JP2001011610A - Sputtering target and its manufacture - Google Patents

Sputtering target and its manufacture

Info

Publication number
JP2001011610A
JP2001011610A JP11187592A JP18759299A JP2001011610A JP 2001011610 A JP2001011610 A JP 2001011610A JP 11187592 A JP11187592 A JP 11187592A JP 18759299 A JP18759299 A JP 18759299A JP 2001011610 A JP2001011610 A JP 2001011610A
Authority
JP
Japan
Prior art keywords
target
sputtering target
alloy
film
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11187592A
Other languages
Japanese (ja)
Other versions
JP3588011B2 (en
Inventor
Shiyuuichi Irumada
修一 入間田
Hirohito Miyashita
博仁 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP18759299A priority Critical patent/JP3588011B2/en
Publication of JP2001011610A publication Critical patent/JP2001011610A/en
Application granted granted Critical
Publication of JP3588011B2 publication Critical patent/JP3588011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target having specific resistance comparable to that of pure Cu, increased in electromigration resistance, minimal in the defects of a sputtered film used for the formation of a wiring part in a wafer of a semiconductor device, etc., and capable of improving productive efficiency, and its manufacturing method. SOLUTION: The sputtering target for formation of Cu alloy wiring, excellent in electromigration resistance, has a composition in which 0.02-10 atomic %, in total, of one or more elements selected from the group consisting of Ce, Dy, Er, La, Pr, Sc, Sr, Tb, and Y are added to Cu. This sputtering target for formation of Cu alloy wiring can be manufactured by carrying out the addition of one or more elements selected from the group consisting of Ce, Dy, Er, La, Pr, Sc, Sr, Tb, and Y in the form of hydrides.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LSIをはじめと
する半導体装置のウエハ内配線部の形成に用いられるス
パッタターゲットとその製造方法、特に該配線部を低抵
抗に、かつ歩留まりを落とさずに、耐エレクトロマイグ
レーション特性を大幅に改善することができるスパッタ
リングターゲットおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputter target used for forming a wiring portion in a wafer of a semiconductor device such as an LSI and a method of manufacturing the same, and more particularly, to reducing the wiring portion to a low resistance and without lowering the yield. And a sputtering target capable of significantly improving electromigration resistance and a method of manufacturing the same.

【0002】[0002]

【従来の技術】LSIの集積度が上がるのに伴い、Al
またはAl合金配線に代わって、低抵抗で耐エレクトロ
マイグレーション(EM)性に優れる純Cu配線が用い
られるようになった。しかしながら近年、さらに集積度
が上がるとさらに要求特性が厳しくなり、純Cuのもつ
耐エレクトロマイグレーション性では不十分となった。
耐エレクトロマイグレーション性を向上させるには、C
uに添加元素を加えることが有効であり、本発明者はC
uにAlまたはSiを添加する提案をした(特開平06
−177117)。この発明は耐エレクトロマイグレー
ション性を備えており、現在でもそれなりに有用であ
る。しかし、配線の比抵抗が純Cu(1.73μΩ・c
m)の1.5倍以上となるので、特に導電性を必要とす
る用途において純Cuの代替にするには比抵抗が高すぎ
るという欠点があった。
2. Description of the Related Art As the degree of integration of LSIs increases, Al
Alternatively, pure Cu wiring having low resistance and excellent electromigration (EM) resistance has been used instead of Al alloy wiring. However, in recent years, as the degree of integration has further increased, the required characteristics have become more severe, and the electromigration resistance of pure Cu has become insufficient.
To improve electromigration resistance, C
It is effective to add an additional element to u.
u has been proposed to add Al or Si (Japanese Unexamined Patent Publication No.
-177117). The present invention has electromigration resistance and is still useful at present. However, the specific resistance of the wiring is pure Cu (1.73 μΩ · c).
m) is 1.5 times or more, and there is a drawback that the specific resistance is too high to substitute for pure Cu especially in applications requiring conductivity.

【0003】[0003]

【発明が解決しようとする課題】以上から、本発明は比
抵抗が純Cuと比べて遜色なく、耐エレクトロマイグレ
ーション性が高く、かつ半導体装置等のウエハ内配線部
の形成に用いられるスパッタ膜の欠陥が少なく、生産効
率を向上させることができるスパッタターゲットおよび
その製造方法を提供する。
From the above, it can be seen that the present invention has a specific resistance comparable to that of pure Cu, a high electromigration resistance, and a sputtered film used for forming a wiring portion in a wafer of a semiconductor device or the like. Provided are a sputter target having few defects and capable of improving production efficiency, and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】1 Cuに、Ce、D
y、Er、La、Pr、Sc、Sr、Tb、Yの群から
選択した1種類以上の元素を、総計で0.02〜10a
t%添加したことを特徴とする耐エレクトロマイグレー
ション特性に優れたCu合金配線形成用スパッタリング
ターゲット、 2 0.3mm欠陥からの反射強度が100%となるよ
う感度調整した超音波探傷機による反射強度20%以上
で検出されるターゲット中の酸化物介在物の面積率が
0.5%以下であることを特徴とする上記1記載のスパ
ッタリングターゲット 3 Cuに、Ce、Dy、Er、La、Pr、Sc、S
r、Tb、Yの群から選択した1種類以上の元素の水素
化物を添加し、これを溶解法または粉末冶金法によりタ
ーゲットとすることを特徴とする耐エレクトロマイグレ
ーション特性に優れたCu合金配線形成用スパッタリン
グターゲットの製造方法、 4 ターゲットの組成が、Ce、Dy、Er、La、P
r、Sc、Sr、Tb、Yの群から選択した1種類以上
の元素が総計で0.02〜10at%を含有し、残部不
可避的不純物およびCuからなる銅合金または銅合金焼
結体であることを特徴とする上記3記載のスパッタリン
グターゲットの製造方法、 5 0.3mm欠陥からの反射強度が100%となるよ
う感度調整した超音波探傷機による反射強度20%以上
で検出されるターゲット中の酸化物介在物の面積率が
0.5%以下であることを特徴とする上記3または4記
載のスパッタリングターゲットの製造方法、を提供する
ものである。
[Means for Solving the Problems] 1 Cu, Ce, D
at least one element selected from the group consisting of y, Er, La, Pr, Sc, Sr, Tb, and Y in a total amount of 0.02 to 10 a
A sputtering target for forming a Cu alloy wiring having excellent electromigration resistance characterized by adding t%, and a reflection intensity of 20 using an ultrasonic flaw detector whose sensitivity is adjusted so that the reflection intensity from a 0.3 mm defect becomes 100%. %, The area ratio of oxide inclusions in the target detected at 0.5% or more is 0.5% or less. The sputtering target 3 Cu according to 1 above, wherein Ce, Dy, Er, La, Pr, Sc , S
A hydride of at least one element selected from the group consisting of r, Tb, and Y is added, and the hydride is used as a target by a melting method or a powder metallurgy method to form a Cu alloy wiring excellent in electromigration resistance. Method of manufacturing sputtering target for 4 、 The composition of the target is Ce, Dy, Er, La, P
At least one element selected from the group consisting of r, Sc, Sr, Tb, and Y contains a total of 0.02 to 10 at%, and is a copper alloy or a copper alloy sintered body composed of unavoidable impurities and Cu. 5. The method for producing a sputtering target according to the above 3, wherein the target detected at a reflection intensity of 20% or more by an ultrasonic flaw detector whose sensitivity is adjusted so that the reflection intensity from a 0.3 mm defect becomes 100%. 5. The method for producing a sputtering target according to the above item 3 or 4, wherein the area ratio of the oxide inclusions is 0.5% or less.

【0005】[0005]

【発明の実施の形態】以下、本発明について詳しく説明
する。耐エレクトロマイグレーション性を向上させるに
は、原子の拡散速度の大きい部分である結晶粒界を及び
配線表面における拡散速度を小さくすることが有効であ
る。また、Cu配線における配線表面は、Cuの絶縁部
への拡散を防ぐために設けられるTa、TaNなどのバ
リア層で覆われるため、表面拡散は効果的に抑制され
る。一方、上記のように結晶粒界の拡散を抑えるために
は、Cuに添加元素を加えて粒界に析出物を形成するこ
とが有効である。しかしながら、Cuに対してAl、S
i等の元素を加えた場合、耐エレクトロマイグレーショ
ン性は向上するものの、比抵抗も上昇するため、導電性
を要求される場合には実用には適さなかった。したがっ
て、添加元素により粒界に析出物を形成して耐エレクト
ロマイグレーション性を向上させる場合であっても、こ
れにより比抵抗の大きな上昇があってはならず、効果的
に抑制されるものでなければならないとの知見に至っ
た。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In order to improve the electromigration resistance, it is effective to reduce the diffusion speed at the crystal grain boundary, which is a portion where the diffusion speed of atoms is high, and at the wiring surface. In addition, the wiring surface of the Cu wiring is covered with a barrier layer such as Ta or TaN provided for preventing diffusion of Cu to the insulating portion, so that surface diffusion is effectively suppressed. On the other hand, in order to suppress the diffusion of crystal grain boundaries as described above, it is effective to add an additive element to Cu to form precipitates at the grain boundaries. However, for Cu, Al, S
When an element such as i is added, the electromigration resistance is improved, but the specific resistance is also increased. Therefore, it is not suitable for practical use when conductivity is required. Therefore, even in the case where a precipitate is formed at the grain boundary by the added element to improve the electromigration resistance, a large increase in specific resistance must not be caused by this, and it must be effectively suppressed. It came to the knowledge that it had to be done.

【0006】研究の結果、本発明者等はCuへの固溶度
が小さい金属間化合物を形成する元素(Ce、Dy、E
r、La、Pr、Sc、Sr、Tb、Y)を添加するこ
とが極めて有効であることがわかった。さらに研究を重
ねた結果、これらの元素から選択された1種類以上の元
素が総計で0.02-10at%銅合金に含有すること
が、耐エレクトロマイグレーション性を向上させ、かつ
比抵抗の上昇を抑えることがわかった。添加元素の総計
が0.02at%未満の場合、十分な耐エレクトロマイ
グレーション性が得られず、また10at%を超える場
合は高い比抵抗値となり実用に適さなので、これらの範
囲とする。
As a result of the study, the present inventors have found that the elements (Ce, Dy, E) forming an intermetallic compound having a low solid solubility in Cu.
r, La, Pr, Sc, Sr, Tb, Y) was found to be extremely effective. As a result of further studies, it has been found that the inclusion of at least one element selected from these elements in a total of 0.02 to 10 at% copper alloy improves the electromigration resistance and increases the specific resistance. It turned out to be suppressed. When the total amount of the added elements is less than 0.02 at%, sufficient electromigration resistance cannot be obtained, and when it exceeds 10 at%, the specific resistance becomes high, which is suitable for practical use.

【0007】一般に、合金膜を形成する場合にはCVD
法、MBE法あるいは合金ターゲットを用いたスパッタ
リング法が使用されているが、特に半導体プロセスにお
いては、スパッタリング法がハンドリング、メンテナン
スの容易さ、スループット性が良いことから、主にこの
方法が用いられている。ところがこのスパッタリング法
において、Ce、Dy、Er、La、Pr、Sc、S
r、Tb、Yの群から選択した1種類以上の元素をCu
に添加し、Cu合金ターゲット作成してスパッタリングし
たところ、スパッタ膜にスプラッツと呼ばれる水滴の形
状をした欠陥が数多く形成されるという新たな問題が発
生した。
Generally, when an alloy film is formed, CVD is performed.
Method, MBE method or a sputtering method using an alloy target is used. Particularly, in a semiconductor process, the sputtering method is mainly used because the handling, maintenance, and throughput are good. I have. However, in this sputtering method, Ce, Dy, Er, La, Pr, Sc, S
at least one element selected from the group consisting of r, Tb and Y
In addition, when a Cu alloy target was prepared and sputtered, there was a new problem that many sputter-shaped defects called water drops were formed in the sputtered film.

【0008】これは膜の特性を著しく損なうことにな
る。このためスプラッツの原因調査を行った。この結
果、これらの添加元素は非常に酸化しやすいため、単に
これらの添加元素をCuに添加した場合、粉末冶金法あ
るいは溶解法等の製法を問わず、得られたCu合金ター
ゲットは、これらの添加元素の酸化物粒を数多く含んだ
ものになることが分かった。そして、これらの酸化物が
絶縁体であるために、スパッタ中に帯電し、さらに帯電
量がある値を超えると放電を起こして酸化物の周りが局
部的に加熱・溶融・飛散し、スパッタ膜にスプラッツが
形成されることがわかった。したがって、ターゲット中
の酸化物を減らし、スパッタ膜の欠陥を減らすことが是
非とも必要であった。
This significantly impairs the properties of the film. For this reason, the cause of Splats was investigated. As a result, since these additional elements are very easily oxidized, when these additional elements are simply added to Cu, regardless of a production method such as a powder metallurgy method or a melting method, the obtained Cu alloy target is It was found that the particles contained many oxide particles of the additional element. Since these oxides are insulators, they are charged during sputtering, and when the charged amount exceeds a certain value, a discharge occurs, and the surroundings of the oxides are locally heated, melted, and scattered, and a sputtered film is formed. Was found to form splats. Therefore, it is absolutely necessary to reduce oxides in the target and reduce defects in the sputtered film.

【0009】そこで、Cu合金ターゲットの製造条件の
検討を行い、これらの元素すなわち、Ce、Dy、E
r、La、Pr、Sc、Sr、Tb、Yの群から選択し
た1種類以上の元素をCuに添加する際に、これらの元
素の水素化物を添加し、溶解法または粉末冶金法により
ターゲットを作成したところ、このCu合金ターゲット
には添加元素の酸化物の粒は殆ど検出されなかった。さ
らにこのターゲットを用いてスパッタリングしたとこ
ろ、スパッタ膜のスプラッツも大幅に減少した。そし
て、超音波探傷機でインゴット中およびとターゲット中
の酸化物の量を評価でき、0.3mm欠陥からの反射強
度が100%となるよう感度調整した超音波探傷機によ
る反射強度20%以上で検出されるインゴットまたはタ
ーゲット中の酸化物介在物の面積率を0.5%以下とす
ることにより、スパッタリングターゲット中の酸化物を
減らし、スパッタ膜のスプラッツその他の欠陥を減らす
ことが可能となった。上記ターゲット中の酸化物介在物
の面積率が0.5%を超えると、スパッタリングターゲ
ット中の酸化物が増加し、スパッタ膜のスプラッツその
他の欠陥が増えるのでこの範囲に制限することが望まし
い。
Therefore, the production conditions of the Cu alloy target were examined, and these elements, namely, Ce, Dy, E
When adding at least one element selected from the group consisting of r, La, Pr, Sc, Sr, Tb, and Y to Cu, a hydride of these elements is added, and a target is formed by a melting method or a powder metallurgy method. As a result, almost no oxide particles of the added element were detected in the Cu alloy target. Further, when sputtering was performed using this target, the splats of the sputtered film were significantly reduced. Then, the amount of oxide in the ingot and in the target can be evaluated by the ultrasonic flaw detector, and the reflection intensity from the ultrasonic flaw detector adjusted to have a reflection intensity from a 0.3 mm defect of 100% is 20% or more. By reducing the area ratio of oxide inclusions in the ingot or target to be detected to 0.5% or less, it is possible to reduce oxides in the sputtering target and reduce splats and other defects in the sputtered film. . If the area ratio of the oxide inclusions in the target exceeds 0.5%, the amount of oxides in the sputtering target increases, and splats and other defects in the sputtered film increase.

【0010】[0010]

【実施例】次に、本発明を実施例および比較例に基づい
て説明する。なお、これらの実施例は好適な例を示し理
解を容易にするためのものであって、これらの例によっ
て本発明が制限されるものではない。すなわち、本発明
の技術思想の範囲における他の態様およびその他の例な
らびに変形は、当然本発明に含まれるものである。
Next, the present invention will be described based on examples and comparative examples. Note that these embodiments show preferred examples to facilitate understanding, and the present invention is not limited by these examples. That is, other embodiments and other examples and modifications within the scope of the technical idea of the present invention are naturally included in the present invention.

【0011】(実施例1)グラファイトるつぼ中に、C
u−0.03at%Dyとなるように秤量したCuイン
ゴットと水素化Dy粉末を入れて真空中で溶解、鋳造し
た。こうして出来たCu−Dy合金インゴットの組成を
分析したところ、狙いどうりCu−0.03at%Dy
となっていた。さらにこのインゴットを、0.3mm欠
陥からの反射強度が100%となるよう感度調整した超
音波探傷機による反射強度20%以上で検出されるター
ゲット中の酸化物介在物の面積率を測定したところ、
0.1%未満であった。さらに、このインゴットをター
ゲットに加工して、8インチのウエハにスパッタ成膜を
行い、厚さ0.2μmのCu−Dy合金膜を得た。スパ
ッタリング条件は次の通りである。 (スパッタリング条件) ターゲット φ12.98″(φ8″ウエハ用) 投入電力 2kW Ar圧力 1Pa 基板温度 室温 膜圧 0.2μm 基板 φ8″熱酸化シリコン基板 スパッタリング後のウエハ上の平均スプラッツ数は0.
05個未満であった。また、この膜の比抵抗は1.77
μΩ・cmであった。さらに、この膜を用いた配線の、
エレクトロマイグレーションの試験を行ったところ、平
均破断時間は同じ形状の純銅配線より50%ほど長く耐
エレクトロマイグレーション性が向上していることが確
認できた。これらの結果を表1に示す。
(Example 1) C was placed in a graphite crucible.
A Cu ingot weighed so as to have u-0.03 at% Dy and a hydrogenated Dy powder were put therein, melted and cast in vacuum. Analysis of the composition of the Cu-Dy alloy ingot thus formed revealed that the target was Cu-0.03 at% Dy.
Had become. Further, the area ratio of oxide inclusions in the target, which was detected at a reflection intensity of 20% or more by an ultrasonic flaw detector whose sensitivity was adjusted so that the reflection intensity from a 0.3 mm defect became 100%, was measured. ,
It was less than 0.1%. Further, this ingot was processed as a target, and a sputter film was formed on an 8-inch wafer to obtain a Cu-Dy alloy film having a thickness of 0.2 μm. The sputtering conditions are as follows. (Sputtering conditions) Target φ12.98 ″ (for φ8 ″ wafer) Input power 2 kW Ar pressure 1 Pa Substrate temperature Room temperature Film pressure 0.2 μm Substrate φ8 ″ thermally oxidized silicon substrate The average number of splats on the wafer after sputtering is 0.
The number was less than 05. The specific resistance of this film is 1.77.
μΩ · cm. In addition, wiring of this film
When an electromigration test was performed, it was confirmed that the average rupture time was about 50% longer than that of the pure copper wiring having the same shape, and the electromigration resistance was improved. Table 1 shows the results.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)グラファイトるつぼ中に、C
u−15at%Dyとなるように秤量したCuインゴッ
トと水素化Dy粉末を入れて真空中で溶解・鋳造した。
Cu−Dy合金インゴットの組成は、Cu−15.2a
t%Dyとなっていた。このインゴットを、実施例1と
同様の超音波探傷試験を行い、ターゲット中の酸化物の
面積率を測定したところ、面積率は0.2%であった。
実施例1と同様の条件でこのインゴットをターゲットに
加工して、8インチのウエハにスパッタ成膜を行い、厚
さ0.2μmのCu−Dy合金膜を得た。この合金成膜
上の平均のスプラッツ数は0.05個であった。そし
て、この膜の比抵抗は2.5μΩ・cmであった。ま
た、この膜を用いた配線のエレクトロマイグレーション
の試験を行ったところ、平均破断時間は同じ形状の純銅
配線の5倍ほど伸びて耐エレクトロマイグレーション性
が向上していることが確認できた。これらの結果を、同
様に表1に示す。
(Example 2) C was placed in a graphite crucible.
A Cu ingot weighed so as to have u-15 at% Dy and a hydrogenated Dy powder were charged and melted and cast in a vacuum.
The composition of the Cu-Dy alloy ingot is Cu-15.2a
t% Dy. This ingot was subjected to the same ultrasonic flaw detection test as in Example 1, and the area ratio of the oxide in the target was measured. As a result, the area ratio was 0.2%.
This ingot was processed into a target under the same conditions as in Example 1, and a sputter film was formed on an 8-inch wafer to obtain a Cu-Dy alloy film having a thickness of 0.2 μm. The average number of splats on this alloy film formation was 0.05. The specific resistance of this film was 2.5 μΩ · cm. In addition, when an electromigration test was performed on a wiring using this film, it was confirmed that the average rupture time was about five times longer than that of the pure copper wiring having the same shape, and the electromigration resistance was improved. These results are also shown in Table 1.

【0014】(実施例3)グラファイトるつぼ中に、C
u−0.5at%Erとなるように秤量したCuインゴ
ットと水素化Er粉末を入れて真空中で溶解・鋳造し
た。Cu−Er合金インゴットの組成は、Cu−0.5
2at%Erとなっていた。このインゴットを、実施例
1と同様の超音波探傷試験を行い、ターゲット中の酸化
物の面積率を測定したところ、面積率は0.2%であっ
た。また、実施例1と同様の条件で、このインゴットを
ターゲットに加工して、8インチのウエハにスパッタ成
膜を行い、厚さ0.2μmのCu−Er合金膜を得た。
スパッタリング後のウエハ上の平均スプラッツ数は0.
05個未満であった。そして、この膜の比抵抗は1.8
2μΩ・cmであった。さらに、この膜を用いた配線の
エレクトロマイグレーションの試験を行ったところ、平
均破断時間は同じ形状の純銅配線より60%ほど伸びて
耐エレクトロマイグレーション性が大きく向上している
ことが確認できた。これらの結果を、表1に示す。な
お、本実施例においては、添加元素としてDyおよびE
rのみを示したが、本発明に含まれる他の合金元素につ
いても同様な性質と効果が得られた。
(Example 3) C was placed in a graphite crucible.
A Cu ingot weighed so as to obtain u-0.5 at% Er and a hydrogenated Er powder were put therein and melted and cast in a vacuum. The composition of the Cu-Er alloy ingot is Cu-0.5
It was 2 at% Er. This ingot was subjected to the same ultrasonic flaw detection test as in Example 1, and the area ratio of the oxide in the target was measured. As a result, the area ratio was 0.2%. Further, under the same conditions as in Example 1, this ingot was processed as a target, and a sputter film was formed on an 8-inch wafer to obtain a Cu-Er alloy film having a thickness of 0.2 μm.
The average number of splats on the wafer after sputtering is 0.
The number was less than 05. The specific resistance of this film is 1.8.
It was 2 μΩ · cm. Furthermore, when an electromigration test was performed on a wiring using this film, it was confirmed that the average rupture time was about 60% longer than that of a pure copper wiring having the same shape, and the electromigration resistance was greatly improved. Table 1 shows the results. In this example, Dy and E were added as additional elements.
Although only r was shown, similar properties and effects were obtained with other alloy elements included in the present invention.

【0015】(比較例1)グラファイトるつぼ中に、C
u−0.01at%Dyとなるように秤量したCuイン
ゴットと水素化Dy粉末を入れて真空中で溶解・鋳造し
た。Cu−Dyインゴットの組成は、Cu−0.01a
t%Dyとなっていた。このインゴットを、実施例1と
同様の超音波探傷試験を行い、ターゲット中の酸化物の
面積率を測定したところ、面積率は0.1%未満であっ
た。さらに、このインゴットをターゲットに加工して、
8インチのウエハにスパッタ成膜を行い、厚さ0.2μ
mのCu−Dy合金膜を得た。スパッタリング後のウエ
ハ上の平均スプラッツ数は0.05であった。そして、
この膜の比抵抗は1.75μΩ・cmであった。また、
この膜を用いた配線のエレクトロマイグレーションの試
験を行ったところ、平均破断時間は同じ形状の純銅配線
と比べての優位性は確認できなかった。このように、本
発明の組成に満たないCu−0.01at%Dy合金タ
ーゲットはウエハ上の平均スプラッツ数および膜の比抵
抗は良好であるが、耐エレクトロマイグレーション性は
劣ることが分かった。これらの結果を、実施例と対比し
て表1に示す。
Comparative Example 1 In a graphite crucible, C was added.
A Cu ingot weighed to become u-0.01 at% Dy and a hydrogenated Dy powder were put therein and melted and cast in a vacuum. The composition of the Cu-Dy ingot is Cu-0.01a.
t% Dy. This ingot was subjected to the same ultrasonic flaw detection test as in Example 1, and the area ratio of the oxide in the target was measured. As a result, the area ratio was less than 0.1%. Furthermore, processing this ingot as a target,
Sputter deposition on an 8-inch wafer, thickness 0.2μ
m-Cu-Dy alloy film was obtained. The average splats number on the wafer after sputtering was 0.05. And
The specific resistance of this film was 1.75 μΩ · cm. Also,
When an electromigration test of a wiring using this film was performed, it was not confirmed that the average rupture time was superior to a pure copper wiring having the same shape. Thus, it was found that the Cu-0.01 at% Dy alloy target less than the composition of the present invention had good average Splats number on the wafer and specific resistance of the film, but had poor electromigration resistance. These results are shown in Table 1 in comparison with the examples.

【0016】(比較例2)グラファイトるつぼ中に、C
u−23at%Dyとなるように秤量したCuインゴッ
トと水素化Dy粉末を入れて真空中で溶解・鋳造した。
Cu−Dy合金インゴットの組成は、Cu−24.5a
t%Dyとなっていた。このインゴットを、実施例1と
同様の超音波探傷試験を行い、ターゲット中の酸化物の
面積率を測定したところ、面積率は0.5%未満であっ
た。さらに、このインゴットをターゲットに加工して、
8インチのウエハにスパッタ成膜を行い、厚さ0.2μ
mのCu−Dy合金膜を得た。スパッタリング後のウエ
ハ上の平均スプラッツ数は0.05個であった。平均破
断時間は同じ形状の純銅配線の10倍ほど伸びて耐エレク
トロマイグレーション性が向上していることが確認され
たものの、この膜の比抵抗は3.5μΩ・cmと高か
く、実用に適するものではなかった。これらの結果を、
実施例と対比して表1に示す。
Comparative Example 2 C was placed in a graphite crucible.
A Cu ingot and a hydrogenated Dy powder were weighed so as to obtain u-23 at% Dy, and were melted and cast in a vacuum.
The composition of the Cu-Dy alloy ingot is Cu-24.5a
t% Dy. The ingot was subjected to the same ultrasonic inspection test as in Example 1 and the area ratio of the oxide in the target was measured. As a result, the area ratio was less than 0.5%. Furthermore, processing this ingot as a target,
Sputter deposition on an 8-inch wafer, thickness 0.2μ
m-Cu-Dy alloy film was obtained. The average number of splats on the wafer after sputtering was 0.05. The average rupture time is about 10 times longer than that of pure copper wiring of the same shape, and it has been confirmed that the electromigration resistance is improved. However, the specific resistance of this film is as high as 3.5 μΩ · cm, which is suitable for practical use. Was not. These results
Table 1 shows a comparison with the examples.

【0017】(比較例3)グラファイトるつぼ中に、C
u−5at%Dyとなるように秤量したCuインゴット
と金属Dyの小塊を入れて真空中で溶解・鋳造した。C
u−Dy合金インゴットの組成は、Cu−4.5at%
Dyとなっていた。このインゴットを、実施例1と同様
の超音波探傷試験を行い、ターゲット中の酸化物の面積
率を測定したところ、面積率は0.6%であった。さら
に、このインゴットをターゲットに加工して、8インチ
のウエハにスパッタ成膜を行い、厚さ0.2μmのCu
−Dy合金膜を得た。この結果、平均破断時間は同じ形
状の純銅配線の6倍ほど伸びて耐エレクトロマイグレー
ション性が向上していることが確認され、さらにこの膜
の比抵抗は1.92μΩ・cmであったが、ウエハ上の
平均のスプラッツ数は12個と非常に多く、実用に供す
ることことはできなかった。これらの結果を、実施例と
対比して表1に示す。
Comparative Example 3 C was placed in a graphite crucible.
A Cu ingot weighed so as to be u-5 at% Dy and a small lump of metal Dy were put and melted and cast in vacuum. C
The composition of the u-Dy alloy ingot is Cu-4.5 at%.
Dy. This ingot was subjected to the same ultrasonic flaw detection test as in Example 1, and the area ratio of the oxide in the target was measured. As a result, the area ratio was 0.6%. Further, this ingot is processed into a target, and a sputter film is formed on an 8-inch wafer, and a Cu film having a thickness of 0.2 μm is formed.
-A Dy alloy film was obtained. As a result, it was confirmed that the average rupture time was about six times longer than that of the pure copper wiring having the same shape, and the electromigration resistance was improved. Further, the specific resistance of this film was 1.92 μΩ · cm, but the wafer was The average number of splats above was very large at 12, and could not be put to practical use. These results are shown in Table 1 in comparison with the examples.

【0018】[0018]

【発明の効果】Cuに、Ce、Dy、Er、La、P
r、Sc、Sr、Tb、Yの群から選択した1種類以上
の元素を、総計で0.02〜10at%添加することに
より、耐エレクトロマイグレーション特性に優れたCu
合金配線形成用スパッタリングターゲットを提供するも
のであり、LSIをはじめとする半導体装置のウエハ内
の配線部に、本発明による配線を使用することにより、
合金化に伴う配線部の抵抗上昇を最小限に抑え、かつ歩
留まりを落とさずに、耐エレクトロマイグレーション特
性を大幅に改善することができ、さらに上記Ce、D
y、Er、La、Pr、Sc、Sr、Tb、Yの群から
選択した1種類以上の元素を添加する際に、該元素の水
素化物を添加することによって、銅合金ターゲット中に
生ずる酸化物粒の発生を防止し、これによって酸化物が
絶縁体であるために生ずるスパッタ中の帯電、この帯電
量がある値を超えることによって生ずる放電、さらには
この酸化物の局部的な加熱・溶融・飛散に起因するスパ
ッタ膜へのスプラッツの形成を抑制できる優れた効果を
有する。
According to the present invention, Cu, Ce, Dy, Er, La, P
By adding at least one element selected from the group consisting of r, Sc, Sr, Tb, and Y in a total amount of 0.02 to 10 at%, Cu having excellent electromigration resistance can be obtained.
An object of the present invention is to provide a sputtering target for forming an alloy wiring, and by using the wiring according to the present invention in a wiring portion in a wafer of a semiconductor device such as an LSI,
The resistance to electromigration can be greatly improved without minimizing the increase in the resistance of the wiring portion due to alloying and without reducing the yield.
When one or more elements selected from the group consisting of y, Er, La, Pr, Sc, Sr, Tb, and Y are added, an oxide generated in the copper alloy target by adding a hydride of the element. Prevents the generation of grains, thereby causing the charge during sputtering caused by the oxide being an insulator, the discharge caused by the charge amount exceeding a certain value, and the local heating, melting and melting of the oxide. It has an excellent effect of suppressing formation of splats on a sputtered film due to scattering.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Cuに、Ce、Dy、Er、La、P
r、Sc、Sr、Tb、Yの群から選択した1種類以上
の元素を、総計で0.02〜10at%添加したことを
特徴とする耐エレクトロマイグレーション特性に優れた
Cu合金配線形成用スパッタリングターゲット。
1. Cu, Ce, Dy, Er, La, P
A sputtering target for forming a Cu alloy wiring excellent in electromigration resistance, wherein at least one element selected from the group consisting of r, Sc, Sr, Tb, and Y is added in a total amount of 0.02 to 10 at%. .
【請求項2】 0.3mm欠陥からの反射強度が100
%となるよう感度調整した超音波探傷機による反射強度
20%以上で検出されるターゲット中の酸化物介在物の
面積率が0.5%以下であることを特徴とする請求項1
記載のスパッタリングターゲット。
2. The reflection intensity from a 0.3 mm defect is 100.
2. The area ratio of oxide inclusions in the target detected at a reflection intensity of 20% or more by an ultrasonic flaw detector whose sensitivity has been adjusted to be 0.5% or less is 0.5% or less.
The sputtering target according to the above.
【請求項3】 Cuに、Ce、Dy、Er、La、P
r、Sc、Sr、Tb、Yの群から選択した1種類以上
の元素の水素化物を添加し、これを溶解法または粉末冶
金法によりターゲットとすることを特徴とする耐エレク
トロマイグレーション特性に優れたCu合金配線形成用
スパッタリングターゲットの製造方法。
3. Cu, Ce, Dy, Er, La, P
Excellent in electromigration resistance, characterized by adding a hydride of at least one element selected from the group consisting of r, Sc, Sr, Tb, and Y and using the hydride as a target by a melting method or a powder metallurgy method. A method for manufacturing a sputtering target for forming a Cu alloy wiring.
【請求項4】 ターゲットの組成が、Ce、Dy、E
r、La、Pr、Sc、Sr、Tb、Yの群から選択し
た1種類以上の元素が総計で0.02〜10at%を含
有し、残部不可避的不純物およびCuからなる銅合金ま
たは銅合金焼結体であることを特徴とする請求項3記載
のスパッタリングターゲットの製造方法。
4. The composition of the target is Ce, Dy, E
at least one element selected from the group consisting of r, La, Pr, Sc, Sr, Tb, and Y contains 0.02 to 10 at% in total, and a copper alloy or copper alloy sintered consisting of unavoidable impurities and Cu as a balance; The method for producing a sputtering target according to claim 3, wherein the sputtering target is a union.
【請求項5】 0.3mm欠陥からの反射強度が100
%となるよう感度調整した超音波探傷機による反射強度
20%以上で検出されるターゲット中の酸化物介在物の
面積率が0.5%以下であることを特徴とする請求項3
または4記載のスパッタリングターゲットの製造方法。
5. The reflection intensity from a 0.3 mm defect is 100.
%, Wherein the area ratio of oxide inclusions in the target detected at a reflection intensity of 20% or more by an ultrasonic flaw detector adjusted to have a sensitivity of 0.5% or less is 0.5% or less.
Or the manufacturing method of the sputtering target of 4.
JP18759299A 1999-07-01 1999-07-01 Sputtering target and method for manufacturing the same Expired - Lifetime JP3588011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18759299A JP3588011B2 (en) 1999-07-01 1999-07-01 Sputtering target and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18759299A JP3588011B2 (en) 1999-07-01 1999-07-01 Sputtering target and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001011610A true JP2001011610A (en) 2001-01-16
JP3588011B2 JP3588011B2 (en) 2004-11-10

Family

ID=16208815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18759299A Expired - Lifetime JP3588011B2 (en) 1999-07-01 1999-07-01 Sputtering target and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3588011B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294437A (en) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp Copper alloy sputtering target
JP2007226058A (en) * 2006-02-24 2007-09-06 Tosoh Corp Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target
JP2007258256A (en) * 2006-03-20 2007-10-04 Kobe Steel Ltd Method of manufacturing semiconductor wiring
JP2008506040A (en) * 2004-07-15 2008-02-28 プランゼー エスエー Materials for conductive wires made from copper alloys

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294437A (en) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp Copper alloy sputtering target
JP2008506040A (en) * 2004-07-15 2008-02-28 プランゼー エスエー Materials for conductive wires made from copper alloys
JP2007226058A (en) * 2006-02-24 2007-09-06 Tosoh Corp Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target
JP2007258256A (en) * 2006-03-20 2007-10-04 Kobe Steel Ltd Method of manufacturing semiconductor wiring

Also Published As

Publication number Publication date
JP3588011B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP5420685B2 (en) Cu-Mn alloy sputtering target and semiconductor wiring
JP4118814B2 (en) Copper alloy sputtering target and method of manufacturing the same
JP4794802B2 (en) Copper alloy sputtering target and semiconductor device wiring
JP4223511B2 (en) Copper alloy sputtering target, method of manufacturing the same, and semiconductor element wiring
JP4197579B2 (en) Sputtering target, Al wiring film manufacturing method using the same, and electronic component manufacturing method
JP4237742B2 (en) Manufacturing method of sputtering target
US20100000860A1 (en) Copper Sputtering Target With Fine Grain Size And High Electromigration Resistance And Methods Of Making the Same
JPWO2013038962A1 (en) High purity copper manganese alloy sputtering target
JP4790782B2 (en) Copper alloy sputtering target and semiconductor device wiring
TWI613303B (en) High purity copper-chromium alloy sputtering target
JP2000034562A (en) Sputtering target and part used in apparatus for forming thin film
JP4817536B2 (en) Sputter target
JP3588011B2 (en) Sputtering target and method for manufacturing the same
JP2006077295A (en) Cu-ALLOY WIRING MATERIAL AND Cu-ALLOY SPUTTERING TARGET
JP5837202B2 (en) High purity copper cobalt alloy sputtering target
JP2007242947A (en) Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film
JPS62240734A (en) C-containing aluminum alloy for semiconductor wiring material
Joshi et al. Aluminum–samarium alloy for interconnections in integrated circuits
JP4213699B2 (en) Manufacturing method of liquid crystal display device
JP2000063971A (en) Sputtering target
JPS62228446A (en) Aluminum alloy for semiconductor wiring material
Zeng et al. Ultrahigh Purity Copper Alloy Target Used Innanoscale ULSI Interconnects
WO2004087975A1 (en) Substrate material of a copper-magnesium alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Ref document number: 3588011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term