JP2001009035A - Respiration assistance method - Google Patents

Respiration assistance method

Info

Publication number
JP2001009035A
JP2001009035A JP11221574A JP22157499A JP2001009035A JP 2001009035 A JP2001009035 A JP 2001009035A JP 11221574 A JP11221574 A JP 11221574A JP 22157499 A JP22157499 A JP 22157499A JP 2001009035 A JP2001009035 A JP 2001009035A
Authority
JP
Japan
Prior art keywords
patient
pressure
mouth
variable resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11221574A
Other languages
Japanese (ja)
Inventor
Tetsuo Adachi
哲夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIVISION CORP
Original Assignee
AIVISION CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIVISION CORP filed Critical AIVISION CORP
Priority to JP11221574A priority Critical patent/JP2001009035A/en
Publication of JP2001009035A publication Critical patent/JP2001009035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the decrease of the respiration work done in spontaneous respiration and over pressure and to decrease the expiration work. SOLUTION: An air feed pipe is connected to one connecting port of a three- way connecting pipe 13 and a patient's mouth 3 is connected to the second connecting port of the three-way connecting pipe 13. Further, a variable resistor 12 which is controllable from outside is mounted ate the third connecting port. A means for passing the air feed gas of a stationary flow to a patient circuit opening the outlet of the variable resistor 12 to the atmosphere and measuring the internal pressure of the respiratory tract of the patient's mouth making respiration is provided. The waveforms of the internal pressure of the respiratory tract of the patient's mouth is controlled by changing the variable resistor so as to meet the purpose of treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】この発明は人工呼吸を必要と
する呼吸疾患患者への呼吸補助法の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a respiratory assist method for a respiratory disease patient who needs artificial respiration.

【0002】[0002]

【従来の技術】近年プレッシャーサポートと称する圧力
による呼吸補助法が一般化しつつある。この方法ではあ
らかじめ補助する気道内圧を定めておき,患者が吸気を
開始した事を検知すると直ちに送気弁を開いて送気ガス
を送り出し,一方患者口元の圧を検出して,補助すべき
圧に保つよう流量を制御する。この際何時患者への送気
を停止するかは, 1.患者が吸入する流量が一定の流量以下になった事, 2.流量を制御しても気道内圧が目標とする補助圧を維
持できずその値を一定値を超えて上回る時, 3.吸気時間があらかじめ定めた時間に達した時,の何
れかの条件が満たされた時とされるのが一般的である。
この方法は患者の吸気仕事量を減らし,且つ過度の気道
内圧の上昇を抑える効果があり,重症呼吸疾患患者の治
療に広く用いられるようになっており,この方法を実施
可能な人工呼吸器が数多く市場にある。
2. Description of the Related Art In recent years, a pressure assisted breathing assist method called pressure support has become popular. In this method, the airway pressure to be assisted is determined in advance, and when it is detected that the patient has started inhaling, the air supply valve is opened and the insufflation gas is sent out immediately, while the pressure at the mouth of the patient is detected and the pressure to be assisted is detected. Control the flow rate to keep At this time, when to stop the air supply to the patient, 1. The flow rate inhaled by the patient has dropped below a certain level. 2. When the airway pressure cannot maintain the target assist pressure even if the flow rate is controlled and exceeds the value beyond a certain value; Generally, when any one of the conditions is satisfied when the intake time reaches a predetermined time.
This method has the effect of reducing the inspiratory work of the patient and suppressing excessive rise in the airway pressure, and has become widely used in the treatment of patients with severe respiratory disease. There are many in the market.

【0003】[0003]

【発明が解決しようとする課題】しかしこのような制御
を実行する機構は,患者口元の気道内圧を人工呼吸器の
本体から送出する送気ガスの流量の増減により一定に保
つフィードバックを行おうとするものであり,以下に述
べるようにその実現は困難で,装置も複雑になる。すな
わち現実の装置では,患者口元と人工呼吸器本体との間
は通常約2mに及ぶ可とう性のある蛇管で接続しなけれ
ばならず,これは圧力制御のループにおける大きな遅れ
要素となり,正確で応答性のよい制御特性を得るのは困
難である。また,このような制御は吸気相に於いてのみ
で,呼気相では無効であるが,呼気相では呼気側の蛇管
や呼気弁の抵抗が存在し呼気仕事を発生する。患者が自
発呼吸を患者回路につながれたまま行う時,閉回路であ
る患者回路の抵抗は吸気呼気の何れでも患者に追加の呼
吸仕事量を与える事になり,コンプライアントなバッグ
を患者回路に追加する方法でその欠点が補われてきた
が,呼気終末陽圧(CPAP)を施行する場合などは,
CPAP圧を与える素子の抵抗が無視できず,呼気仕事
が生じる等の問題を含んでいた。この発明はこのような
点を解決する圧による補助呼吸法を提供する事に関する
ものである。
However, the mechanism for performing such control attempts to provide feedback to keep the airway pressure at the patient's mouth constant by increasing or decreasing the flow rate of the insufflation gas delivered from the body of the ventilator. As described below, the realization is difficult and the device becomes complicated. That is, in a real device, the connection between the mouth of the patient and the body of the ventilator must be connected by a flexible coil, which usually has a length of about 2 m, which is a large delay element in the pressure control loop and is accurate. It is difficult to obtain a responsive control characteristic. Further, such control is performed only in the inspiratory phase, and is ineffective in the expiratory phase. However, in the expiratory phase, the resistance of the coiled tube and the exhalation valve on the exhalation side exists, and exhalation work is generated. When a patient performs spontaneous breathing while connected to the patient circuit, the resistance of the patient circuit, which is a closed circuit, will give the patient additional work of breathing in any of inspiration and expiration, and will add a compliant bag to the patient circuit. Method has compensated for the shortcomings, but when performing positive end-expiratory pressure (CPAP),
The resistance of the element for applying the CPAP pressure cannot be ignored, and there are problems such as the occurrence of exhalation work. The present invention relates to providing a pressure assisted breathing method which solves such a problem.

【0004】[0004]

【課題を解決するための手段】即ち吸気ガス送出系での
送気ガスの流量を精密に制御して患者口元での圧補助を
行う代わりに,従来の人工呼吸器で用いていたオンオフ
制御の呼気弁の代わりとして制御可能な流路での可変抵
抗素子を用いて,呼吸している患者口元の気道内圧を高
速応答で治療目的に応じた制御を行い,従来のプレッシ
ャーサポートより優れた圧補助を可能にするものであ
る。この発明の発明者は先に可変圧力リミッタ素子を用
いる呼吸補助法を特許申請しており(呼吸補助法平成4
年4月24日出願番号特願平−151091),この発
明は先願の呼吸補助法と同じ患者の圧呼吸補助の改善を
目的とする。更に具体的に共通な点を述べれば,患者口
元の気道内圧を,患者の吸気および呼気で,人工呼吸器
に対してしなければならない呼吸仕事量をゼロにするよ
う,又は状況によっては気管内チューブや患者の呼吸器
の病変で増加した呼吸仕事量を減らすように,吸気ガス
の流れが生じる圧力を利用して制御する事である。先願
の呼吸補助法においては,患者回路の従来の概念での呼
気弁として,非線形の概念を持った圧力リミッタと言う
実態として受動的な回路素子を用いて目的を実現するの
に対して,この発明は線形的動作を行う可変抵抗回路素
子を用いて,ネガティブフィードバック制御を行って目
的を達成するという概念で異なっている。従って本発明
の方法では,先願では患者の呼吸の如何に関わらず口元
の気道内圧を一定に保つ事であったのに対し,治療目的
に応じた任意圧力波形で精密かつ高速に制御が可能にな
る。たとえば,気管内チューブの瞬時流量に対する圧力
降下分のみを患者口元でゼロ圧より高く与えれば,気管
内チューブの抵抗損失のみを補償する事が可能である。
また比例支援式人工呼吸方式(特開平5−115554
平成3年10月18日)では,瞬時流量に対する患者の
呼吸器系のコンプライアンスと抵抗値による圧力損失を
患者口元の気道内圧で補償するが,本発明の方法を応用
してこの呼吸法を実現する事も可能である。
In other words, instead of precisely controlling the flow rate of the insufflation gas in the inspiratory gas delivery system and performing pressure assist at the patient's mouth, the on-off control used in the conventional ventilator is used. Uses a variable resistance element in the controllable flow path instead of the exhalation valve to control the airway pressure at the mouth of the breathing patient in response to the treatment purpose with high-speed response. Is what makes it possible. The inventor of the present invention has previously filed a patent application for a respiratory assist method using a variable pressure limiter element (Heisei 4).
The present invention aims to improve the pressure-respiratory assistance of a patient in the same manner as the prior-art respiratory assist method. More specifically, the airway pressure at the mouth of the patient should be reduced to zero the amount of respiratory work required for the ventilator during inspiration and expiration of the patient, or in some The control is based on the pressure at which the flow of inspired gas occurs, so as to reduce the increased work of breathing due to lesions in the tube and the patient's respiratory tract. In the respiratory assist method of the prior application, the purpose is realized by using a passive circuit element as a pressure limiter having a non-linear concept as an exhalation valve in the conventional concept of a patient circuit, The present invention is different from the concept that the objective is achieved by performing negative feedback control using a variable resistance circuit element that performs a linear operation. Therefore, according to the method of the present invention, while the prior application was to maintain the airway pressure at the mouth constant regardless of the patient's respiration, precise and high-speed control is possible with an arbitrary pressure waveform according to the purpose of treatment. become. For example, if only the pressure drop with respect to the instantaneous flow rate of the endotracheal tube is given higher than zero pressure at the patient's mouth, it is possible to compensate only for the resistance loss of the endotracheal tube.
In addition, a proportional support type artificial respiration system (Japanese Unexamined Patent Application Publication No. 5-115554)
On October 18, 1991, the patient's respiratory system compliance with the instantaneous flow rate and the pressure loss due to the resistance were compensated by the airway pressure at the mouth of the patient, and this method of breathing was realized by applying the method of the present invention. It is also possible to do.

【0005】[0005]

【発明実施の形態】図1は従来のプレッシャーサポート
法を実施する人工呼吸器1の構成例を示す。患者2が吸
気を開始した事を口元3の気道内圧を導入チューブ4を
介して測る圧力センサ5が検知すると制御部6は主バル
ブ7を開いて供給圧源8からのガスを送出する。この時
同時に呼気弁9を閉じる。患者2の口元3の気道内圧を
吸気相で予め定めた陽圧の補助圧に保つために,制御部
6は圧力センサ5から得られる圧力値を連続的に設定補
助圧と比較して,高ければ主バルブ7を制御して流量を
減らし,低ければその逆の制御をする。主バルブ7と口
元3までは可とう性のある蛇管10でつながれており,
このためこの制御ループ系には大きな時間遅れが発生
し,安定性と応答性のよい制御系の実現は困難である。
このため吸気相での平坦な補助圧を,種々の呼吸器系イ
ンピーダンスを有する患者で得る事が困難であり,また
標準的状態で台形上の安定な圧力波形を得る事が出来て
も,気道抵抗が増加すると立ち上がりでオーバーシュー
トを生じたり振動波形になったり,また気道抵抗が低
く,コンプライアンスが大きくなると全く目標の補助圧
にも達しないで吸気相が終わってしまうような状態が生
じ,何らかの特性の妥協が必要になる。次に本発明の実
施例を図2に示す。図1と異なる点は図1における呼気
弁9の代わりに,患者2の口元の三方接続管13の一つ
の接続口近くに可変抵抗12を使う事である。その動作
を以下に説明する。主バルブ7は常時患者2が必要とす
る可能性のある最大瞬間流量を下回らない一定流量のガ
ス流が下手に発生するように開口している。患者2が呼
吸をしていない時,可変抵抗12は,制御部6の制御に
より大気圧,もしくは陽圧呼気終末圧(PEEP)を適
用する場合はその設定圧を患者口元3に与えるように抵
抗を減少している。患者2が吸気を開始すると患者口元
3の気道内圧は下降し始める。制御部6は反応してその
制御信号により可変抵抗12は直ちに抵抗を連続的に増
加させて患者口元3の圧を,予め定められた補助圧にと
どまるよう作動する。患者2の吸気流量は一般的には吸
気相当初は大きく次第に減少するから,可変抵抗12は
その変化に応じて抵抗値を変化して補助圧を保とうとし
ており,吸気相の最後に呼気相のでの状態に戻る事にな
る。この発明における圧力制御ループでは,可変抵抗1
2が圧力制御点である患者口元3の直近に配置されてい
るため,時間遅れが小さくループ設定を高く設定できる
ので,従来方式に比べ飛躍的に向上する。以上は吸気相
についての従来方式に対するこの発明による方式の優位
性を述べた。次に呼気相における動作について説明す
る。患者2は吸気が終わると,当然吸ったガスを排出し
始める。呼気相が始まると,患者口元3の下手には前記
の一定値の流量に患者の排出する呼気ガスが加わった量
のガス流が流れて可変抵抗12を経て大気に排出され
る。図1の従来方式では患者の呼気ガスは呼気弁9の開
放時の固有残留抵抗を経由して排出されるが,この抵抗
は無視できず,特に呼気初期の重畳した流量に対して呼
出時間を延伸して平均気道内圧を上昇させ循環系への悪
影響を与え,また呼出努力を誘発して呼気仕事量を与え
る事になる。本発明の場合,呼気弁9の代わりの可変抵
抗12は呼気相においても動作しており,呼気相で保つ
べき気道内圧を維持する。即ち抵抗値を更に減少させて
呼気相での圧力上昇を防ぐ。但し何らかの流量が存在す
る状態では,抵抗をゼロにする事は現実には不可能であ
り,気道内圧をゼロに保つ場合についてはいくらかの圧
力上昇は避けられない。以上のように本発明では,患者
口元3の気道内圧を測定して,吸気及び呼気の全時間に
わたって可変抵抗12を制御して吸気呼気それぞれに治
療上望ましい圧力パターンを与える事が可能になる。圧
力パターンとしては従来の間欠陽圧呼吸における2つの
圧力値を交互にとる場合や,気管内チューブの圧力損失
を補償するようなパターンを与えることも含まれる。ま
た従来のプレッシャーサポート呼吸の場合,吸気終了の
先行指標してのフローターミネーションを行うために患
者吸気流量の測定が必須となるが,この発明では,モニ
タリングの観点からは望ましいが,誤動作,死腔の付加
およびコストの点からはマイナス面のある患者流量のモ
ニタリングは不必要である。次に可変抵抗12の具体的
実現例を説明する。図3は可変抵抗12の具体例であ
る。この例は,従来のダイアフラム式呼気弁と同様の構
造であり,ダイアフラム101とガスの出口である円筒
の先端面の弁座102とのギャップ107をゼロから数
mm程度まで変化させて,ギャップ107を抜けるガス
流108に可変の抵抗を与えて実現している。ギャップ
107の距離はダイヤフラム101をサーボモータ10
3の回転を軸方向を拘束されたボールネジ104に伝
え,ボールネジ104に取り付けられた回転を拘束され
たナット105に取り付けられた駆動バ−106が直線
往復運動を行う。駆動バ−106の先にダイアフラム1
01が取り付けられいる。ダイヤフラム101と弁座1
02の端面が接触すると,可変抵抗12は抵抗が無限大
すなわち閉状態になり,従来方式での呼気弁9が閉鎖し
ている状態と同様である。ダイアフラム101と弁座1
02のギャップ107に対しての圧力降下即ち抵抗の変
化の例を図4に示す。この図で明らかなように,この方
式ではギャップ107がゼロから2mmでの抵抗変化が
大きい。この事は制御ループの素子としてゲインが大き
い事を意味し,適切なチューニングによりより良い精度
の良い制御が可能になる。図5はこの発明の実施例で,
シュミレータで自発呼吸を与えた場合の気道内圧と患者
流量の変化を,制御系にPEEP値10および20cm
Oを保つよう目標を与えて動作させている例として
示した。この例で明らかなように,吸気呼気による流量
の変化に関わらず,気道内圧はPEEP設定圧からほと
んど振れない。以上のように患者口元3で高速応答の可
変抵抗12を制御するする事により制御特性が向上し,
かつ,接続による抵抗損失による圧力変動がなくなるの
で理想的圧呼吸補助が可能になる。可変抵抗の実現方法
としては,上記の述べたダイアフラム駆動方式以外に
も,およそ流路抵抗を高速に変化でき,回路に過剰な死
腔を与えない構造であれば応用可能であり,これら各種
の可変抵抗を使用する呼吸補助法もこの発明の請求範囲
に含まれるものである。
FIG. 1 shows an example of the configuration of a ventilator 1 for implementing a conventional pressure support method. When the pressure sensor 5 that measures the airway pressure in the mouth 3 via the introduction tube 4 detects that the patient 2 has started inhaling, the control unit 6 opens the main valve 7 and sends out the gas from the supply pressure source 8. At this time, the exhalation valve 9 is closed at the same time. In order to maintain the airway pressure at the mouth 3 of the patient 2 at a predetermined positive auxiliary pressure in the inspiratory phase, the control unit 6 continuously compares the pressure value obtained from the pressure sensor 5 with the set auxiliary pressure and increases the pressure value. For example, the main valve 7 is controlled to reduce the flow rate, and if it is low, the reverse control is performed. The main valve 7 and the mouth 3 are connected by a flexible flexible tube 10.
For this reason, a large time delay occurs in this control loop system, and it is difficult to realize a control system with good stability and responsiveness.
For this reason, it is difficult to obtain a flat assist pressure in the inspiratory phase for patients with various respiratory impedances, and even if a stable trapezoidal pressure waveform can be obtained in the standard state, If the resistance increases, an overshoot occurs at the rise or a vibration waveform occurs. Also, if the airway resistance is low and the compliance increases, the intake phase ends without reaching the target auxiliary pressure at all. A compromise in properties is required. Next, an embodiment of the present invention is shown in FIG. The difference from FIG. 1 is that a variable resistor 12 is used near one connection port of a three-way connection pipe 13 at the mouth of the patient 2 instead of the exhalation valve 9 in FIG. The operation will be described below. The main valve 7 is always open such that a constant flow of gas, which does not fall below the maximum instantaneous flow that the patient 2 may need, is poorly generated. When the patient 2 is not breathing, the variable resistor 12 controls the control unit 6 to apply the atmospheric pressure or the positive pressure end-expiratory pressure (PEEP) to the patient's mouth 3 when applying the pressure. Has decreased. When the patient 2 starts inhaling, the airway pressure at the patient's mouth 3 starts to decrease. The control unit 6 responds to the control signal, and the variable resistor 12 immediately increases the resistance and operates so that the pressure at the patient mouth 3 remains at a predetermined auxiliary pressure. In general, the inspiratory flow rate of the patient 2 greatly decreases at the beginning of inspiration, so that the variable resistor 12 changes the resistance value in accordance with the change to maintain the auxiliary pressure. So you will return to the state. In the pressure control loop according to the present invention, the variable resistor 1
Since 2 is disposed in close proximity to the patient's mouth 3 which is a pressure control point, the time delay is small and the loop setting can be set high, so that the system is dramatically improved as compared with the conventional system. The foregoing has described the superiority of the system according to the present invention over the conventional system for the intake phase. Next, the operation in the expiration phase will be described. When the patient 2 finishes inhaling, naturally the patient 2 starts to exhaust the gas that has been inhaled. When the expiration phase starts, a gas flow of the above-mentioned fixed flow rate plus the expiration gas discharged from the patient flows below the mouth 3 of the patient and is discharged to the atmosphere via the variable resistor 12. In the conventional system shown in FIG. 1, the exhaled gas of the patient is discharged via the intrinsic residual resistance when the exhalation valve 9 is opened. However, this resistance cannot be ignored. Stretching increases the mean airway pressure, adversely affecting the circulatory system, and induces expiratory effort to exert expiratory work. In the case of the present invention, the variable resistor 12 instead of the exhalation valve 9 operates also in the expiration phase, and maintains the airway pressure to be maintained in the expiration phase. That is, the resistance value is further reduced to prevent an increase in pressure in the expiration phase. However, in a state where there is some flow rate, it is actually impossible to make the resistance zero, and when the airway pressure is kept at zero, some pressure rise is inevitable. As described above, according to the present invention, it is possible to measure the airway pressure at the mouth 3 of a patient and control the variable resistance 12 over the entire time of inspiration and expiration, thereby giving a therapeutically desirable pressure pattern to each of the inspired and expired air. The pressure pattern includes a case where two pressure values in the conventional intermittent positive pressure breathing are alternately taken, and a case where a pattern for compensating for the pressure loss of the endotracheal tube is given. In the case of conventional pressure-supported breathing, measurement of the patient's inspiratory flow is indispensable in order to perform flow termination as a leading indicator of the end of inspiration, but this invention is desirable from the viewpoint of monitoring. Monitoring of patient flow with disadvantages is unnecessary from the viewpoint of the additional cost and cost. Next, a specific implementation example of the variable resistor 12 will be described. FIG. 3 shows a specific example of the variable resistor 12. This example has the same structure as a conventional diaphragm type exhalation valve, and changes the gap 107 between the diaphragm 101 and the valve seat 102 at the distal end surface of the cylinder, which is a gas outlet, from zero to several mm to form a gap 107. This is realized by giving a variable resistance to the gas flow 108 passing through. The distance between the gap 107 and the servo motor 10
The rotation of No. 3 is transmitted to the ball screw 104 whose axial direction is constrained, and the driving bar 106 attached to the nut 105 whose rotation is attached to the ball screw 104 performs a linear reciprocating motion. Diaphragm 1 at the end of drive bar 106
01 is attached. Diaphragm 101 and valve seat 1
When the end surface of the variable resistor 02 comes into contact, the resistance of the variable resistor 12 becomes infinite or in a closed state, which is the same as the state in which the exhalation valve 9 in the conventional system is closed. Diaphragm 101 and valve seat 1
FIG. 4 shows an example of a pressure drop, that is, a change in resistance with respect to the gap 107 of FIG. As is clear from this figure, in this method, the resistance change is large when the gap 107 is zero to 2 mm. This means that the gain is large as an element of the control loop, and better and more accurate control can be performed by appropriate tuning. FIG. 5 shows an embodiment of the present invention.
Changes in airway pressure and patient flow when spontaneous breathing was given by a simulator were added to the control system at PEEP values of 10 and 20 cm.
An example in which a target is provided and operated so as to maintain H 2 O is shown. As is clear from this example, the airway pressure hardly fluctuates from the PEEP set pressure irrespective of the change in the flow rate due to inspiratory expiration. As described above, the control characteristic is improved by controlling the high-speed response variable resistor 12 with the patient's mouth 3,
In addition, pressure fluctuation due to resistance loss due to connection is eliminated, so that ideal pressure breathing assistance is possible. As a method of realizing the variable resistance, other than the above-described diaphragm driving method, any structure that can change the flow path resistance at high speed and does not give an excessive dead space to the circuit can be applied. Breathing assist methods using variable resistance are also within the scope of the present invention.

【0006】[0006]

【発明の効果】以上の説明から本発明を用いる事によ
り,患者口元の気道内圧の緻密な制御による圧補助によ
る呼吸補助が可能になり,特に患者のいわゆる人工呼吸
器からの離脱またはウイーニングの短縮そして再挿管の
防止が期待できる。
As described above, by using the present invention, it is possible to perform respiratory assist by pressure assist by precise control of the airway pressure at the mouth of a patient, and in particular, to shorten the weaning or weaning of the patient from a so-called ventilator. And prevention of reintubation can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の呼吸補助法を行う人工呼吸器の構成図で
ある。
FIG. 1 is a configuration diagram of a ventilator that performs a conventional respiratory assist method.

【図2】この発明による呼吸補助法を行う人工呼吸器の
構成図である。
FIG. 2 is a configuration diagram of a respirator that performs a respiratory assist method according to the present invention.

【図3】この発明で必要な可変抵抗を実現するダイアフ
ラム方式の具体例を示す。
FIG. 3 shows a specific example of a diaphragm system for realizing a variable resistor required in the present invention.

【図4】具体的可変抵抗におけるダイアフラムと弁座の
ギャップ間隔と抵抗の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the resistance and the gap between the diaphragm and the valve seat in a specific variable resistor.

【図5】この発明による呼吸補助を一定圧で行っている
場合の気道内圧と流量の変化を示すグラフ。
FIG. 5 is a graph showing changes in airway pressure and flow rate when breathing assistance according to the present invention is performed at a constant pressure.

【符号の説明】[Explanation of symbols]

1は人工呼吸器,2は患者,3は患者口元,4は圧力導
入チューブ,5は圧力トランスデューサ,6は制御部,
7は送気弁,8は圧力源9は呼気弁,10は蛇管,11
は流量センサ,12は可変抵抗,13は三方接続管。
1 is a ventilator, 2 is a patient, 3 is a patient mouth, 4 is a pressure introducing tube, 5 is a pressure transducer, 6 is a control unit,
7 is an air supply valve, 8 is a pressure source 9 is an exhalation valve, 10 is a flexible tube, 11
Is a flow sensor, 12 is a variable resistor, and 13 is a three-way connection pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】送気管が三方接続管の一つの接続口に接続
され,三方接続管の第二の接続口に患者口元が接続さ
れ,更に第三の接続口に外部から制御可能な可変抵抗を
取り付けて,可変抵抗の出口を大気に開放する患者回路
に,定常流の送気ガスを流し,呼吸している患者口元の
気道内圧を測定する手段を備える人工呼吸器において,
患者口元の気道内圧の波形を治療目的に合致するよう該
可変抵抗を変化させて制御する呼吸補助方法。
An air supply pipe is connected to one connection port of a three-way connection pipe, a patient mouth is connected to a second connection port of the three-way connection pipe, and a variable resistance which can be controlled from the outside is further connected to a third connection port. A ventilator equipped with a means for measuring the airway pressure at the mouth of a patient breathing a steady flow of insufflation gas in a patient circuit that opens the outlet of the variable resistance to the atmosphere,
A respiratory assist method for controlling the waveform of the airway pressure at the mouth of a patient by changing the variable resistance so as to match the purpose of treatment.
JP11221574A 1999-06-30 1999-06-30 Respiration assistance method Pending JP2001009035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221574A JP2001009035A (en) 1999-06-30 1999-06-30 Respiration assistance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11221574A JP2001009035A (en) 1999-06-30 1999-06-30 Respiration assistance method

Publications (1)

Publication Number Publication Date
JP2001009035A true JP2001009035A (en) 2001-01-16

Family

ID=16768880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221574A Pending JP2001009035A (en) 1999-06-30 1999-06-30 Respiration assistance method

Country Status (1)

Country Link
JP (1) JP2001009035A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511370A (en) * 2008-12-11 2012-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Resistance matching in patient circuits
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device
JP2014180304A (en) * 2013-03-18 2014-09-29 Metoran:Kk Expiratory valve, and breath auxiliary device
JP2015536784A (en) * 2012-12-18 2015-12-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Intake pressure control in volume mode ventilation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511370A (en) * 2008-12-11 2012-05-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Resistance matching in patient circuits
US8813745B2 (en) 2008-12-11 2014-08-26 Koninklijke Philips N.V. Resistance matching in a patient circuit
JP2012187292A (en) * 2011-03-11 2012-10-04 Fukuda Sangyo:Kk Breathing function test device
JP2015536784A (en) * 2012-12-18 2015-12-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Intake pressure control in volume mode ventilation
JP2014180304A (en) * 2013-03-18 2014-09-29 Metoran:Kk Expiratory valve, and breath auxiliary device

Similar Documents

Publication Publication Date Title
US7044129B1 (en) Pressure support system and method
US6588422B1 (en) Method and apparatus to counterbalance intrinsic positive end expiratory pressure
US6532956B2 (en) Parameter variation for proportional assist ventilation or proportional positive airway pressure support devices
CN1867371B (en) Arrangement for respiratory support for a patient airway prosthesis and catheter
US6758217B1 (en) Control of airway pressure during mechanical ventilation
JP4387394B2 (en) Substance delivery in respirable gas delivery systems
US6945248B2 (en) Determination of leak and respiratory airflow
US7823588B2 (en) Ventilator with dual gas supply
US20050011523A1 (en) Method and system of Individually controlling airway pressure of a patient's nares
US20030010339A1 (en) Method and apparatus for nullifying the imposed work of breathing
JPH10505765A (en) Pressure controlled breathing assist device
JPH05184677A (en) Gas-inspiring apparatus
JPH10216231A (en) Respiratory auxiliary equipment
JP2000005312A (en) Method for controlling exhalation valve of respirator
JPH1052494A (en) Artificial ventilator
JPH04307070A (en) Air sucker
US20040200476A1 (en) Method for reducing the work of breathing
US11679216B2 (en) Process for operating a ventilator and ventilator operating according to the process
JPS6240603Y2 (en)
JP2001009035A (en) Respiration assistance method
JP2005027848A (en) Method and apparatus for controlling respirator
US20220152326A1 (en) Lung volume recruitment (lvr) automatic maneuver
JP3802099B2 (en) Ventilator
JPH07116254A (en) Respiration supporting method
CN118382475A (en) Ventilation system with improved valve