JP2001009573A - Welding joint of high tensile steel plate and welding method - Google Patents

Welding joint of high tensile steel plate and welding method

Info

Publication number
JP2001009573A
JP2001009573A JP11179884A JP17988499A JP2001009573A JP 2001009573 A JP2001009573 A JP 2001009573A JP 11179884 A JP11179884 A JP 11179884A JP 17988499 A JP17988499 A JP 17988499A JP 2001009573 A JP2001009573 A JP 2001009573A
Authority
JP
Japan
Prior art keywords
welding
nugget
strength
heat
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11179884A
Other languages
Japanese (ja)
Inventor
Hironori Fujimoto
博紀 富士本
Kiyoyuki Fukui
清之 福井
Masato Katsukura
誠人 勝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Steel Corp
Original Assignee
Nissan Motor Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11179884A priority Critical patent/JP2001009573A/en
Publication of JP2001009573A publication Critical patent/JP2001009573A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a welding joint which is difficult to cut in a nugget by resistance welding a steel plate with a given value or more base metal strength and thickness, and making size of a heat-affected zone of the welding joint with a given value or more hardness to be smaller than the diameter of a corona bond part. SOLUTION: Resistance welding is performed to two or more high tensile steel plates of 440 MPa or more metal base strength and 1.2 mm or more thickness, so as to obtain a welding joint. A spot welding part is composed of a nugget to be melted/solidified and a heat-affected zone outside it, and a corona bond part to be pressure welded under high temperature exists on the interface of the plate adjacent to the nugget. The size of the heat-affected zone of the welding joint with (X+2Y)/3 or more hardness is smaller than the diameter of the corona bond part, where average hardness of the base metal is designated as X and average hardness in the nugget is as Y. The condition for performing resistance welding is set as t<=54/TS1/4. In this case, t shows a welding time (cycles/60 Hz), and TS shows the base metal strength (MPa).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、産業機器
などの分野で高張力鋼板に抵抗溶接を行って溶接継手を
構成する際の、溶接部が破断しにくい溶接継手およびそ
のための溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded joint in which a welded portion is hardly broken when a high-strength steel plate is subjected to resistance welding in the fields of automobiles, industrial equipment, and the like, and a welding method therefor. .

【0002】[0002]

【従来の技術】現在、スポット溶接をはじめとする抵抗
溶接は、簡便で生産性の高い優れた溶接方法であるた
め、自動車の組み立てラインなど様々な分野で広く用い
られている。なお、以下において抵抗溶接としてスポッ
ト溶接を例にとり説明する。
2. Description of the Related Art At present, resistance welding such as spot welding is a simple welding method with high productivity and is widely used in various fields such as automobile assembly lines. In the following, spot welding will be described as an example of resistance welding.

【0003】従来、このような分野で使用する鋼板は、
軟鋼板や母材強度が350 MPa クラスまでの鋼板が大部分
を占めていた。ところで、鋼板のスポット溶接の場合、
母材破断が望ましいが、このような鋼板のスポット溶接
継手は、実用的な条件で溶接している限り、引張せん断
試験を行っても溶接部で破断することはなく、いずれも
母材部で破断する。
Conventionally, steel sheets used in such fields are:
Mild steel sheets and steel sheets with a base material strength up to the 350 MPa class accounted for the majority. By the way, in the case of spot welding of steel sheets,
Although base metal fracture is desirable, such a spot-welded joint made of a steel sheet does not break at the weld even when subjected to a tensile shear test as long as it is welded under practical conditions. Break.

【0004】このときの継手強度は溶融凝固部であるナ
ゲットのサイズによりおおむね決まるため、所定の強度
を得るためには所定のナゲット径を確保することが重要
であると考えられてきた。
Since the strength of the joint at this time is largely determined by the size of the nugget which is the molten and solidified portion, it has been considered that it is important to secure a predetermined diameter of the nugget in order to obtain a predetermined strength.

【0005】ナゲット径はJIS Z 3140に示されているよ
うに、通常は板厚の関数として与えられ、必要な継手強
度に応じてJIS に規定されているナゲット径を元に品質
基準とすることが多い。例えば、最も強度が必要なA級
の継手では、最小ナゲット径は4.25√t(t:板厚) 以上
であることをJIS で規定している。
[0005] As shown in JIS Z 3140, the nugget diameter is usually given as a function of the plate thickness, and the quality standard is set based on the nugget diameter specified in JIS according to the required joint strength. There are many. For example, JIS defines that the minimum nugget diameter is at least 4.25√t (t: plate thickness) for Class A joints that require the most strength.

【0006】そのための溶接条件は、産報出版社「スポ
ット溶接入門」に掲載されているように、RWMA(Resista
nce Welder Manufacturers Association) 推奨条件など
に従っていた。この条件は、通電時間を板厚の関数と
し、もっとも継手強度が必要なA級継手は、約10t[t:
板厚(mm)] で示される通電時間で溶接するが、これより
も長い通電時間で溶接することも多い。
[0006] Welding conditions for this purpose are described in RWMA (Resista
nce Welder Manufacturers Association). This condition is based on the assumption that the energizing time is a function of the plate thickness, and the class A joint requiring the most joint strength is about 10 t [t:
Plate thickness (mm)], but welding is often performed with a longer conduction time.

【0007】ところで、近年、車体重量の軽減や衝突安
全性の向上を目的として、母材強度が440 MPa を超える
高張力鋼板の自動車外装材への適用が進みつつある。現
状ではこのような高張力鋼板についても、加圧力は高く
するものの、他は従来と同様の条件でスポット溶接を行
っている。
In recent years, high-strength steel sheets having a base material strength exceeding 440 MPa have been increasingly applied to exterior materials of automobiles for the purpose of reducing vehicle body weight and improving collision safety. At present, spot welding is performed on such high-strength steel sheets under the same conditions as before, although the pressing force is increased.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
条件で高張力鋼板にスポット溶接を行った場合、母材強
度の上昇ほど溶接部の強度は上昇しないため、相対的に
溶接部の強度が弱くなり、溶接部で破断しやすくなる。
このため、4.25√tのナゲット径を得てもナゲット内で
破断がおこる場合がある。
However, when spot welding is performed on a high-strength steel sheet under the conventional conditions, the strength of the welded portion does not increase as much as the strength of the base metal, and the strength of the welded portion is relatively weak. And it is easy to break at the weld.
For this reason, even if a nugget diameter of 4.25√t is obtained, breakage may occur in the nugget.

【0009】通常、鋼板の場合、スポット溶接部の静的
強度は引張せん断試験により評価するが、このとき、破
断荷重と共に破断形態が重要となる。もちろん、母材破
断を行わせるためにはナゲット径を大きくすれば良い
が、大きなナゲット径を得るには、設備上あるいは、施
工上困難を伴う。
Usually, in the case of a steel sheet, the static strength of a spot weld is evaluated by a tensile shear test. At this time, the form of the fracture is important together with the fracture load. Of course, in order to cause the base material to break, the diameter of the nugget may be increased. However, obtaining a large diameter of the nugget involves difficulties in equipment or construction.

【0010】また、スポット溶接の溶接条件の範囲は、
母材破断の電流値からチリ発生電流値までと言われてい
るが、高張力鋼板の場合、母材の電気抵抗が高いため、
チリ発生電流が低く、かつ母材破断が見られるときのナ
ゲット径が大きくなるため、溶接条件の範囲が軟鋼板の
場合に比べ著しく狭くなる。
The range of welding conditions for spot welding is as follows:
It is said that the current value of the base material breaks from the current value of dust generation, but in the case of a high-strength steel sheet, because the electrical resistance of the base material is high,
Since the dust generation current is low and the nugget diameter when the base material breaks is large, the range of welding conditions is significantly narrower than that of the mild steel plate.

【0011】したがって、本発明は、上記のような従来
技術を改善し、高張力鋼板の抵抗溶接による継手を実現
すべく、ナゲット径を大きくすることなく、比較的広範
囲の溶接条件であっても、ナゲット内破断しにくい溶接
継手およびそのための溶接方法を提供することを目的と
する。
Accordingly, the present invention is to improve the prior art as described above and to realize a joint by resistance welding of a high-strength steel sheet without increasing the nugget diameter, even in a relatively wide range of welding conditions. It is an object of the present invention to provide a welded joint that is less likely to break in a nugget and a welding method therefor.

【0012】[0012]

【課題を解決するための手段】本発明者らは溶接方法を
改善するため様々な高張力鋼板を用いスポット溶接によ
る溶接継手の強度、破断形態に影響を及ぼす因子につい
て研究を行ってきた。
Means for Solving the Problems The present inventors have studied various factors that affect the strength and fracture mode of a welded joint by spot welding using various high-strength steel sheets in order to improve the welding method.

【0013】その結果、図1に発明例として示すよう
に、ナゲット外側の熱影響部の大きさ、つまり熱影響部
の幅を狭くすることにより、ナゲット径が一定の場合で
も、破断形態がナゲット内破断から母材破断に改善され
ることを見出した。
As a result, by reducing the size of the heat-affected zone outside the nugget, ie, the width of the heat-affected zone, as shown in FIG. It has been found that the internal fracture is improved to the base metal fracture.

【0014】これまでにおいても、高張力鋼板の溶接継
手においては、より小さいナゲット径とすることで母材
破断を行わせることが求められていた。しかし、本発明
者らの知る限りこの解決方法についてはこれまで報告例
はない。
Heretofore, it has been demanded that a welded joint made of a high-strength steel plate be made to have a smaller nugget diameter so that the base material is broken. However, as far as the inventors know, there is no report on this solution.

【0015】図1は、ナゲットと熱影響部との位置関係
を示す模式的説明図であり、図の上半分は本発明例であ
って下半分は比較例である。ナゲット径は同一である
が、比較例の場合、コロナボンド部、つまり圧接部を越
えて熱影響部が延在しているのに対して、本発明例の場
合にはコロナボンド部と熱影響部の領域がほぼ重なって
いる。
FIG. 1 is a schematic explanatory view showing the positional relationship between a nugget and a heat-affected zone. The upper half of the figure is an example of the present invention and the lower half is a comparative example. Although the nugget diameter is the same, in the case of the comparative example, the corona bond portion, that is, the heat-affected zone extends beyond the press-contact portion, whereas in the case of the present invention example, the corona-bonded portion and the heat-affected zone extend. The areas of the parts almost overlap.

【0016】なお、図示例は2枚の高張力鋼板に対して
スポット溶接による抵抗溶接をする場合であるが、例え
ば自動車のルーフ部、センターピラーの溶接部のように
3枚以上の高張力鋼板に抵抗溶接する場合も2枚の鋼板
の場合と同様である。なお、一方だけが高張力鋼板の場
合も同様である。以下にあっては2枚の高張力鋼板に抵
抗溶接をする場合を例にとり本発明を説明する。
In the illustrated example, two high-tensile steel sheets are subjected to resistance welding by spot welding. For example, three or more high-tensile steel sheets such as a roof part of an automobile and a welded part of a center pillar are used. Is the same as in the case of two steel plates. The same applies to the case where only one is a high-tensile steel plate. In the following, the present invention will be described by taking as an example a case where resistance welding is performed on two high-tensile steel sheets.

【0017】ここに、スポット溶接部は、電流により溶
融凝固したナゲットとその外側の熱影響部から成り立っ
ている。そしてナゲットに隣接した2枚の板の界面に、
高温の下で圧接されたコロナボンド部が存在する。ここ
にコロナボンド部は具体的には、シートセパレーション
先端までの領域である。
Here, the spot-welded portion comprises a nugget melt-solidified by an electric current and a heat-affected zone outside the nugget. And at the interface between the two plates adjacent to the nugget,
There is a corona bond pressed under high temperature. Here, the corona bond portion is, specifically, an area up to the front end of the sheet separation.

【0018】高張力鋼板の溶接継手の場合、通常の溶接
法では熱影響部はコロナボンド部の外側まで広がってい
るが、この熱影響部の領域をコロナボンド部の先端 (シ
ートセパレーション) より小さくすることで破断形態が
改善される。
In the case of a high-strength steel plate welded joint, the heat-affected zone extends to the outside of the corona-bonded portion in the ordinary welding method, but the area of this heat-affected zone is smaller than the tip of the corona-bonded portion (sheet separation). By doing so, the fracture form is improved.

【0019】つまり、図2(a) に示すように、ナゲット
径が同じでも熱影響部の幅が狭い継手の場合、母材で破
断しやすいが( 発明例参照) 、通常のスポット溶接で得
られる熱影響部の幅が広い継手では、ナゲット内で破断
しやすい( 図2(b) の比較例参照) 。
That is, as shown in FIG. 2 (a), in the case of a joint having the same heat-affected zone width even if the nugget diameter is the same, the joint is easily broken by the base metal (see the invention example). In a joint having a wide heat-affected zone, the joint easily breaks in the nugget (see the comparative example in FIG. 2 (b)).

【0020】さらに、このような継手を得るため、種々
の方法を検討した結果、従来の条件よりも短時間の通電
が有効であることがわかった。このような知見に基づい
て完成した本発明の要旨は下記の通りである。
Further, as a result of studying various methods for obtaining such a joint, it has been found that energization for a shorter time is more effective than conventional conditions. The gist of the present invention completed based on such knowledge is as follows.

【0021】(1) 母材強度440MPa以上、かつ板厚1.2 mm
以上の高張力鋼板に抵抗溶接を行って得た溶接継手であ
って、母材の平均硬さをX、ナゲット内の平均硬さをY
とすると、(X+2Y)/3以上の硬さの熱影響部の大きさ
が、コロナボンド部の径と同等あるいはそれより小さい
ことを特徴とする溶接継手。 (2) 2枚以上の前記高張力鋼板同士に抵抗溶接を行って
得た上記(1) 記載の溶接継手。
(1) Base material strength of 440 MPa or more and sheet thickness of 1.2 mm
A welded joint obtained by performing resistance welding on the above high-tensile steel sheet, wherein the average hardness of the base material is X and the average hardness in the nugget is Y
Then, the size of the heat-affected zone having a hardness of (X + 2Y) / 3 or more is equal to or smaller than the diameter of the corona bond portion. (2) The welded joint according to the above (1), obtained by performing resistance welding on two or more high strength steel sheets.

【0022】(3) 母材強度440MPa以上、かつ板厚1.2 mm
以上の、1枚または2枚以上の高張力鋼板に抵抗溶接を
行う溶接継手の溶接方法であって、 t≦54/TS1/4 t:通電時間 (cycles/60Hz) TS:母材強度 (MPa) を満たす条件で抵抗溶接を行うことを特徴とする溶接継
手の溶接方法。
(3) Base material strength of 440 MPa or more and sheet thickness of 1.2 mm
The welding method of a welded joint for performing resistance welding on one or two or more high-tensile steel sheets, wherein t ≦ 54 / TS 1/4 t: energizing time (cycles / 60Hz) TS: base material strength ( (MPa), resistance welding is performed under conditions that satisfy the following conditions.

【0023】[0023]

【発明の実施の形態】次に、本発明の実施の形態につい
てさらに具体的に説明する。本発明によれば、例えば、
スポット溶接、プロジェクション溶接などの抵抗溶接に
よる溶接継手において、母材での破断を実現すべく、母
材の平均硬さをX、ナゲット内の平均硬さをYとする
と、(X+2Y)/3以上の硬さの熱影響部の大きさが、コロ
ナボンド部の大きさと同等あるいはそれより小さくなる
ようにする。
Next, embodiments of the present invention will be described more specifically. According to the present invention, for example,
In a welded joint by resistance welding such as spot welding and projection welding, if the average hardness of the base material is X and the average hardness in the nugget is Y, then (X + 2Y) / 3 or more, in order to realize fracture in the base material The size of the heat-affected zone of the hardness is made equal to or smaller than the size of the corona bond.

【0024】これは以下のような理由による。スポット
溶接継手の引張せん断試験による破断形態は、母材で破
断する場合の破断荷重:FB と、ナゲット内で破断する
場合の破断荷重FN の大小関係により決まる。つまり、
B >FN → ナゲット内破断 FB <FN → 母材破断 である。
This is based on the following reasons. Breaking form by a tensile shear test spot welded joint, the breaking load when breaking in the base metal: and F B, determined by the magnitude relationship between the breaking load F N in the case of break in a nugget. That is,
Is the F B> F N → nugget within the fracture F B <F N → base material rupture.

【0025】母材で破断する場合の破断荷重FB (N)
と、df :ナゲット中心から破断位置までの距離(mm)、
t:板厚(mm)、TS:母材の引張強度(MPa) の間には一般
に、 FB =a×df ×t×TS (a:定数) の関係がある。また母材で破断する場合の破断位置は、
通常、硬化した熱影響部外周に沿った母材部分である。
Breaking load F B (N) when breaking by base metal
And d f : distance (mm) from the nugget center to the breaking position,
t: sheet thickness (mm), TS: generally between tensile strength of the base material (MPa), F B = a × d f × t × TS (a: constant) relation of. The breaking position when breaking with the base material is
Usually, the base material portion along the outer periphery of the cured heat affected zone.

【0026】したがって熱影響部の幅が狭くなると、ナ
ゲット中心から破断位置までの距離df が小さくなる。
この結果、母材で破断する場合の破断荷重FB が低下す
る。特に、熱影響部の大きさをコロナボンド部端面のシ
ートセパレーションと同等、あるいはそれより小さくな
ると、応力集中部と硬度急変部が一致することにより軟
らかい母材部に歪みが集中し、FB で示す値よりもさら
に破断荷重が低下する。
[0026] Therefore, when the width of the heat affected zone becomes narrower, the distance d f from the nugget center to break position decreases.
As a result, it decreases the breaking load F B in the case of fracture in the base metal. In particular, the size of the heat affected zone equivalent to sheet separation corona bond part end surface or it if becomes smaller than, strain is concentrated on soft base metal by stress concentration portion and the hardness changing part matches, with F B The breaking load is lower than the value shown.

【0027】それに対し、ナゲット内で破断する場合の
破断荷重FN (N) は熱影響部の大きさの影響を受けず、
n :ナゲット径(mm)によりほぼ決まり FN =b×HV ×dn 2 (b:定数、HV :ナゲットの
ビッカース硬さ) で表される。
On the other hand, the breaking load F N (N) when breaking in the nugget is not affected by the size of the heat-affected zone,
d n : almost determined by the nugget diameter (mm) and expressed as F N = b × H V × d n 2 (b: constant, H V : Vickers hardness of nugget).

【0028】このため、ナゲット径が一定の場合でも、
熱影響部の幅が小さくなると相対的に母材側で破断する
のに必要な強度が、ナゲット内で破断するのに必要な強
度より低下するため、母材側で破断しやすくなる。
For this reason, even if the nugget diameter is constant,
When the width of the heat-affected zone is reduced, the strength required to break relatively on the base material side is lower than the strength required for breaking in the nugget, so that the base material side easily breaks.

【0029】特に、熱影響部の大きさをコロナボンド部
端面のシートセパレーション先端と同等あるいはそれよ
り小さくすると、応力集中部と硬度急変部が一致するこ
とにより、軟らかい母材部にひずみが集中しさらに母材
側で破断しやすくなる。なお、以上の知見は引張せん断
試験の結果にもとづくが、十字引張試験、高速引張試験
など試験の方法にかかわらずこの傾向は見られる。
In particular, when the size of the heat-affected zone is equal to or smaller than the front end of the sheet separation at the end face of the corona bond, the strain concentrates on the soft base material because the stress concentration portion coincides with the sudden change in hardness. Further, it is easy to break on the base material side. Although the above findings are based on the results of the tensile shear test, this tendency is observed regardless of the test method such as the cross tensile test and the high-speed tensile test.

【0030】本発明にしたがって熱影響部の大きさをコ
ロナボンド部の大きさと同等あるいは小さくすると、従
来の溶接条件ではJIS A級最小ナゲット径の4.25√tを
得てもナゲット内でナゲット内破断していた鋼種につい
ても、ナゲット内では破断せず母材側で破断するように
なった。
According to the present invention, when the size of the heat-affected zone is equal to or smaller than the size of the corona-bonded portion, even if a JIS A-class minimum nugget diameter of 4.25√t is obtained under the conventional welding conditions, the nugget breaks in the nugget. The steel type that had been broken did not break in the nugget but broke on the base metal side.

【0031】本発明においてコロナボンド部と対比する
部分を(X+2Y)/3 以上の硬さの熱影響部としている理由
は、次の通りである。熱影響部は一般に熱により組織、
冶金的性質、機械的性質などが変化した溶融していない
母材の部分を示す。今回、各種試験片の硬さ分布と破断
位置の関係を調査した結果、(2X+Y)/3の硬さの領域とコ
ロナボンド径の位置関係により、破断形態が転換すると
いう結果が得られたため、熱影響部の中で(2X+Y)/3の部
分と限定した。
The reason why the portion to be compared with the corona bond portion in the present invention is a heat-affected zone having a hardness of (X + 2Y) / 3 or more is as follows. The heat-affected zone is generally organized by heat,
This indicates the portion of the unmelted base metal that has changed in metallurgical properties, mechanical properties, and the like. In this study, we investigated the relationship between the hardness distribution of various test specimens and the fracture position.As a result, it was found that the fracture form was changed by the positional relationship between the (2X + Y) / 3 hardness region and the corona bond diameter. Therefore, it was limited to (2X + Y) / 3 in the heat affected zone.

【0032】なお、本発明例は従来の溶接方法に比べナ
ゲット径が同じでは母材破断するときの継手強度が低く
なるが、低下量は例えば20%以下であり、ほとんど問題
にはならない。破断位置を母材側にすることによる品質
保証上のメリットの方がはるかに大きい。
In the example of the present invention, the joint strength at the time of fracture of the base material is lower when the nugget diameter is the same as compared with the conventional welding method, but the reduction amount is, for example, 20% or less, and there is almost no problem. The merit in quality assurance by setting the fracture position on the base material side is much greater.

【0033】このような狭い硬化域を得るため、継手溶
接に際しては、t≦54≦TS1/4 、ただし、t:通電時間
(cycles/60Hz) 、TS:母材強度(MPa) の条件で溶接する
ことが望ましい。
In order to obtain such a narrow hardened region, at the time of welding a joint, t ≦ 54 ≦ TS 1/4 , where t: energizing time
(cycles / 60Hz), it is desirable to weld under the condition of TS: base metal strength (MPa).

【0034】これは、従来の条件では、高張力鋼板の場
合、熱影響部が大きくなりすぎるためである。つまり母
材強度が高い鋼板ほど、Cなどの元素の添加量が多いた
め、変態点が低くなり、低い温度で焼きが入り、熱影響
部が広くなる。よって短時間で通電し熱の拡散を抑え、
熱影響部を狭くする必要がある。
This is because the heat-affected zone becomes too large in the case of a high-tensile steel plate under the conventional conditions. That is, the higher the strength of the base material, the larger the amount of addition of elements such as C, the lower the transformation point, the lower the temperature, the wider the heat affected zone. Therefore, electricity is supplied in a short time to suppress the diffusion of heat,
It is necessary to narrow the heat-affected zone.

【0035】本発明者らの検討の結果、t=54/TS1/4
満たす条件で溶接すると、コロナボンド部の径と熱影響
部の大きさがほぼ一致することが判明した。このためt
≦54/TS1/4を満たす条件で溶接する必要がある。
As a result of the study by the present inventors, it was found that the diameter of the corona bond portion and the size of the heat-affected zone were almost the same when welding was performed under the condition that t = 54 / TS 1/4 . Therefore t
It is necessary to weld under conditions that satisfy ≦ 54 / TS 1/4 .

【0036】図3は、通電時間による硬さ分布の比較を
示すグラフで、引張強度590MPa、厚さ1.4 mmの高張力鋼
板にそれぞれ通電時間10サイクル/60Hz(本発明例) 、17
サイクル/60Hz(比較例)でスポット溶接を行ったときの
ナゲット径と熱影響部の大きさ、コロナボンド部の大き
さの関連を示す。図3の結果からは、通電時間は短けれ
ば短いほど熱影響部は狭くなることが分かる。
FIG. 3 is a graph showing a comparison of the hardness distribution according to the energizing time. A high-strength steel sheet having a tensile strength of 590 MPa and a thickness of 1.4 mm was energized for 10 cycles / 60 Hz (Example of the present invention).
The relationship between the nugget diameter, the size of the heat-affected zone, and the size of the corona bond when spot welding is performed at a cycle of 60 Hz (comparative example) is shown. From the results shown in FIG. 3, it can be seen that the shorter the energization time, the narrower the heat-affected zone.

【0037】この条件は、RMWAのA級継手の製造条件よ
りさらに短い条件であり、板厚による条件の違いはない
という特徴をもつ。このとき加圧力、保持時間など通電
時間以外の溶接条件については、検討の結果、熱影響部
の大きさに影響を与えなかったため特に規定しない。
This condition is shorter than the manufacturing condition of the RMWA class A joint, and has the feature that there is no difference in the condition depending on the plate thickness. At this time, welding conditions other than the energizing time, such as the pressing force and the holding time, are not particularly specified because the examination did not affect the size of the heat-affected zone.

【0038】ただし、高張力鋼板の場合、チリが飛びや
すいので軟鋼より高い加圧条件が望ましい。電流値は鋼
種、表面処理、加圧力により全く異なるので、それぞれ
の鋼板に最適な電流値で溶接すればよいが、通常は、チ
リ発生直前の電流値が望ましい。
However, in the case of a high-tensile steel sheet, dust is liable to fly, so that a higher pressing condition than that of mild steel is desirable. Since the current value is completely different depending on the type of steel, surface treatment, and pressing force, welding may be performed with an optimum current value for each steel sheet. However, usually, the current value immediately before the occurrence of dust is desirable.

【0039】本発明における具体的溶接条件は、これに
よって本発明を制限するものではないが、次の通りであ
る。 加圧力 :350 〜440 (kgf) 通電時間:6〜25 cycles/60Hz 電流値 :5800〜10000 (A) 電極保持:0〜60 cycles/60Hz このように、本発明にかかる溶接継手にあっては、4.25
√tのナゲット径の場合であって、通常の継手ではナゲ
ット内破断するときでも、ナゲット内破断することはな
い。
The specific welding conditions in the present invention are not limited by the present invention, but are as follows. Pressing force: 350 to 440 (kgf) Energizing time: 6 to 25 cycles / 60Hz Current value: 580 to 10,000 (A) Electrode holding: 0 to 60 cycles / 60Hz Thus, in the case of the welded joint according to the present invention, , 4.25
In the case of a nugget diameter of Δt, even in a normal joint, even if the inside of the nugget breaks, the inside of the nugget does not break.

【0040】[0040]

【実施例】以下、実施例によって本発明の作用効果をさ
らに具体的に説明する。本発明に関わる高張力鋼板のス
ポット溶接継手部において、溶接部で破断するか否かを
実証するため、表1に示す供試材についてスポット溶接
を行った。
EXAMPLES Hereinafter, the working effects of the present invention will be described more specifically with reference to examples. In the spot welded joint portion of the high-tensile steel sheet according to the present invention, spot welding was performed on the test materials shown in Table 1 in order to verify whether or not the welded portion would break.

【0041】使用した鋼種は、板厚の異なる440 〜780
MPa クラスの高張力鋼板であった。ダブルR型電極(T-C
T-R-16×6A) を使用した。溶接条件を表2に示す。供試
材の溶接は、チリ発生電流値以下で行った。供試材はウ
エスで軽く拭き表面のホコリを取り除いているが、脱脂
は行っていない。ナゲット径一定 (4.25√t) として、
比較を行った。
The steel type used was 440 to 780 having different plate thicknesses.
It was a high strength steel sheet of MPa class. Double R-type electrode (TC
TR-16 × 6A) was used. Table 2 shows the welding conditions. Welding of the test material was performed at a dust generation current value or less. The specimen was lightly wiped with a rag to remove dust on the surface, but was not degreased. Assuming a constant nugget diameter (4.25√t),
A comparison was made.

【0042】図4に示すように、硬さは板の界面より0.
2 mm離れた位置で測定して求めた。結果を表3に示す
が、表3の熱影響部の位置は硬さ(X+2Y)/3以上の熱影
響部とコロナボンド部の位置との相対値で示している。
熱影響部の方が大きい場合は+、小さい場合は−として
いる。
As shown in FIG. 4, the hardness is 0.1 mm from the plate interface.
It was determined by measuring at a position 2 mm apart. The results are shown in Table 3. In Table 3, the position of the heat-affected zone is indicated by the relative value between the position of the heat-affected zone having hardness (X + 2Y) / 3 or more and the position of the corona bond portion.
When the heat affected zone is larger, the value is +, and when it is smaller, the value is-.

【0043】JIS Z 3136に準拠して引張せん断試験片を
作製し、引張せん断試験で溶接条件の影響を評価した。
破断形態について調査した結果を同じく表3に示す。こ
れらの結果からも分かるように、比較例ではナゲット内
破断しているのに対し、本発明例では母材破断している
ことが確認された。同じ鋼種を用いJIS Z 3137に準拠し
十字引張試験した結果を表4に示す。
A tensile shear test piece was prepared in accordance with JIS Z 3136, and the influence of welding conditions was evaluated by a tensile shear test.
Table 3 also shows the results of the investigation on the fracture mode. As can be seen from these results, it was confirmed that the inside of the nugget was broken in the comparative example, whereas the base material was broken in the example of the present invention. Table 4 shows the results of a cross tension test using the same steel type in accordance with JIS Z 3137.

【0044】この場合の破断形態は図5(a) 、(b) のよ
うになり、図5(b) の比較例でも引張せん断試験のよう
なナゲット内全面では破断しないが、亀裂がナゲット内
に進展する破断形態が見られる。これに対し、本発明に
より溶接した試験片は、図5(a) に示すように、すべて
母材側で破断している。これも、熱影響部が狭くなるこ
とによりナゲット内よりも母材側に応力が集中し、比較
的小さい荷重で母材破断しやすくなったためである。
The fracture mode in this case is as shown in FIGS. 5 (a) and 5 (b). Even in the comparative example of FIG. 5 (b), the fracture does not occur on the entire surface of the nugget as in the tensile shear test, but the crack is formed in the nugget. The morphology of the rupture evolving to the surface is seen. On the other hand, all the test pieces welded according to the present invention were broken on the base material side as shown in FIG. 5 (a). This is also because the heat-affected zone becomes narrower, so that stress is concentrated on the base material side rather than inside the nugget, and the base material is easily broken with a relatively small load.

【0045】本例で高速剥離試験に使用した試験片形状
をを図6に示す。図示のように試験片が90度曲がってい
る部分を重ね、スポット溶接した。試験片つかみ部には
直径10mmの穴があいており、その部分を高速引張試験機
に取り付け、図中、白抜き矢印で示す方向に引張荷重を
加えた。このときナゲットには剥離方向の応力がかか
る。歪み速度は4.0 ×103 /secとなるように調整した。
FIG. 6 shows the shape of the test piece used in the high-speed peeling test in this example. As shown in the drawing, portions where the test pieces were bent at 90 degrees were overlapped and spot-welded. A hole having a diameter of 10 mm was formed in the grip portion of the test piece, and the hole was attached to a high-speed tensile tester, and a tensile load was applied in the direction indicated by a white arrow in the figure. At this time, a stress in the peeling direction is applied to the nugget. The strain rate was adjusted to be 4.0 × 10 3 / sec.

【0046】この時の破断形態は図7(a) 、(b) のよう
に引張せん断試験の場合と同様にそれぞれ母材破断、ナ
ゲット内破断がみられる。実験の結果は表5にまとめて
示す。表5に示すように比較例ではナゲット内に亀裂が
進展し破断しているのに対し、本発明例ではナゲット内
に亀裂は進展せず、すべて母材で破断する。
As shown in FIGS. 7 (a) and 7 (b), the fracture mode at this time is a fracture of the base material and a fracture in the nugget as in the case of the tensile shear test. The results of the experiment are summarized in Table 5. As shown in Table 5, in the comparative example, the crack propagated in the nugget and broke, whereas in the present invention example, the crack did not propagate in the nugget, and all fractured in the base material.

【0047】以上のように、本発明に係る高張力鋼板の
抵抗溶接継手は、熱影響部の大きさをコロナボンド部の
径の大きさと同等あるいは小さいことを特徴とした継手
であり、溶接部ではなく母材側に応力集中させること
で、母材破断させることができる。
As described above, the high-strength steel sheet resistance welding joint according to the present invention is characterized in that the size of the heat-affected zone is equal to or smaller than the diameter of the corona bond portion. Instead, the base material can be broken by concentrating the stress on the base material side.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【発明の効果】以上、詳述してきたように、本発明によ
れば、母材強度440MPa以上の高張力鋼板の溶接継手の信
頼性を高めることができ、特に自動車の軽量化に有効な
溶接継手が実現されるため、本発明の実際上の意義は大
きい。
As described above in detail, according to the present invention, it is possible to enhance the reliability of a welded joint of a high-tensile steel plate having a base material strength of 440 MPa or more, and particularly to a welding method effective for reducing the weight of an automobile. Since the joint is realized, the practical significance of the present invention is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例および比較例による溶接継手における
引張せん断試験による破断位置を示す模式的説明図であ
る。
FIG. 1 is a schematic explanatory view showing a fracture position in a tensile shear test in a welded joint according to an example of the present invention and a comparative example.

【図2】図2(a) および(b) は、それぞれ本発明例およ
び比較例による溶接継手における引張せん断試験による
破断位置を示す模式的説明図である。
FIGS. 2 (a) and 2 (b) are schematic explanatory views showing fracture positions in a tensile shear test of welded joints according to the present invention and comparative examples, respectively.

【図3】通電時間による硬さ分布の比較を示すグラフで
ある。
FIG. 3 is a graph showing a comparison of a hardness distribution according to an energization time.

【図4】実施例における硬度測定位置の説明図である。FIG. 4 is an explanatory diagram of a hardness measurement position in the embodiment.

【図5】十字引張試験による破断形態の模式的説明図で
あって、図5(a) は母材破断の場合を、図5(b) はナゲ
ット内破断の場合を示す。
5A and 5B are schematic explanatory views of a fracture mode by a cross tension test, in which FIG. 5A shows a case of a base material fracture and FIG. 5B shows a case of a nugget internal fracture.

【図6】高速剥離試験の試験片形状の模式的説明図であ
る。
FIG. 6 is a schematic explanatory view of a test piece shape in a high-speed peel test.

【図7】高速剥離試験による破断形態の模式的説明図で
あって、図7(a) は母材破断の場合を、図7(b) はナゲ
ット内破断の場合を示す。
FIGS. 7A and 7B are schematic explanatory views of a fracture mode by a high-speed peeling test, in which FIG. 7A shows a case of a base material fracture and FIG. 7B shows a case of a fracture in a nugget.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 清之 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 勝倉 誠人 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4E065 EA04 EA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoyuki Fukui 4-33, Kitahama, Chuo-ku, Osaka City Within Sumitomo Metal Industries Co., Ltd. (72) Inventor Masato Katsukura 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Automobile Co., Ltd. F-term (reference) 4E065 EA04 EA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母材強度440MPa以上、かつ板厚1.2 mm以
上の高張力鋼板に抵抗溶接を行って得た溶接継手であっ
て、母材の平均硬さをX、ナゲット内の平均硬さをYと
すると、(X+2Y)/3以上の硬さの熱影響部の大きさが、
コロナボンド部の径と同等あるいはそれより小さいこと
を特徴とする溶接継手。
1. A welded joint obtained by performing resistance welding on a high-strength steel plate having a base material strength of 440 MPa or more and a plate thickness of 1.2 mm or more, wherein the average hardness of the base material is X, the average hardness in the nugget. Let Y be the size of the heat-affected zone with a hardness of (X + 2Y) / 3 or more,
A welded joint characterized by being equal to or smaller than the diameter of the corona bond.
【請求項2】 2枚以上の前記高張力鋼板同士に抵抗溶
接を行って得た請求項1記載の溶接継手。
2. The welded joint according to claim 1, wherein two or more high-strength steel sheets are subjected to resistance welding.
【請求項3】 母材強度440MPa以上、かつ板厚1.2 mm以
上の、1枚または2枚以上の高張力鋼板に抵抗溶接を行
う溶接継手の溶接方法であって、 t≦54/TS1/4 t:通電時間 (cycles/60Hz) TS:母材強度 (MPa) を満たす条件で抵抗溶接を行うことを特徴とする溶接継
手の溶接方法。
3. A welding method for a welded joint for performing resistance welding on one or two or more high-tensile steel sheets having a base material strength of 440 MPa or more and a sheet thickness of 1.2 mm or more, wherein t ≦ 54 / TS 1 / 4 t: Energizing time (cycles / 60Hz) TS: Welding method for welded joints characterized by performing resistance welding under conditions that satisfy base metal strength (MPa).
JP11179884A 1999-06-25 1999-06-25 Welding joint of high tensile steel plate and welding method Withdrawn JP2001009573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11179884A JP2001009573A (en) 1999-06-25 1999-06-25 Welding joint of high tensile steel plate and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11179884A JP2001009573A (en) 1999-06-25 1999-06-25 Welding joint of high tensile steel plate and welding method

Publications (1)

Publication Number Publication Date
JP2001009573A true JP2001009573A (en) 2001-01-16

Family

ID=16073593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11179884A Withdrawn JP2001009573A (en) 1999-06-25 1999-06-25 Welding joint of high tensile steel plate and welding method

Country Status (1)

Country Link
JP (1) JP2001009573A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001839A (en) * 2007-06-19 2009-01-08 Kobe Steel Ltd High strength spot welded joint
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method
US20120225313A1 (en) * 2011-03-03 2012-09-06 GM Global Technology Operations LLC Composite manufacture
KR20160117575A (en) 2014-03-14 2016-10-10 신닛테츠스미킨 카부시키카이샤 Welded structure and method for manufacturing welded structure
JP2017035722A (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Spot weld zone, manufacturing method of spot weld zone, and strength judgement method of spot weld zone
JP2017035723A (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Spot weld joint, manufacturing method of spot weld joint, and strength judgement method of spot weld joint
JPWO2014208747A1 (en) * 2013-06-27 2017-02-23 高周波熱錬株式会社 Welded structural member and welding method
RU2689293C1 (en) * 2015-09-03 2019-05-24 Ниппон Стил Энд Сумитомо Метал Корпорейшн Spot welding method
CN115103923A (en) * 2020-02-13 2022-09-23 日本制铁株式会社 Bonded member and method for manufacturing same
WO2023234390A1 (en) * 2022-06-01 2023-12-07 日本製鉄株式会社 Projection-welded joint and production method for projection-welded joint
WO2023234391A1 (en) * 2022-06-01 2023-12-07 日本製鉄株式会社 Spot welded joint and method for manufacturing spot welded joint

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001839A (en) * 2007-06-19 2009-01-08 Kobe Steel Ltd High strength spot welded joint
WO2011013793A1 (en) * 2009-07-31 2011-02-03 高周波熱錬株式会社 Welded structural member and welding method
CN102596481A (en) * 2009-07-31 2012-07-18 高周波热炼株式会社 Welded structural member and welding method
JP5467480B2 (en) * 2009-07-31 2014-04-09 高周波熱錬株式会社 Welded structural member and welding method
US9498840B2 (en) 2009-07-31 2016-11-22 Neturen Co., Ltd. Welding structural part and welding method of the same
US20120225313A1 (en) * 2011-03-03 2012-09-06 GM Global Technology Operations LLC Composite manufacture
US8481170B2 (en) * 2011-03-03 2013-07-09 GM Global Technology Operations LLC Composite manufacture
JPWO2014208747A1 (en) * 2013-06-27 2017-02-23 高周波熱錬株式会社 Welded structural member and welding method
KR20190018563A (en) 2014-03-14 2019-02-22 신닛테츠스미킨 카부시키카이샤 Welded structure and method for manufacturing welded structure
RU2660483C2 (en) * 2014-03-14 2018-07-06 Ниппон Стил Энд Сумитомо Метал Корпорейшн Welded structure and method for manufacturing welded structure
KR20160117575A (en) 2014-03-14 2016-10-10 신닛테츠스미킨 카부시키카이샤 Welded structure and method for manufacturing welded structure
JP2017035723A (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Spot weld joint, manufacturing method of spot weld joint, and strength judgement method of spot weld joint
JP2017035722A (en) * 2015-08-12 2017-02-16 Jfeスチール株式会社 Spot weld zone, manufacturing method of spot weld zone, and strength judgement method of spot weld zone
RU2689293C1 (en) * 2015-09-03 2019-05-24 Ниппон Стил Энд Сумитомо Метал Корпорейшн Spot welding method
US11007598B2 (en) 2015-09-03 2021-05-18 Nippon Steel Corporation Spot welding method
CN115103923A (en) * 2020-02-13 2022-09-23 日本制铁株式会社 Bonded member and method for manufacturing same
WO2023234390A1 (en) * 2022-06-01 2023-12-07 日本製鉄株式会社 Projection-welded joint and production method for projection-welded joint
WO2023234391A1 (en) * 2022-06-01 2023-12-07 日本製鉄株式会社 Spot welded joint and method for manufacturing spot welded joint

Similar Documents

Publication Publication Date Title
KR101923944B1 (en) Method of resistance spot welding and method of evaluating welded joint manufactured by method of resistance spot welding
KR101419191B1 (en) Method for joining differing materials
JP2008229720A (en) Spot-welded joint of high-strength steel sheets excellent in tensile strength, automotive component having the same joint, and spot-welding method of high-strength steel sheets
JP5151615B2 (en) Spot welding method for high strength steel sheet
JP2001009573A (en) Welding joint of high tensile steel plate and welding method
JP2012187617A (en) Joined body of high tensile strength steel sheet and resistance welding method for high tensile strength steel sheet
JPH07328774A (en) Dissimilar material joining method of aluminum and steel
JP4690087B2 (en) Dissimilar joints of steel and aluminum and their joining methods
JPH07178563A (en) Joining method and joining structure by spot welding using together press welding
KR102650264B1 (en) Resistance spot welding method and manufacturing method of resistance spot welding seam
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP7003806B2 (en) Joined structure and its manufacturing method
JP4469165B2 (en) Dissimilar joints of steel and aluminum and their joining methods
JP2000202563A (en) High strength steel plates joining method providing excellent tensile characteristic and fatigue characteristic
JP5626391B2 (en) Resistance spot welded joint
JP7021591B2 (en) Joined structure and its manufacturing method
WO2020105267A1 (en) Joint structure and method for manufacturing joint structure
JPH031106B2 (en)
JP4838491B2 (en) Dissimilar joints of steel and aluminum
JP7299192B2 (en) Manufacturing method of resistance welded member
JP6451487B2 (en) Judgment method for spot welds with excellent delamination strength
WO2023008263A1 (en) Resistance spot welding method
JP5510582B2 (en) Resistance spot welding method
KR102589429B1 (en) Resistance spot welding method, manufacturing method of resistance spot welding seam
JP7335196B2 (en) Manufacturing method of resistance welded member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905