JP2001011631A - Formation of metallic film - Google Patents

Formation of metallic film

Info

Publication number
JP2001011631A
JP2001011631A JP11183563A JP18356399A JP2001011631A JP 2001011631 A JP2001011631 A JP 2001011631A JP 11183563 A JP11183563 A JP 11183563A JP 18356399 A JP18356399 A JP 18356399A JP 2001011631 A JP2001011631 A JP 2001011631A
Authority
JP
Japan
Prior art keywords
precursor
reaction vessel
metal film
organometallic
precursors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11183563A
Other languages
Japanese (ja)
Other versions
JP4315403B2 (en
Inventor
Kenzo Nagano
賢三 長野
Satoshi Nakamura
中村  聡
Takashi Komatsu
孝 小松
Yasushi Higuchi
靖 樋口
Yasuhiro Taguma
康宏 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP18356399A priority Critical patent/JP4315403B2/en
Publication of JP2001011631A publication Critical patent/JP2001011631A/en
Application granted granted Critical
Publication of JP4315403B2 publication Critical patent/JP4315403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a metallic film having low resistivity in a low temp. process by an MOCVD method. SOLUTION: As to this method for forming a metallic film, a wafer provided in a reaction vessel is heated to a prescribed temp., gaseous Ta-contg. organometallic precursory bodies, gaseous ammonia and carrier gas are introduced into the reaction vessel, and the organometallic precursory bodies and ammonia are brought into reaction with each other under prescribed pressure at prescribed temp. to form a film composed of TaNx [(x) is 0.3 to 1.5]. In this case, as the Ta-contg. organometallic precursory bodies, plural precursory bodies composed of a precursory body including a double bond of Ta=N selected from the formulae: RN=Ta(N(R')2)3 and Ta[(N(R")2)]n [R, R' and R" are respectively 1 to 6C alkyl groups, they may be the same or different, and (n) is 4 to 5] and a precursory body which does not include the double bond are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属膜の形成方法
に関し、特に半導体デバイスの配線工程において配線材
料を埋込む際、配線材料と下地層及び絶縁層との反応を
防ぐためのバリア層として用いる金属膜の形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal film, and more particularly, to a method for forming a barrier layer for preventing a reaction between a wiring material and an underlayer and an insulating layer when the wiring material is embedded in a wiring step of a semiconductor device. The present invention relates to a method for forming a metal film to be used.

【0002】[0002]

【従来の技術】TaNxバリア層形成方法の1つとし
て、配線孔埋込み特性の良い有機金属化学蒸着法(MO
CVD法)がある。このMOCVD法によるバリア層形
成において、バリア層膜質、特に、その抵抗率の低減、
バリア性向上、膜中不純物の低減が重要であり、そのた
めに種々の技術の開発が行われている。
2. Description of the Related Art As one method of forming a TaNx barrier layer, a metal organic chemical vapor deposition (MO) method having a good wiring hole filling property is used.
CVD method). In the formation of the barrier layer by the MOCVD method, the quality of the barrier layer film, in particular, the reduction of its resistivity,
It is important to improve the barrier properties and reduce impurities in the film, and for that purpose, various techniques have been developed.

【0003】[0003]

【発明が解決しようとする課題】従来のMOCVD技術
では、低抵抗率(約1000μΩ・cm)のTaNx膜
を形成するためには、600℃程度という高い成膜温度
を必要としたが、半導体デバイス作製のための後工程上
からは、低温プロセスにより低抵抗率のTaNx膜を形
成することが望まれている。
In the conventional MOCVD technique, a high film forming temperature of about 600 ° C. was required to form a TaNx film having a low resistivity (about 1000 μΩ · cm). From a post-process for manufacturing, it is desired to form a TaNx film having a low resistivity by a low-temperature process.

【0004】本発明は、上記のような従来のバリア層の
もつ問題点を解決するもので、MOCVD法によって、
低温プロセスで低抵抗率を有する金属膜を形成する方法
を提供することを課題とする。
The present invention solves the above-mentioned problems of the conventional barrier layer.
It is an object to provide a method for forming a metal film having a low resistivity by a low-temperature process.

【0005】[0005]

【課題を解決するための手段】本発明者らは、バリア層
の抵抗率の低減に重要であるTaNx膜の化学量論比
(x)を最適化することによって、そしてそのために複数
の特定のTa含有有機金属前駆体を用いることによっ
て、低温プロセスで抵抗率の低減を実現することができ
る金属膜を形成できることを見出し、本発明を完成させ
るに至った。
Means for Solving the Problems The present inventors have studied the stoichiometric ratio of a TaNx film which is important for reducing the resistivity of a barrier layer.
It has been found that by optimizing (x), and by using a plurality of specific Ta-containing organometallic precursors therefor, it is possible to form a metal film capable of realizing a reduction in resistivity in a low-temperature process. The invention has been completed.

【0006】本発明のバリア層としての金属膜の形成方
法は、真空反応槽である反応容器中に設けたウエハーを
所定の温度に加熱し、ガス状のTa含有有機金属前駆
体、アンモニアガス及びキャリアガスを反応容器中に導
入して、所定の圧力及び温度で、該有機金属前駆体とア
ンモニアとを反応させ、TaNx(但し、式中、xは
0.3〜1.5である。)からなる膜を該ウエハー上に
形成させる金属膜の形成方法であって、該Ta含有有機
金属前駆体として、TaとNとの二重結合(Ta=N)を
含む前駆体と該二重結合を含まない前駆体とからなる複
数の前駆体を用いるものである。得られるTaNx膜の
TaとNとの組成比(x)は、使用するこれら複数の前駆
体の割合(混合比率)を変えることにより制御すること
ができる。
In the method of forming a metal film as a barrier layer according to the present invention, a wafer provided in a reaction vessel, which is a vacuum reaction vessel, is heated to a predetermined temperature, and a gaseous Ta-containing organometallic precursor, ammonia gas and A carrier gas is introduced into the reaction vessel, and the organometallic precursor is reacted with ammonia at a predetermined pressure and temperature, and TaNx (where x is 0.3 to 1.5). A metal film formed on the wafer, comprising: a precursor containing a double bond of Ta and N (Ta = N) as the Ta-containing organometallic precursor; And a plurality of precursors containing no precursor. The composition ratio (x) between Ta and N of the obtained TaNx film can be controlled by changing the ratio (mixing ratio) of these plural precursors to be used.

【0007】前記有機金属前駆体として、次式: RN=Ta[N(R')2]3及びTa[N(R'')2]n (但し、式中、R、R'、及びR''はそれぞれC1〜C6
アルキル基であって、お互いに同じであっても異なって
いてもよく、またnは4又は5である。)から選ばれる
Ta=Nを含む前駆体と該Ta=Nを含まない前駆体と
からなる複数の前駆体を使用する。これらの有機金属前
駆体としては、上式中、R、R'、及びR''がそれぞれ
メチル基、エチル基、プロピル基、ブチル基、ペンチル
基、ヘキシル基、又はそれらの異性体から選ばれ、R、
R'、及びR''はお互いに同じであっても異なっていて
もよく、またnが4又は5である前駆体を挙げることが
できる。例えば、C25N=Ta[N(C25)2]3(薄黄
色液体、沸点120℃/0.1Torr)、(CH3)3
N=Ta[N(C25)2]3、Ta[N(C25)2]4(薄黄色
液体、沸点120℃/0.1Torr)、Ta[N(CH
3)2]5(固体、沸点80℃/0.1Torr)、Ta[N
(C25)2]5等の前駆体を用いることが好ましい。これ
らの複数の有機金属前駆体の反応容器中への導入方法に
は特に制限はなく、所望により、該複数の前駆体を予め
混合した混合物として、又は該複数の前駆体をそれぞれ
個別に、又は該複数の前駆体の一部を予め混合した混合
物としてかつ残りの前駆体を個別に、反応容器中に導入
してもよい。該複数の前駆体をそれぞれ個別に反応容器
中に導入する場合には、その流量比率を適宜変えること
によりTaNxのxを変動させることができる。
As the organometallic precursor, the following formula: RN = Ta [N (R ′) 2 ] 3 and Ta [N (R ″) 2 ] n (where R, R ′ and R '' Indicates C 1 to C 6, respectively.
Alkyl groups, which may be the same or different, and n is 4 or 5. )), And a plurality of precursors comprising a precursor containing Ta = N and a precursor not containing Ta = N are used. In the above formula, R, R ′, and R ″ are each selected from a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or an isomer thereof. , R,
R ′ and R ″ may be the same or different from each other, and include precursors wherein n is 4 or 5. For example, C 2 H 5 N = Ta [N (C 2 H 5 ) 2 ] 3 (light yellow liquid, boiling point: 120 ° C./0.1 Torr), (CH 3 ) 3 C
N = Ta [N (C 2 H 5 ) 2 ] 3 , Ta [N (C 2 H 5 ) 2 ] 4 (light yellow liquid, boiling point 120 ° C./0.1 Torr), Ta [N (CH
3 ) 2 ] 5 (solid, boiling point 80 ° C./0.1 Torr), Ta [N
It is preferable to use a precursor such as (C 2 H 5 ) 2 ] 5 . The method of introducing the plurality of organometallic precursors into the reaction vessel is not particularly limited, and, if desired, as a mixture in which the plurality of precursors are premixed, or each of the plurality of precursors individually, or A part of the plurality of precursors may be introduced as a premixed mixture, and the remaining precursors may be individually introduced into the reaction vessel. When the plurality of precursors are individually introduced into the reaction vessel, x of TaNx can be varied by appropriately changing the flow rate ratio.

【0008】TaとNとの組成比を所望の範囲に制御す
るには、例えば、上式:RN=Ta[N(R')2]3の前駆
体と上式:Ta[N(R'')2]nの前駆体とを1:1の割合
(体積比)で反応容器中に導入すれば、x=0.6〜
0.8のTaNx膜を得ることができる。かくして得ら
れた膜の抵抗率は2000〜3000μΩ・cmとな
り、バリア層として充分実用に耐える膜が得られる。
To control the composition ratio of Ta and N to a desired range, for example, a precursor of the above formula: RN = Ta [N (R ') 2 ] 3 and a precursor of the above formula: Ta [N (R') ') 2 ] If n and n precursors are introduced into the reaction vessel at a ratio of 1: 1 (volume ratio), x = 0.6 to
A TaNx film of 0.8 can be obtained. The film thus obtained has a resistivity of 2000 to 3000 [mu] [Omega] .cm, and a film which can sufficiently withstand practical use as a barrier layer is obtained.

【0009】複数の有機金属前駆体とアンモニアとの反
応は、温度350〜450℃、圧力60〜300Paの
条件で行うことが好ましい。また、有機金属前駆体とア
ンモニアガスとの反応容器への導入方法には特に制限は
なく、ノズルを通して行っても、また、いわゆる分離型
シャワープレートを通して行ってもよい。また、有機金
属前駆体を、バブリング法で反応容器に導入してもよ
い。
The reaction between the plurality of organometallic precursors and ammonia is preferably carried out at a temperature of 350 to 450 ° C. and a pressure of 60 to 300 Pa. The method of introducing the organometallic precursor and ammonia gas into the reaction vessel is not particularly limited, and may be performed through a nozzle or through a so-called separate shower plate. Further, the organometallic precursor may be introduced into the reaction vessel by a bubbling method.

【0010】また、本発明において金属膜を形成するた
めに使用する装置としては、例えば、ウエハー加熱用の
ホットプレートを備えた既知の熱CVD装置を挙げるこ
とができる。
Further, as an apparatus used for forming a metal film in the present invention, for example, a known thermal CVD apparatus having a hot plate for heating a wafer can be mentioned.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。バリア層である金属膜を形成するために用いる熱
CVD装置の構成の側面図を模式的に図1に示す。ま
た、得られた金属膜を説明するために、半導体デバイス
の配線孔にTaNx層を形成した基板の断面図を模式的
に図2に示す。 (実施例1)図1に示すような静電チャック付ホットプ
レートを備えた反応容器(真空反応槽)1を持った既知
の枚葉式熱CVD装置を用い、以下のようにして基板上
にバリア層としての金属膜を形成した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a side view of a configuration of a thermal CVD apparatus used for forming a metal film serving as a barrier layer. Further, in order to explain the obtained metal film, a cross-sectional view of a substrate in which a TaNx layer is formed in a wiring hole of a semiconductor device is schematically shown in FIG. Example 1 A known single-wafer thermal CVD apparatus having a reaction vessel (vacuum reaction tank) 1 having a hot plate with an electrostatic chuck as shown in FIG. A metal film was formed as a barrier layer.

【0012】原料容器2内には、有機金属前駆体とし
て、C25N=Ta[N(C25)2]3とTa[N(C
25)2]4とが4:1の割合(体積比)で混合された有機
金属前駆体混合物が入っている。これらの有機金属前駆
体はそれぞれ、薄黄色液体であり、沸点120℃/0.
1Torrを有する化合物である。原料容器2内の有機
金属前駆体混合物を、加圧ガスa(He)により、液体マ
スフローコントローラー3を経て気化器4に導き、そこ
で150℃の温度に予備加熱し、次いで予備加熱された
前駆体混合物を気化器4内でキャリアガスb(N2)の1
000SCCMと混合した後、反応容器1内にノズルを
通して導入した。このキャリアーガスbは、マスフロー
コントローラー5を経て予熱器6内に導入され、ここで
150℃に予備加熱されたものであり、また、気化器4
と反応容器1との間の経路はヒーターH等により保温・
加熱できるようになっている。一方、アンモニアガスc
の700SCCMを、マスフローコントローラー7を経
て反応容器1に別のノズルを通して導入した。静電チャ
ック付ホットプレート8上に載置された基板9を400
℃に加熱し、また反応容器1内の圧力を66.5Paに
1分間保持して、前駆体混合物とアンモニアとを反応さ
せ、TaN0.8の組成を有する50オングストロームの
金属膜を形成した。ホットプレート8上に載置された基
板9は、図2に示すように、Si基板9'(又は下層配
線層)上に、予め、絶縁層10、Ti層11が順次形成
されたものであり、反応容器1内での反応により、この
基板9のTi層11上にバリア層としてTaN0.8膜1
2(抵抗率:約3000μΩ・cm)が形成された。こ
の金属膜の組成は、オージェ電子分光法(AES)に基
づいて同定された。
In the raw material container 2, C 2 H 5 N = Ta [N (C 2 H 5 ) 2 ] 3 and Ta [N (C
2 H 5 ) 2 ] 4 in a ratio of 4: 1 (volume ratio). Each of these organometallic precursors is a pale yellow liquid with a boiling point of 120 ° C./0.1.
It is a compound having 1 Torr. The organometallic precursor mixture in the raw material container 2 is led by the pressurized gas a (He) through the liquid mass flow controller 3 to the vaporizer 4 where it is preheated to a temperature of 150 ° C. and then the preheated precursor The mixture is mixed in a vaporizer 4 with one of the carrier gas b (N 2 ).
After mixing with 000 SCCM, the mixture was introduced into the reaction vessel 1 through a nozzle. The carrier gas b is introduced into the preheater 6 via the mass flow controller 5 and is preheated to 150 ° C. here.
The path between the reactor and the reaction vessel 1 is kept warm by heater H etc.
It can be heated. On the other hand, ammonia gas c
Was introduced into the reaction vessel 1 through the mass flow controller 7 through another nozzle. The substrate 9 placed on the hot plate 8 with an electrostatic chuck is
C., and the pressure in the reaction vessel 1 was maintained at 66.5 Pa for 1 minute to react the precursor mixture with ammonia to form a 50 Å metal film having a TaN 0.8 composition. As shown in FIG. 2, the substrate 9 placed on the hot plate 8 is one in which an insulating layer 10 and a Ti layer 11 are sequentially formed in advance on a Si substrate 9 ′ (or a lower wiring layer). A TaN 0.8 film 1 is formed as a barrier layer on the Ti layer 11 of the substrate 9 by a reaction in the reaction vessel 1.
2 (resistivity: about 3000 μΩ · cm) was formed. The composition of this metal film was identified based on Auger electron spectroscopy (AES).

【0013】得られた金属膜について、有機金属前駆体
25N=Ta[N(C25)2]3とTa[N(C25)2]4
の混合比率、すなわち(C25N=Ta[N(C25)2]3)
/(C 25N=Ta[N(C25)2]3 +Ta[N(C
25)2]4)の比(体積比)を種々変えて(混合比0〜
1.0)、この混合比に対するTaNx膜のxの値と抵
抗率(μΩ・cm)との関係を測定し、その結果を図3
に示す。図3から明らかなように、混合比0.2〜0.
8、すなわちx=0.7〜0.9の場合に、抵抗率は2
000〜4000μΩ・cmと低い値を示した。
The obtained metal film is made of an organometallic precursor.
CTwoHFiveN = Ta [N (CTwoHFive)Two]ThreeAnd Ta [N (CTwoHFive)Two]FourWhen
, Ie, (CTwoHFiveN = Ta [N (CTwoHFive)Two]Three)
/ (C TwoHFiveN = Ta [N (CTwoHFive)Two]Three+ Ta [N (C
TwoHFive)Two]Four)) (Volume ratio) (mixing ratio 0 to 0)
1.0), the value of x of the TaNx film for this mixture ratio and the resistance
The relationship with the resistivity (μΩ · cm) was measured, and the results were shown in FIG.
Shown in As is clear from FIG.
8, that is, when x = 0.7 to 0.9, the resistivity is 2
The value was as low as 000 to 4000 μΩ · cm.

【0014】なお、前記2種類の有機金属前駆体を、別
々の導入系を用いてそれぞれ個別に反応容器内に導入し
た場合も、同様な金属膜が得られた。
A similar metal film was obtained when the two kinds of organometallic precursors were separately introduced into the reaction vessel using different introduction systems.

【0015】[0015]

【発明の効果】本発明によれば、熱CVD法により、T
a=Nの二重結合を有するTa含有有機金属前駆体とこ
の二重結合を有しないTa含有有機金属前駆体とからな
る複数の前駆体をアンモニアと反応させて、バリア層と
してのTaNx膜を形成するので、それぞれの前駆体と
アンモニアとの反応性が異なることから、それぞれ異な
る化学量論比のTaNx膜を形成することができる。従
って、使用する複数の前駆体の割合を変えることによ
り、TaNxのxを変えることができ、得られたTaN
x膜の比抵抗の低減が可能となった。
As described above, according to the present invention, T
By reacting a plurality of precursors comprising a Ta-containing organometallic precursor having an a = N double bond and a Ta-containing organometallic precursor having no double bond with ammonia, a TaNx film as a barrier layer is formed. Since the precursors are formed, the reactivities of the respective precursors and ammonia are different, so that TaNx films having different stoichiometric ratios can be formed. Therefore, by changing the ratio of a plurality of precursors to be used, x of TaNx can be changed, and the obtained TaNx can be changed.
The specific resistance of the x film can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する熱CVD装置の構成を模式的
に示す側面図。
FIG. 1 is a side view schematically showing a configuration of a thermal CVD apparatus used in the present invention.

【図2】本発明の実施例1に従って、配線孔を有する基
板上にバリア層としてのTaNx膜を形成した状態の基
板を模式的に示す断面図。
FIG. 2 is a cross-sectional view schematically illustrating a substrate in which a TaNx film as a barrier layer is formed on a substrate having a wiring hole according to the first embodiment of the present invention.

【図3】前駆体の混合比率に対するxと抵抗率との関係
を示すグラフ。
FIG. 3 is a graph showing a relationship between x and a resistivity with respect to a mixing ratio of a precursor.

【符号の説明】[Explanation of symbols]

1 反応容器 2 原料容器 3 液体マスフローコントローラー 4 気化器 5 マスフローコントローラー 6 予熱器 7 マスフローコントローラー 8 静電チャッ
ク付ホットプレート 9 基板 9’Si基板又
は下層配線層 10 絶縁層 11 Ti層 12 バリア層(TaNx膜) a 加圧ガス b キャリアガス c アンモニア
ガス H ヒーター
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Material container 3 Liquid mass flow controller 4 Vaporizer 5 Mass flow controller 6 Preheater 7 Mass flow controller 8 Hot plate with electrostatic chuck 9 Substrate 9'Si substrate or lower wiring layer 10 Insulating layer 11 Ti layer 12 Barrier layer (TaNx) Film) a Pressurized gas b Carrier gas c Ammonia gas H Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 孝 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 樋口 靖 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 (72)発明者 田熊 康宏 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 Fターム(参考) 4K030 AA11 BA38 CA04 FA10 KA02 LA02 LA11 4M104 BB14 BB32 DD45 FF16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takashi Komatsu 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Nippon Vacuum Engineering Co., Ltd. Inside Chiba Super Materials Laboratory, Technology Co., Ltd. (72) Inventor Yasuhiro Taga 523 Yokota, Yamatake-cho, Sanmu-gun, Chiba Prefecture Japan Vacuum Technology Co., Ltd. Chiba Super Materials Lab. BB32 DD45 FF16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応容器中に設けたウエハーを加熱し、
ガス状のTa含有有機金属前駆体、アンモニアガス及び
キャリアガスを反応容器中に導入して、所定の圧力及び
温度で、該有機金属前駆体とアンモニアとを反応させ、
TaNx(但し、式中、xは0.3〜1.5である。)
からなる膜を該ウエハー上に形成させる金属膜の形成方
法であって、該Ta含有有機金属前駆体が、TaとNと
の二重結合(Ta=N)を含む前駆体と該二重結合を含ま
ない前駆体とからなる複数の前駆体であることを特徴と
する金属膜の形成方法。
1. A wafer provided in a reaction vessel is heated,
A gaseous Ta-containing organometallic precursor, an ammonia gas and a carrier gas are introduced into a reaction vessel, and at a predetermined pressure and temperature, the organometallic precursor is reacted with ammonia;
TaNx (where x is 0.3 to 1.5)
A metal film formed on the wafer, the Ta-containing organometallic precursor comprising: a precursor containing a double bond of Ta and N (Ta = N); A method for forming a metal film, comprising a plurality of precursors comprising:
【請求項2】 前記Ta含有有機金属前駆体は、次式: RN=Ta(N(R')2)3及びTa(N(R'')2)n (但し、式中、R、R'、及びR''はそれぞれC1〜C6
アルキル基であって、お互いに同じであっても異なって
いてもよく、またnは4又は5である。)から選ばれる
Ta=Nを含む前駆体と該Ta=Nを含まない前駆体と
からなる複数の前駆体であることを特徴とする請求項1
記載の金属膜の形成方法。
2. The Ta-containing organometallic precursor has the following formula: RN = Ta (N (R ′) 2 ) 3 and Ta (N (R ″) 2 ) n (where R, R 'And R''are C 1 to C 6, respectively.
Alkyl groups, which may be the same or different, and n is 4 or 5. 2) a plurality of precursors comprising a precursor containing Ta = N and a precursor not containing Ta = N selected from the group consisting of:
The method for forming a metal film according to the above.
【請求項3】 前記複数のTa含有有機金属前駆体は、
予め混合した混合物として、又は個別に、又は一部を予
め混合した混合物としてかつ残りを個別に、反応容器中
に導入されることを特徴とする請求項1又は2記載の金
属膜の形成方法。
3. The plurality of Ta-containing organometallic precursors,
The method for forming a metal film according to claim 1, wherein the mixture is introduced into the reaction vessel as a pre-mixed mixture, individually, or partially as a pre-mixed mixture, and the remainder individually.
【請求項4】 前記Ta=Nを含む前駆体の割合が20
〜80%であることを特徴とする請求項1〜3のいずれ
かに記載の金属膜の形成方法。
4. The ratio of the precursor containing Ta = N is 20
The method for forming a metal film according to any one of claims 1 to 3, wherein the content is from 80% to 80%.
JP18356399A 1999-06-29 1999-06-29 Method for forming metal film Expired - Fee Related JP4315403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18356399A JP4315403B2 (en) 1999-06-29 1999-06-29 Method for forming metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18356399A JP4315403B2 (en) 1999-06-29 1999-06-29 Method for forming metal film

Publications (2)

Publication Number Publication Date
JP2001011631A true JP2001011631A (en) 2001-01-16
JP4315403B2 JP4315403B2 (en) 2009-08-19

Family

ID=16138002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18356399A Expired - Fee Related JP4315403B2 (en) 1999-06-29 1999-06-29 Method for forming metal film

Country Status (1)

Country Link
JP (1) JP4315403B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069640A (en) * 2000-09-04 2002-03-08 Tri Chemical Laboratory Inc MATERIAL FOR Ta-BASED FILM FORMATION, Ta-BASED FILM FORMATION METHOD AND ULSI
JP2005281308A (en) * 2004-03-12 2005-10-13 Rohm & Haas Co Precursor compound for depositing coating film of ceramic and metal, and method for preparing the same
JP2007537357A (en) * 2004-05-10 2007-12-20 プラクスエア・テクノロジー・インコーポレイテッド Organometallic precursor compounds
WO2010104150A1 (en) * 2009-03-13 2010-09-16 東京エレクトロン株式会社 Vaporizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069640A (en) * 2000-09-04 2002-03-08 Tri Chemical Laboratory Inc MATERIAL FOR Ta-BASED FILM FORMATION, Ta-BASED FILM FORMATION METHOD AND ULSI
JP4497339B2 (en) * 2000-09-04 2010-07-07 株式会社トリケミカル研究所 Ta-based film forming material and Ta-based film forming method
JP2005281308A (en) * 2004-03-12 2005-10-13 Rohm & Haas Co Precursor compound for depositing coating film of ceramic and metal, and method for preparing the same
JP2007537357A (en) * 2004-05-10 2007-12-20 プラクスエア・テクノロジー・インコーポレイテッド Organometallic precursor compounds
WO2010104150A1 (en) * 2009-03-13 2010-09-16 東京エレクトロン株式会社 Vaporizer
JP2010219146A (en) * 2009-03-13 2010-09-30 Tokyo Electron Ltd Vaporizer

Also Published As

Publication number Publication date
JP4315403B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
TWI336732B (en) Ti, ta, hf, zr, and related metal silicon amides for ald/cvd of metal-silicon nitrides, oxides or oxynitrides
Zaera The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing
TWI265207B (en) Preparation of metal silicon nitride films via cyclic deposition
TWI636987B (en) Aza-polysilane precursors and methods for depositing films comprising same
EP1238421B1 (en) Apparatus and method for minimizing parasitic chemical vapor deposition during atomic layer deposition
JP5048476B2 (en) Method for forming insulating film or metal film
US7723245B2 (en) Method for manufacturing semiconductor device, and substrate processing apparatus
JP5053079B2 (en) Apparatus and method for atomic layer deposition of hafnium-containing high dielectric constant dielectric materials
EP3339311B1 (en) Volatile monoamino-dialkoxysilanes and their use for creating silicon-containing films
US20020162506A1 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
EP2009139A1 (en) Cyclic Deposition Method for Depositing a Metal Silicon Nitride Film
US20080317972A1 (en) Method for depositing thin films by mixed pulsed cvd and ald
KR101304760B1 (en) Titanium-containing precursors for vapor deposition
JP2005314713A (en) Method for manufacturing ruthenium film or ruthenium oxide film
US20080145535A1 (en) Cyclic Chemical Vapor Deposition of Metal-Silicon Containing Films
US20160293421A1 (en) Method of manufacturing semiconductor device and recording medium
KR20140059115A (en) Forming method of silicon-containing thin film
CN109385613A (en) The forming method of silicon fiml forms device and storage medium
TWI251620B (en) Process for CVD of Hf and Zr containing oxynitride films
TWI756959B (en) Film or coating by an ald process on a substrate
JP2001011631A (en) Formation of metallic film
KR20210106003A (en) Selective Deposition of Silicon Nitride
CN114262878A (en) Silicon oxide deposition method
JP4448582B2 (en) Method for forming tantalum-carbon thin film
TW202337892A (en) Alkyl and aryl heteroleptic bismuth precursors for bismuth oxide containing thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090518

R150 Certificate of patent or registration of utility model

Ref document number: 4315403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees