JP2001013119A - Measurement of odor material - Google Patents
Measurement of odor materialInfo
- Publication number
- JP2001013119A JP2001013119A JP11183154A JP18315499A JP2001013119A JP 2001013119 A JP2001013119 A JP 2001013119A JP 11183154 A JP11183154 A JP 11183154A JP 18315499 A JP18315499 A JP 18315499A JP 2001013119 A JP2001013119 A JP 2001013119A
- Authority
- JP
- Japan
- Prior art keywords
- odor
- measurement
- adsorbed
- deodorizing filter
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 この出願発明は臭気物質の
測定方法に関するものであり、特に、比較的炭素数の小
さなアルデヒド類や脂肪酸類の測定検出に好適な、官能
試験との相関性に優れた測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an odorous substance, and is particularly suitable for measuring and detecting aldehydes and fatty acids having a relatively small number of carbon atoms, and has excellent correlation with a sensory test. Related to the measurement method.
【0002】[0002]
【従来の技術】 生活水準の向上に伴い、日常生活にお
ける臭気物質への関心が日々高まっているのは周知の通
りである。その中にあって、厨房からの排気臭(油臭)
や食品廃棄物の腐敗臭といった臭気は人間の臭覚に対す
る閾値が低く、ごく僅かな発生源であっても悪臭として
認識される。近年では、高度に気密化された住宅、オフ
ィスビル或いは工場などが隣接するため、上記悪臭への
対応は益々重要視されている。2. Description of the Related Art It is well known that interest in odor substances in daily life is increasing day by day as living standards improve. Among them, the exhaust odor from the kitchen (oil odor)
Odors such as food and food waste odors have a low threshold value for human odor, and even a very small amount of odors are recognized as malodor. In recent years, since highly airtight houses, office buildings, factories, and the like are adjacent to each other, measures against the above-mentioned odor have been increasingly regarded as important.
【0003】このような臭気物質を直接的に把握する手
段として官能試験が広く利用されている。しかし、この
試験法は臭気を判定するに当たって測定者の主観的な要
素が加わるため、客観的な判断を下すことが難しく、結
果を定量的に扱うことができない場合があった。このた
め、臭気物質の定量分析が可能なガスクロマトグラフィ
ーと質量分析器とを利用した測定技術(以下、GC/M
S法)と上記官能試験とを併用することが望ましいとさ
れている。[0003] Sensory tests are widely used as a means for directly grasping such odorous substances. However, in this test method, a subjective factor of a measurer is added in determining odor, so that it is difficult to make an objective determination, and the result may not be able to be treated quantitatively. For this reason, a measurement technique (hereinafter referred to as GC / M) utilizing gas chromatography and a mass spectrometer capable of quantitative analysis of odorous substances.
S method) and the sensory test described above are preferably used in combination.
【0004】このGC/MS法においては、臭気物質を
含む測定対象雰囲気をポンプ等で捕集材に接触導入して
吸着させた後、この捕集材を加熱することにより吸着さ
れた臭気物質を主として熱拡散させる。その後、拡散さ
れた臭気物質はガスクロマトグラフィーによって分離展
開して分析するものである。このような臭気物質の測定
技術は、臭気物質の分析に留まらず、脱臭を目的とした
フィルターの開発にも重要な役割を果たしている。In the GC / MS method, an atmosphere to be measured containing an odorous substance is brought into contact with a collecting material by a pump or the like to be adsorbed, and then the adsorbed odorous material is heated by heating the collecting material. Mainly heat diffusion. Thereafter, the diffused odorous substances are separated and developed by gas chromatography for analysis. Such a technique for measuring odorous substances plays an important role not only in the analysis of odorous substances but also in the development of filters for the purpose of deodorization.
【0005】[0005]
【発明が解決しようとする課題】 この出願に係る発明
者は、脱臭フィルタを開発する過程で、このフィルタの
空気流路上流側及び下流側に夫々捕集材を設置してGC
/MS法による測定を行うと共に、官能試験との併用に
より前述した臭気物質の脱臭効果を評価した。官能試験
の結果では上記フィルタ通過前に感じられた臭気が通過
後には認められず、脱臭性能が良好であるという結果が
得られた。しかしながら、GC/MS法ではフィルタ上
流側に設置した捕集材にすら臭気物質が同定されず、見
かけ上、臭気物質が存在しないような結果となり、官能
試験との間で相矛盾する結果となった。In the process of developing a deodorizing filter, the inventor of the present application installed a collecting material on the upstream and downstream sides of the air flow path of the filter to perform GC.
In addition to performing measurement by the / MS method, the deodorizing effect of the above-mentioned odorous substances was evaluated in combination with a sensory test. In the results of the sensory test, the odor felt before passing through the filter was not recognized after passing through the filter, and the result that the deodorizing performance was good was obtained. However, in the GC / MS method, no odor substance was identified even in the trapping material installed on the upstream side of the filter, and the result was such that the odor substance was apparently absent, resulting in inconsistency with the sensory test. Was.
【0006】この原因について検討した結果、従来知ら
れている捕集材のうち、臭気物質に対する特異性が低い
とされているものでは、例えば炭素数3〜12程度のア
ルデヒド類及び/又は脂肪酸類が吸着されてはいるもの
の、加熱時の拡散性が低く、拡散ガスとして分析するこ
とが難しいとの結論に至った。As a result of studying the cause, among the conventionally known trapping materials, those having low specificity to odorous substances, for example, aldehydes and / or fatty acids having about 3 to 12 carbon atoms are used. Although it was adsorbed, it was concluded that the diffusivity at the time of heating was low and it was difficult to analyze as a diffusion gas.
【0007】この出願発明者等は上記問題点に鑑み、官
能試験の評価結果と整合性の採れた臭気物質の測定方
法、即ち、GC/MS法に用いる捕集材について鋭意検
討した結果、この出願発明を完成したものである。従っ
て、この出願発明の目的は、官能試験の評価結果との相
関性に優れた新規な臭気物質の測定技術を提供すること
にある。In view of the above problems, the inventors of the present application have conducted intensive studies on a method of measuring an odorous substance that is consistent with the evaluation results of the sensory test, that is, a collecting material used in the GC / MS method. The present invention has been completed. Accordingly, an object of the present invention is to provide a novel technique for measuring an odorous substance having excellent correlation with the evaluation result of the sensory test.
【0008】[0008]
【発明を解決するための手段】 この目的の達成を図る
ため、この出願発明に係る臭気物質の測定方法によれ
ば、臭気物質を捕集材により吸着捕集した後、この捕集
材に吸着された臭気物質を拡散せしめてGC/MS法に
よって測定するに当たり、前述した捕集材をガラスウー
ルとしたことを要旨とする。In order to achieve the object, according to the method for measuring an odorant according to the present invention, after the odorant is adsorbed and collected by the collector, the odorant is adsorbed by the collector. When the odor substance is diffused and measured by the GC / MS method, the gist is that the above-mentioned trapping material is glass wool.
【0009】[0009]
【発明の実施の形態】 以下、この出願発明の好適実施
形態について説明する。上述したように、この出願発明
の測定方法は、GC/MS法に供する臭気物質の捕集材
をガラスウールとしたことにある。ガラスウールとして
は、熱拡散時に不純物となる物質が少ないものを任意好
適に選択することができるが、ガスクロマトグラフィー
のカラム充填剤をカラム内に留置する目的で用いられて
いる市販のものが望ましい。そのうち、特に、ガラス表
面をシラン化処理したものが好ましい。Hereinafter, preferred embodiments of the present invention will be described. As described above, the measuring method of the present invention resides in that a glass wool is used as a trapping material for odor substances to be provided to the GC / MS method. As the glass wool, those having a small amount of substances that become impurities at the time of thermal diffusion can be arbitrarily selected, but commercially available glass wool used for the purpose of placing a column filler for gas chromatography in a column is preferable. . Among them, those obtained by silanizing the glass surface are particularly preferable.
【0010】また、この出願発明の方法は、上述した構
成を採ることによって、官能試験での閾値が低く、しか
も低拡散性である臭気物質に適用して好適である。この
ような臭気物質としては、炭素数が3以上12以下のも
の、特に、係る低炭素数であるアルデヒド類や脂肪酸類
を挙げることができる。その一例を挙げれば、まず、低
炭素数であるアルデヒド類として、ペンタナール(pe
ntanal:炭素数5)、ヘキサナール(hexan
al:炭素数6)、ヘプタナール(heptanal:
炭素数7)、オクタナール(octanal:炭素数
8)、ノナナール(nonanal:炭素数9)、2−
ノネナール(2−nonenal:炭素数9)等が挙げ
られ、また、低炭素数の脂肪酸類として、吉草酸(va
lericacid:炭素数5)、カプロン酸(cap
roic acid:炭素数6)、エナント酸(hep
anoic acid:炭素数7)、カプリル酸(oc
tanoic acid:炭素数8)、ノナン酸(no
nanoic acid:炭素数9)等が挙げられる。Further, the method of the present invention is suitable for application to odorous substances having a low threshold value in a sensory test and low diffusivity by adopting the above-mentioned constitution. Examples of such odorous substances include those having 3 to 12 carbon atoms, particularly aldehydes and fatty acids having such low carbon numbers. As an example, first, as an aldehyde having a low carbon number, pentanal (pe) is used.
ntanal: carbon number 5), hexanal (hexan)
al: carbon number 6), heptanal (heptanal:
Carbon number 7), octanal (octanal: carbon number 8), nonanal (nonanal: carbon number 9), 2-
Nonenal (2-nonenal: carbon number 9) and the like, and valeric acid (va) as a fatty acid having a low carbon number.
lericacid: carbon number 5), caproic acid (cap
roic acid: carbon number 6), enanthic acid (hep
anic acid: carbon number 7), caprylic acid (oc
tanic acid: carbon number 8), nonanoic acid (no
and nanoic acid: carbon number 9).
【0011】[0011]
【実施例】以下、この出願発明の実施例につき説明す
る。この実施例では、所定の脱臭フィルタの上流及び下
流に捕集材を配置し、このフィルタの性能評価を兼ね
て、捕集材の評価を行った場合を説明する。Embodiments of the present invention will be described below. In this embodiment, a case will be described in which a trapping material is arranged upstream and downstream of a predetermined deodorizing filter, and the trapping material is evaluated while also performing the performance of the filter.
【0012】まず、嵩比重0.48g/ml、比表面積
1200m2/g、かつ粒径250〜500μmのヤシ
殻破砕炭を2枚の不織布で挟持固定し、これをプリーツ
加工することによって、幅430mm×高600mm×
奥行30mmの脱臭フィルタを作製した。次いで、この
脱臭フィルタの上流側には、実質的に脱臭能力のない除
塵フィルタが配置されると共に、脱臭フィルタの下流側
に冷却装置と送風ファンとが順次配設された空調装置に
おいて、除塵フィルタの上流側と脱臭フィルタの下流側
との双方に、捕集材を充填したガラス管並びに、このガ
ラス管に接続され、この捕集材に臭気物質を捕集吸着す
るためのポンプを各々設置した。First, crushed coconut shell charcoal having a bulk specific gravity of 0.48 g / ml, a specific surface area of 1200 m 2 / g and a particle size of 250 to 500 μm is sandwiched and fixed between two nonwoven fabrics and pleated to obtain a width. 430mm × 600mm high ×
A deodorizing filter having a depth of 30 mm was produced. Next, a dust filter having substantially no deodorizing ability is disposed upstream of the deodorizing filter, and a cooling device and a blower fan are sequentially arranged downstream of the deodorizing filter. A glass tube filled with a trapping material, and a pump connected to the glass tube and collecting and adsorbing odorous substances on the trapping material were installed on both the upstream side and the downstream side of the deodorizing filter. .
【0013】上述した空調装置と捕集材との配置関係に
おいて、脱臭フィルタの上流並びに下流側に設置された
ガラス管内に捕集材を充填し、空調装置を運転すること
によって試験を行った。尚、この試験は、食品加工工場
に隣接し、前述した油臭等が発生しやすい環境下で行っ
た。この試験では、実施例に係る捕集材として、シラノ
ールによって不活化処理された市販のガラスウール(米
国PERKIN ELMER(パーキンエルマー)社
製,カタログ品番5412−0790)を用いると共
に、比較例の捕集材として、「Tenax GR(テナ
ックス ジー アール)」(米国SUPELCO社製、
商品名:2,6−ジフェニル−p−フェニレンオキサイ
ドとグラファイトカーボンを主成分とする粉状体)を用
いた。この「Tenax GR」は、米国NIOS
H(:National Institute for
Occupational Safety and
Health)によって、臭気物質に対する特異性が比
較的低いとして推奨されている捕集材である。In the above-described arrangement relationship between the air conditioner and the trapping material, a test was conducted by filling the trapping material into glass tubes installed upstream and downstream of the deodorizing filter and operating the air conditioner. Note that this test was performed in an environment adjacent to a food processing factory and in which the above-mentioned oily odor and the like were likely to be generated. In this test, a commercially available glass wool inactivated by silanol (manufactured by Perkin Elmer (US), catalog number 5412-0790), which was inactivated by silanol, was used as the trapping material according to the example, and the trapping material of the comparative example was used. As the material, "Tenax GR" (supplico, USA)
Trade name: powder containing 2,6-diphenyl-p-phenylene oxide and graphite carbon as main components). This "Tenax GR" is a US NIOS
H (: National Institute for
Occupational Safety and
Health), which is recommended as having relatively low specificity for odorants.
【0014】上記各々の捕集材を並列する別個のガラス
管に充填することによって同時に適用し、空調装置の運
転は(1.6m/秒)の面風速で実施し、これに並行し
て臭気物質を含む雰囲気をガラス管内に導入することに
よって、臭気物質を捕集吸着させた。この際の捕集材へ
の臭気物質の導入は、実施例では0.9(リットル/
分)の割合で30分間に渡って総捕集量27(リット
ル)とし、比較例では0.5(リットル/分)の割合で
総捕集量15(リットル)とした。The above-mentioned respective trapping materials are simultaneously applied by filling them in separate glass tubes arranged in parallel, and the operation of the air conditioner is performed at a surface wind speed of (1.6 m / sec), and in parallel with this, the odor is reduced. An odorous substance was collected and adsorbed by introducing an atmosphere containing the substance into the glass tube. In this case, the introduction of the odorant into the collecting material is 0.9 (liter / liter) in the embodiment.
Min) at a rate of 30 (liters) over a period of 30 minutes, and in the comparative example, at a rate of 0.5 (liters / minute), the total trapped quantity was 15 (liters).
【0015】このような各捕集材への吸着捕集を終えた
後、夫々の捕集材に吸着された臭気物質をGC/MS法
によって、以下の機器並びに主な条件にて測定を行っ
た。 ・機器 GC/MS測定器:QP−5050A((株)島津製作
所製) カラム:DB−5MS(米国J&W Scientif
ic社製;カラム寸法は、長さ30cm×内径0.32
mm、コーティング厚さ1μm) 加熱脱着装置:ATD−400(米国PERKIN E
LMER社製) ・測定条件 オーブン温度:40℃(2分)〜300℃(昇温速度1
0℃/分) インジェクション温度:200℃ 検出器温度:250℃ イオン化法:E1(電子衝撃)法 一次加熱脱着条件:5分、250℃ 二次吸着温度(COLD TRAP):−30℃ 二次加熱脱着条件:20分、280℃[0015] After the completion of the adsorption and collection on the respective collecting materials, the odorous substances adsorbed on the respective collecting materials are measured by GC / MS under the following instruments and under the main conditions. Was. -Instrument GC / MS measuring instrument: QP-5050A (manufactured by Shimadzu Corporation) Column: DB-5MS (J & W Scientif, USA)
ic; column dimensions are 30 cm long x 0.32 inside diameter
mm, coating thickness 1 μm) Thermal desorption device: ATD-400 (PERKINE, USA)
Measurement conditions Oven temperature: 40 ° C. (2 minutes) to 300 ° C. (heating rate 1)
(0 ° C / min) Injection temperature: 200 ° C Detector temperature: 250 ° C Ionization method: E1 (electron impact) method Primary heating desorption conditions: 5 minutes, 250 ° C Secondary adsorption temperature (COLD TRAP): -30 ° C Secondary heating Desorption conditions: 20 minutes, 280 ° C
【0016】このGC/MS法により得られた測定チャ
ートと各臭気物質の帰属とについて、実施例に係る捕集
材の脱臭フィルタ上流側での結果を図1、実施例の脱臭
フィルタ下流側での結果を図2、比較例に係る捕集材の
脱臭フィルタ上流側での結果を図3、比較例の脱臭フィ
ルタ下流側での結果を図4に、夫々、示す。これらの図
は、縦軸に臭気物質の量を質量分析器から出力される相
対強度(無名数)で採り、横軸には保持時間(分)を採
って示してある。With respect to the measurement chart obtained by the GC / MS method and the attribution of each odorous substance, the result on the upstream side of the deodorizing filter of the collecting material according to the embodiment is shown in FIG. FIG. 2 shows the results of FIG. 2, the results of the trapping material according to the comparative example on the upstream side of the deodorizing filter, and the results of the comparative example on the downstream side of the deodorizing filter in FIG. 4, respectively. In these figures, the vertical axis indicates the amount of the odorous substance as a relative intensity (anonymous number) output from the mass spectrometer, and the horizontal axis indicates the retention time (minute).
【0017】実施例 まず、実施例の捕集材を脱臭フィルタ上流側に配した場
合には、図1中に示すように、低炭素数の脂肪酸類とし
て、Aで示す吉草酸、Bで示すカプロン酸、Cで示すエ
ナント酸、Dで示すカプリル酸、Eで示すノナン酸が認
められた。また、当該捕集材から検出された低炭素数の
アルデヒド類として、Fで示すペンタナール、Gで示す
ヘキサナール、Hで示すヘプタナール、Iで示すオクタ
ナール、Jで示すノナナール、Kで示す2−ノネナール
が認められた。First, when the trapping material of the embodiment is arranged on the upstream side of the deodorizing filter, as shown in FIG. 1, valeric acid represented by A and B represented by fatty acids having a low carbon number. Caproic acid, enanthic acid indicated by C, caprylic acid indicated by D, and nonanoic acid indicated by E were observed. Further, as low-carbon number aldehydes detected from the trapping material, pentanal denoted by F, hexanal denoted by G, heptanal denoted by H, octanal denoted by I, nonanal denoted by J, and 2-nonenal denoted by K were Admitted.
【0018】一方、脱臭フィルタを通過した後の実施例
に係る捕集材をGC/MS法によって測定した結果は図
2に示す通りであるが、脱臭フィルタ通過前とを比較す
れば、Kで示す2−ノネナールが最も顕著な減少を示
し、以下Hで示すヘプタナール、Bで示すカプロン酸、
Cで示すエナント酸、Jで示すノナナール、Dで示すカ
プリル酸、Eで示すノナン酸等の減少も認められた。こ
の結果から、実施例に係る捕集材による測定結果では、
脱臭フィルタによって上記一連の低炭素数のアルデヒド
類及び/又は脂肪酸類が脱臭除去されたとの評価が得ら
れた。On the other hand, the results of measurement of the trapping material according to the example after passing through the deodorizing filter by the GC / MS method are as shown in FIG. 2-Nonenal shown shows the most significant reduction, heptanal indicated by H, caproic acid indicated by B,
Reductions of enanthic acid indicated by C, nonanal indicated by J, caprylic acid indicated by D, nonanoic acid indicated by E, and the like were also observed. From this result, in the measurement result by the trapping material according to the example,
It was evaluated that the above series of low carbon number aldehydes and / or fatty acids were deodorized and removed by the deodorizing filter.
【0019】上記実施例の捕集材の結果を基に、最も脱
臭除去による量的変化の大きな市販の2−ノネナールを
被験者に嗅がせて臭気を確認したところ、空調装置に導
入される前の臭気と一致していることが確認された。Based on the results of the trapping material of the above embodiment, the test subject was allowed to smell the commercially available 2-nonenal with the largest quantitative change due to deodorization and to confirm the odor. It was confirmed that it was consistent with the odor.
【0020】次に、上記脱臭フィルタによる脱臭効果を
官能試験により評価した結果を説明する。官能試験とし
て一般的な「3点比較式臭袋法」及び「六段階臭気強度
表示法」の2法により評価した。これら何れの方法にお
いても、脱臭フィルタ通過前と通過後との臭気の強さは
低減されていると判定され、特に「3点比較式臭袋法」
による濃度判定では、上記脱臭フィルタによって臭気物
質が10分の1以下になったとの結果が得られた。従っ
て、実施例に係る捕集材を用いたGC/MS法による臭
気測定法と官能試験との高い相関性が確認された。Next, the results of evaluating the deodorizing effect of the above deodorizing filter by a sensory test will be described. The sensory test was evaluated by two general methods: a "three-point comparative odor bag method" and a "six-step odor intensity display method". In any of these methods, it is determined that the odor intensity before and after passing through the deodorizing filter is reduced, and in particular, the “three-point comparison odor bag method”
In the determination of the concentration by the above method, a result was obtained that the odorous substance was reduced to 1/10 or less by the deodorizing filter. Therefore, a high correlation between the odor measurement method by the GC / MS method using the trapping material according to the example and the sensory test was confirmed.
【0021】比較例 次いで、比較例に係る捕集材を用いた場合のGC/MS
法の測定結果について説明する。まず、図3に示す脱臭
フィルタ上流側での臭気物質の検出結果では、Lで示す
炭素数6のアルカン(特定物質に帰属せず)、Mで示す
ベンゼン、Nで示す炭素数7のアルカン(特定物質に帰
属せず)、Pで示す炭素数8のアルカン(特定物質に帰
属せず)、Qで示すトルエン、Rで示すヘキサメチルシ
クロトリシロキサン、Sで示すオクタメチルシクロテト
ラシロキサン等が認められた。これに対して、脱臭フィ
ルタ下流側に配置した捕集材からは、図4に示すよう
に、Lで示す炭素数6のアルカン(特定物質に帰属せ
ず)、Mで示すベンゼン、Nで示す炭素数7のアルカン
(特定物質に帰属せず)、Pで示す炭素数8のアルカン
(特定物質に帰属せず)、Qで示すトルエンが認められ
た。これら比較例の捕集材を用いた測定では、例えばL
で示す炭素数6のアルカンなどのアルカン類、Mで示す
ベンゼン、Qで示すトルエンなどが、脱臭フィルタの上
流側と下流側との間で増加したとの結果が得られた。し
かしながら、先の官能試験結果にも述べたように、脱臭
フィルタの脱臭性能は比較的優れたものと判定されてい
たことから、このような比較例の捕集材を用いたGC/
MS法と官能試験との各々の結果が整合しないことが理
解できる。Comparative Example Next, GC / MS using the trapping material according to the comparative example
The measurement results of the method will be described. First, in the detection results of the odorous substances on the upstream side of the deodorizing filter shown in FIG. 3, alkanes having 6 carbon atoms (not belonging to a specific substance) represented by L, benzene represented by M, and alkanes having 7 carbon atoms represented by N ( (Not belonging to a specific substance), an alkane having 8 carbon atoms represented by P (not belonging to the specific substance), toluene represented by Q, hexamethylcyclotrisiloxane represented by R, octamethylcyclotetrasiloxane represented by S, etc. Was done. On the other hand, as shown in FIG. 4, an alkane having 6 carbon atoms (not belonging to a specific substance) represented by L, benzene represented by M, and N represented by a trapping material disposed downstream of the deodorizing filter. Alkanes having 7 carbon atoms (not belonging to a specific substance), alkanes having 8 carbon atoms (not belonging to a specific substance) represented by P, and toluene represented by Q were observed. In the measurement using the trapping materials of these comparative examples, for example, L
As a result, it was obtained that alkanes such as alkanes having 6 carbon atoms indicated by, benzene indicated by M, toluene indicated by Q increased between the upstream side and the downstream side of the deodorizing filter. However, as described in the above sensory test results, the deodorizing performance of the deodorizing filter was determined to be relatively excellent.
It can be understood that the results of each of the MS method and the sensory test are not consistent.
【0022】以上、脱臭フィルタの性能評価を参照し
て、2つの捕集材を用いた実施例について説明したが、
上述の説明からも理解できるように、図1及び図3の比
較から、この出願発明の実施例に係る捕集材を用いるこ
とにより、官能試験評価と高い相関性が得られた。尚、
この出願発明は例えば油臭などの主成分とされている低
炭素数のアルデヒド類及び/又は脂肪酸類だけではな
く、これまで低拡散性であるために評価することが難し
かった種々の臭気物質に応用することが可能である。The embodiment using two trapping materials has been described above with reference to the performance evaluation of the deodorizing filter.
As can be understood from the above description, from the comparison between FIG. 1 and FIG. 3, a high correlation was obtained with the sensory test evaluation by using the collecting material according to the example of the present invention. still,
The invention of the present application is applicable not only to aldehydes and / or fatty acids having a low carbon number, which is a main component such as oily odor, but also to various odor substances which have been difficult to evaluate because of their low diffusivity. It is possible to apply.
【0023】[0023]
【発明の効果】 以上の説明からも明らかなように、こ
の出願発明に係る臭気物質の測定方法によれば、臭気物
質を捕集材により吸着捕集した後、この捕集材に吸着さ
れた臭気物質を拡散せしめてGC/MS法によって測定
するに当たり、捕集材をガラスウールで行う構成として
いる。このような構成とすることにより、官能試験との
相関性に優れた臭気物質の測定が可能となった。As is clear from the above description, according to the method for measuring an odorant according to the present invention, after the odorant is adsorbed and collected by the collector, the odorant is absorbed by the collector. When the odorant is diffused and measured by the GC / MS method, the trapping material is made of glass wool. With such a configuration, it is possible to measure an odorous substance having excellent correlation with a sensory test.
【図1】 この出願発明の実施例を説明するため、脱臭
フィルタ上流側の捕集材から検出された臭気物質の測定
結果を示す特性曲線図。FIG. 1 is a characteristic curve diagram showing a measurement result of an odorous substance detected from a trapping material on an upstream side of a deodorizing filter in order to explain an embodiment of the present invention.
【図2】 この出願発明の実施例を説明するため、脱臭
フィルタ下流側の捕集材から検出された臭気物質の測定
結果を示す特性曲線図。FIG. 2 is a characteristic curve diagram showing measurement results of odorous substances detected from a trapping material downstream of a deodorizing filter in order to explain an embodiment of the present invention.
【図3】 比較例を説明するため、脱臭フィルタ上流側
の捕集材から検出された臭気物質の測定結果を示す特性
曲線図。FIG. 3 is a characteristic curve diagram showing a measurement result of an odorous substance detected from a trapping material on an upstream side of a deodorizing filter for explaining a comparative example.
【図4】 比較例を説明するため、脱臭フィルタ下流側
の捕集材から検出された臭気物質の測定結果を示す特性
曲線図。FIG. 4 is a characteristic curve diagram showing a measurement result of an odorous substance detected from a trapping material on a downstream side of a deodorizing filter for explaining a comparative example.
A 吉草酸のピーク B カプロン酸のピーク C エナント酸のピーク D カプリル酸のピーク E ノナン酸のピーク F ペンタナールのピーク G ヘキサナールのピーク H ヘプタナールのピーク I オクタナールのピーク J ノナナールのピーク K 2−ノネナールのピーク L アルカン(炭素数6)のピーク M ベンゼンのピーク N アルカン(炭素数7)のピーク P アルカン(炭素数8)のピーク Q トルエンのピーク R ヘキサメチルシクロトリシロキサンのピーク S オクタメチルシクロテトラシロキサンのピーク A Peak of valeric acid B Peak of caproic acid C Peak of enanthic acid D Peak of caprylic acid E Peak of nonanoic acid F Peak of pentanal G Peak of hexanal H Peak of heptanal I Peak of octanal J Peak of nonanal K Peak of 2-nonanal Peak L Alkane (carbon number 6) peak M Benzene peak N Alkane (carbon number 7) peak P Alkane (carbon number 8) peak Q Toluene peak R Hexamethylcyclotrisiloxane peak S Octamethylcyclotetrasiloxane Peak of
───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 泰子 茨城県猿島郡総和町大字北利根7番地 日 本バイリーン株式会社内 (72)発明者 五十嵐 智昭 茨城県猿島郡総和町大字北利根7番地 日 本バイリーン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuko Seki 7-floor Kitatone, Sowa-cho, Sarushima-gun, Ibaraki Prefecture Within Japan Vilene Co., Ltd. This Vilene Co., Ltd.
Claims (3)
後、捕集材に吸着された臭気物質を拡散せしめてGC/
MS法によって測定するに測定方法において、捕集材が
ガラスウールであることを特徴とする臭気物質の測定方
法。After the odorous substance is adsorbed and collected by a collecting material, the odorous substance adsorbed on the collecting material is diffused to obtain a GC / GC.
A method for measuring an odorous substance, wherein the collecting material is glass wool, which is measured by the MS method.
であることを特徴とする請求項1に記載の臭気物質の測
定方法。2. The method according to claim 1, wherein the glass wool has been subjected to a silanization treatment.
類及び/又は脂肪酸類であることを特徴とする請求項1
または請求項2に記載の臭気物質の測定方法。3. The odorant according to claim 1, wherein the odorant is an aldehyde and / or a fatty acid having 3 to 12 carbon atoms.
Alternatively, the method for measuring an odorant according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11183154A JP2001013119A (en) | 1999-06-29 | 1999-06-29 | Measurement of odor material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11183154A JP2001013119A (en) | 1999-06-29 | 1999-06-29 | Measurement of odor material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001013119A true JP2001013119A (en) | 2001-01-19 |
Family
ID=16130754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11183154A Pending JP2001013119A (en) | 1999-06-29 | 1999-06-29 | Measurement of odor material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001013119A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075418A (en) * | 2001-09-06 | 2003-03-12 | Japan Synthetic Textile Inspection Inst Foundation | Measuring method for deodorizing effect of deodorant |
KR101497504B1 (en) * | 2013-05-23 | 2015-03-02 | 주식회사 태성환경연구소 | Identification of odor-causing components occurred from odor sources |
CN106769243A (en) * | 2016-12-19 | 2017-05-31 | 广电计量检测(成都)有限公司 | A kind of amine sampling pipe and preparation method thereof and its application method |
US12050211B2 (en) | 2019-05-17 | 2024-07-30 | Lg Chem, Ltd. | Device and method for quantitative evaluation of deodorant performance |
-
1999
- 1999-06-29 JP JP11183154A patent/JP2001013119A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003075418A (en) * | 2001-09-06 | 2003-03-12 | Japan Synthetic Textile Inspection Inst Foundation | Measuring method for deodorizing effect of deodorant |
JP4712249B2 (en) * | 2001-09-06 | 2011-06-29 | 財団法人日本化学繊維検査協会 | Deodorant effect measurement method |
KR101497504B1 (en) * | 2013-05-23 | 2015-03-02 | 주식회사 태성환경연구소 | Identification of odor-causing components occurred from odor sources |
CN106769243A (en) * | 2016-12-19 | 2017-05-31 | 广电计量检测(成都)有限公司 | A kind of amine sampling pipe and preparation method thereof and its application method |
US12050211B2 (en) | 2019-05-17 | 2024-07-30 | Lg Chem, Ltd. | Device and method for quantitative evaluation of deodorant performance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ueta et al. | Determination of volatile organic compounds for a systematic evaluation of third-hand smoking | |
Schiffman et al. | Quantification of odors and odorants from swine operations in North Carolina | |
Knibbs et al. | Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria | |
Woolfenden | Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods | |
Barro et al. | Analysis of industrial contaminants in indoor air: Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls | |
Shaughnessy et al. | Effectiveness of portable indoor air cleaners: sensory testing results | |
CN106338568A (en) | Method for detecting odor substances of automobile and automobile interior decoration | |
CN207147789U (en) | A kind of vehicle environmental simulation test cabin device | |
Knudsen et al. | Sensory evaluation of emissions from selected building products exposed to ozone. | |
Tang et al. | Chemical changes in thirdhand smoke associated with remediation using an ozone generator | |
Poppendieck et al. | Measuring airborne emissions from cigarette butts: literature review and experimental plan | |
Jin et al. | Polybrominated diphenyl ethers from automobile microenvironment: Occurrence, sources, and exposure assessment | |
Schütze et al. | Indoor air quality monitoring | |
JP2001013119A (en) | Measurement of odor material | |
Brodzik et al. | Impact of multisource VOC emission on in-vehicle air quality: test chamber simulation | |
Parker et al. | Background odors in Tedlar® bags used for CAFO odor sampling | |
Crump | Strategies and protocols for indoor air monitoring of pollutants | |
JP4712249B2 (en) | Deodorant effect measurement method | |
JP2015072174A (en) | Sample gas measurement instrument and sample gas measurement method | |
JP2714595B2 (en) | Smell evaluation method | |
Idris et al. | Development of volatile organic compounds (VOC) removal filter for transport air-conditioner and VOC removal test | |
Brewer et al. | Overview of odor measurement techniques | |
Kerka et al. | An evaluation of environmental odors | |
Hashemi et al. | Development of a needle trap device packed with modified PAF-6-MNPs for sampling and analysis of polycyclic aromatic compounds in air | |
JP2002162323A (en) | Method and apparatus for analyzing dioxin |