The third embodiment is a light intensity distribution correcting member 32 for canceling the asymmetry of the light intensity distribution when the incident light is transmitted through the light intensity distribution correcting surface 32a. The third embodiment is directed to the light intensity distribution correcting surface. A light intensity distribution correcting member 3 made of rectangular parallel glass that cancels the asymmetry of the light intensity distribution in the light emitted from the polarizing beam splitter 30 when the incident light is reflected.
3 are used. This light intensity distribution correction member 33 has four
The four-split sensor 24 is arranged between the split sensor 24 and the polarization beam splitter 30 at an angle of 45 ° with respect to the optical axis, and on the reflected light side of the light intensity distribution correction member 33.

【0046】図9(a) は光強度分布補正部材33の正面
図、図9(b) はその透過率又は反射率特性を示し、光強
度分布補正部材33からの反射率が連続的に変化する例
である。光強度分布補正部材33は光強度分布補正面3
3aと光軸の交点P7を通るW軸に垂直な軸に関して、
図4(a) の同心円状の等透過率線N1と対称な等反射率
線N5描くことができる。等反射率線N5を描く同心楕
円の中心P8は、交点P3とは点P1に関して対称な位
置関係にある。そして、W軸に沿ったP偏光成分の透過
率分布C4は光軸に関して対称な透過率分布C5とな
る。このように、光強度分布補正部材33は反射率が連
続的に変化するように光強度分布補正面33aが形成さ
れている。
FIG. 9 (a) is a front view of the light intensity distribution correcting member 33, and FIG. 9 (b) shows its transmittance or reflectance characteristics. The reflectance from the light intensity distribution correcting member 33 changes continuously. Here is an example. The light intensity distribution correction member 33 is a light intensity distribution correction surface 3.
With respect to an axis perpendicular to the W axis passing through the intersection P7 of 3a and the optical axis,
An isoreflectance line N5 symmetrical to the concentric isotransmittance line N1 in FIG. 4A can be drawn. The center P8 of the concentric ellipse describing the constant reflectance line N5 has a symmetrical positional relationship with the intersection P3 with respect to the point P1. Then, the transmittance distribution C4 of the P-polarized light component along the W axis becomes a transmittance distribution C5 symmetric with respect to the optical axis. Thus, the light intensity distribution correction member 33 is formed with the light intensity distribution correction surface 33a so that the reflectance changes continuously.

【0047】この光強度分布補正部材33をその光線有
効範囲A4が図4(a) の光線有効範囲A1とに一致する
ように光学装置を構成することにより、4分割センサ2
4の受光面上で受光光Lbを受光したときに、受光ビー
ムスポットTを直交する2軸に関して対称な光強度分布
にすることができる。
By constructing an optical device such that the light intensity distribution correcting member 33 has an effective ray range A4 corresponding to the effective ray range A1 in FIG.
When the light receiving light beam Lb is received on the light receiving surface of No. 4, the light receiving beam spot T can have a light intensity distribution symmetric with respect to two orthogonal axes.

【0048】また、図10(a) 、(b) に示すように、光
強度分布補正部材33を同心円状の反射率境界線N6と
なる反射率分布C4で、W軸に沿ったP偏光成分の反射
率分布C6が階段状に変化するように形成してもよい。
As shown in FIGS. 10 (a) and 10 (b), the light intensity distribution correcting member 33 is provided with a P-polarized light component along the W axis by a reflectance distribution C4 which is a concentric reflectance boundary line N6. May be formed so that the reflectivity distribution C6 of the first step changes stepwise.

【0049】図11は第3の実施例の変形例の構成図を
示し、光入射面が光軸に対して垂直となるプリズム状の
偏光ビームスプリッタ30の代りに、偏光分離面26a
を45°よりも大きな角度に傾斜して配置した平行平板
状の偏光ビームスプリッタ26と、光強度分布補正部材
33と同様の原理で製作した光強度分布補正部材34と
が使用されている。平行平板状の偏光ビームスプリッタ
26は、プリズム状の偏光ビームスプリッタ30よりも
偏光分離特性の角度依存性がより顕著な場合が多いの
で、この光強度分布補正部材34を応用することによる
効果はより大きくなる。
FIG. 11 shows a configuration of a modification of the third embodiment. Instead of the prism-shaped polarizing beam splitter 30 whose light incident surface is perpendicular to the optical axis, a polarization splitting surface 26a is shown.
Are used. A parallel-plate-shaped polarization beam splitter 26 in which is inclined at an angle larger than 45 ° and a light intensity distribution correction member 34 manufactured on the same principle as the light intensity distribution correction member 33 are used. Since the angle dependence of the polarization splitting characteristic of the parallel plate-shaped polarization beam splitter 26 is more remarkable than the prism-shaped polarization beam splitter 30 in many cases, the effect of applying the light intensity distribution correction member 34 is more significant. growing.

【0050】[0050]

【発明の効果】以上説明したように本発明に係る光学装
置は、光強度分布補正手段から透過又は反射する受光光
の光軸に垂直な断面内における光透過分布又は光反射率
分布を直交する2つの軸に関して対称とすることによ
り、光分岐手段からの透過率又は反射率に角度依存性が
あっても、受光光学系の受光面上において直交する2軸
に関して対称性の良好な光強度分布の受光スポットを得
ることができる。
As described above, in the optical device according to the present invention, the light transmission distribution or the light reflectance distribution in the section perpendicular to the optical axis of the received light transmitted or reflected by the light intensity distribution correcting means is orthogonal. By symmetrical with respect to two axes, even if the transmittance or reflectance from the light branching unit has an angle dependency, a light intensity distribution with good symmetry with respect to two orthogonal axes on the light receiving surface of the light receiving optical system. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の光学装置の構成図である。FIG. 1 is a configuration diagram of an optical device according to a first embodiment.

【図2】変形例の構成図である。FIG. 2 is a configuration diagram of a modified example.

【図3】第2の実施例の構成図である。FIG. 3 is a configuration diagram of a second embodiment.

【図4】光強度分布の非対称性の説明図である。FIG. 4 is an explanatory diagram of the asymmetry of the light intensity distribution.

【図5】光強度分布補正部材の説明図である。FIG. 5 is an explanatory diagram of a light intensity distribution correction member.

【図6】他の光強度分布補正部材の説明図である。FIG. 6 is an explanatory diagram of another light intensity distribution correction member.

【図7】更に他の光強度分布補正部材の説明図である。FIG. 7 is an explanatory diagram of still another light intensity distribution correction member.

【図8】第3の実施例の構成図である。FIG. 8 is a configuration diagram of a third embodiment.

【図9】光強度分布補正部材の説明図である。FIG. 9 is an explanatory diagram of a light intensity distribution correction member.

【図10】他の光強度分布補正部材の説明図である。FIG. 10 is an explanatory diagram of another light intensity distribution correction member.

【図11】変形例の光学装置の構成図である。FIG. 11 is a configuration diagram of an optical device according to a modification.

【図12】第1の従来例の光空間通信装置の通信光学系
の構成図である。
FIG. 12 is a configuration diagram of a communication optical system of a first conventional optical space communication device.

【図13】受光ビームスプリッタの正面図である。FIG. 13 is a front view of the light receiving beam splitter.

【図14】光軸方向可変ミラーの斜視図である。FIG. 14 is a perspective view of an optical axis direction variable mirror.

【図15】受光ビームスポットの走査方向の説明図であ
る。
FIG. 15 is an explanatory diagram of a scanning direction of a light receiving beam spot.

【図16】受光ビームスポットの走査方向の説明図であ
る。
FIG. 16 is an explanatory diagram of a scanning direction of a light receiving beam spot.

【図17】偏光ビームスプリッタの偏光分離特性の波長
依存性のグラフ図である。
FIG. 17 is a graph showing the wavelength dependence of the polarization splitting characteristic of the polarization beam splitter.

【図18】第2の従来例の通信光学系の構成図である。FIG. 18 is a configuration diagram of a communication optical system of a second conventional example.

【図19】偏光分離特性の角度依存性のグラフ図であ
る。
FIG. 19 is a graph showing the angle dependence of the polarization splitting characteristic.

【符号の説明】[Explanation of symbols]

20、複合プリズム 20a、26a、30a 偏光分離面 20b、27a、32a、33a、34a 光強度分布
補正面 21 レーザーダイオード光源 22、23、25、27、31 レンズ 24 4分割センサ 26、30 偏光ビームスプリッタ 27、32、33、34 光強度分布補正部材
20, composite prism 20a, 26a, 30a polarization separation surface 20b, 27a, 32a, 33a, 34a light intensity distribution correction surface 21 laser diode light source 22, 23, 25, 27, 31 lens 24 quadrant sensor 26, 30 polarization beam splitter 27, 32, 33, 34 Light intensity distribution correction member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 投光手段と、受光手段と、正のパワーを
有するレンズ群と、投光光軸及び受光光軸が交叉する位
置に配した光分岐手段とを有する光学装置において、前
記光分岐手段及び前記受光手段の間に光強度分布補正手
段を備え、前記正のパワーを有するレンズ群と前記光分
岐手段を経て前記光強度分布補正手段を透過又は反射す
る受光光の光軸に垂直な断面内における光透過率分布又
は光反射率分布を、直交する2つの軸に関して対称とし
たことを特徴とする光学装置。
1. An optical apparatus comprising: a light projecting unit; a light receiving unit; a lens group having a positive power; and a light branching unit disposed at a position where a light projecting optical axis and a light receiving optical axis intersect. A light intensity distribution correction means is provided between the branching means and the light receiving means, and is perpendicular to the optical axis of the received light transmitted or reflected by the light intensity distribution correction means via the lens group having the positive power and the light branching means. An optical device, wherein a light transmittance distribution or a light reflectance distribution in a simple cross section is symmetric with respect to two orthogonal axes.
【請求項2】 前記光分岐手段は偏光ビームスプリッタ
とした請求項1に記載の光学装置。
2. The optical device according to claim 1, wherein said light splitting means is a polarization beam splitter.
【請求項3】 前記光強度分布補正手段は前記光分岐手
段の光分岐面と同様の光分布補正面を有し、前記光分岐
面が光軸に対して角度+θだけ傾斜しているときには、
前記光強度分布補正面は光軸に対して角度−θだけ傾斜
するようにした請求項1に記載の光学装置。
3. The light intensity distribution correcting means has a light distribution correcting surface similar to the light splitting surface of the light splitting means, and when the light splitting surface is inclined by an angle + θ with respect to an optical axis,
The optical device according to claim 1, wherein the light intensity distribution correction surface is inclined by an angle −θ with respect to an optical axis.
【請求項4】 前記光強度分布補正面の光透過率分布又
は光反射率分布は、等透過率線又は透過率境界線を描い
たときに線群が同心楕円又は同心円を成し、該同心楕円
又は同心円の法線方向に向かって連続的又は階段状に変
化し、前記同心楕円の2つの対称軸の交点又は前記同心
円の中心が光線有効範囲よりも外側に位置するようにし
た請求項1に記載の光学装置。
4. A light transmittance distribution or a light reflectance distribution of the light intensity distribution correction surface, wherein a line group forms a concentric ellipse or a concentric circle when an iso-transmittance line or a transmittance boundary line is drawn. 2. The method according to claim 1, wherein the shape changes continuously or stepwise in the normal direction of the ellipse or concentric circle, and the intersection of the two symmetry axes of the concentric ellipse or the center of the concentric circle is located outside the effective ray range. An optical device according to claim 1.
JP11181447A 1999-06-28 1999-06-28 Optical device Pending JP2001013453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11181447A JP2001013453A (en) 1999-06-28 1999-06-28 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11181447A JP2001013453A (en) 1999-06-28 1999-06-28 Optical device

Publications (1)

Publication Number Publication Date
JP2001013453A true JP2001013453A (en) 2001-01-19

Family

ID=16100938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11181447A Pending JP2001013453A (en) 1999-06-28 1999-06-28 Optical device

Country Status (1)

Country Link
JP (1) JP2001013453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120015053A1 (en) * 2006-07-21 2012-01-19 Schmitz Harold H Treatment of psoriasis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120015053A1 (en) * 2006-07-21 2012-01-19 Schmitz Harold H Treatment of psoriasis

Similar Documents

Publication Publication Date Title
JP2986302B2 (en) Optical isolator
US6404552B1 (en) Projection type display device
JP3029541B2 (en) Optical pickup device
US5631774A (en) Polarizing beam splitter and optical pick-up head comprising the same
KR100219605B1 (en) An optical pickup device
JPH10301056A (en) Light projecting and receiving device
US5500754A (en) Optical transmitter-receiver
JP2001013453A (en) Optical device
US6744720B2 (en) Optical element and optical pick-up
JP3485594B2 (en) Light head
JP2707361B2 (en) Optical device for optical pickup
JP3213405B2 (en) A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.
US6021105A (en) Knife edge method for use in an optical pickup system
JPS61186903A (en) Light separating element
JPH0562238A (en) Optical device and optical pickup device
JPH04370783A (en) Distance measuring apparatus
JPS6337827A (en) Optical pickup device
JPS60178417A (en) Focus detecting device
KR0135859B1 (en) Optical head
JPH0973656A (en) Optical head
JPH09106569A (en) Optical pickup device
JPH026710A (en) Distance detecting device
JPH03200114A (en) Exposure correcting device for laser scanning optical system using light transparent mirror
JPS6217707A (en) Optical element
JPS60146173A (en) Reflection type photoelectric switch