JP2001004628A - Immunoassay and its method - Google Patents

Immunoassay and its method

Info

Publication number
JP2001004628A
JP2001004628A JP11173041A JP17304199A JP2001004628A JP 2001004628 A JP2001004628 A JP 2001004628A JP 11173041 A JP11173041 A JP 11173041A JP 17304199 A JP17304199 A JP 17304199A JP 2001004628 A JP2001004628 A JP 2001004628A
Authority
JP
Japan
Prior art keywords
microchannel
analysis
solid fine
antibody
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173041A
Other languages
Japanese (ja)
Inventor
Takehiko Kitamori
武彦 北森
Hiroko Kimura
博子 木村
Manabu Tokeshi
学 渡慶次
Norikazu Sato
記一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP11173041A priority Critical patent/JP2001004628A/en
Publication of JP2001004628A publication Critical patent/JP2001004628A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily, rapidly execute accurate immunoassay with a trace sample. SOLUTION: This immunoassay method uses an immunity analysis microchip. The microchip includes a solid fine particle 2 of a diameter below 1 mm as a reactive solid phase, a micro channel reaction bath part 3 having a larger cross section than the diameter of the solid fine particle 2, a micro channel separation part 4 having a smaller cross section than the diameter of the solid fine particle 2, and an inlet part or a micro channel inflow parts 5, 6 for separately leading an antigen and a labeled antibody to the reaction bath part 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、免疫分析
装置とこれを用いた分析方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunoassay analyzer and an analysis method using the same.

【0002】[0002]

【従来の技術とその課題】従来より、各種の抗原−抗体
反応による免疫分析法が知られており、この分析のため
の簡便化手段としての分析キット類についての検討が進
められてきてもいる。しかしながら、従来一般的な方法
においては、免疫分析には複雑な工程と数日間にわたる
時間が必要とされる等の問題があり、また、多くの場合
には、蛍光色素による標識が必要とされていることか
ら、この蛍光色素標識による試料ダメージの発生が避け
られない等の問題もあった。
2. Description of the Related Art Conventionally, immunoassay methods using various antigen-antibody reactions have been known, and studies on analysis kits as a means for simplifying this analysis have been advanced. . However, in the conventional general method, there are problems such as a complicated process and time required for several days for immunoassay, and in many cases, labeling with a fluorescent dye is required. Therefore, there is a problem that the damage of the sample due to the fluorescent dye label cannot be avoided.

【0003】このため、従来より、生体高分子等の免疫
分析法については、反応・分離検出を簡便な手段によっ
て短時間で高精度で行うことができ、しかも試料にダメ
ージを与えることもない分析方法の実現が望まれてい
た。このような状況において、ガラス等の基板(以下マ
イクロチップと呼ぶ)上に化学システムを集積化する試
みは操作の簡便化・自動化による分析時間の短縮などの
メリットをもたならすと期待され、μ−TASと称され
近年盛んに行われてきている。この出願の発明者も、熱
レンズ顕微鏡による超微量分析や微小空間のサイズ効果
として迅速分子輸送に分子拡散力が有効なことなどに注
目し、独自の集積化の研究を進めているところである。
しかしながら、免疫分析については、DNA解析と同様
に電気浸透・電気泳動を利用したμ−TASの重要な対
象として期待され、高度な構造を持つ様々な形状のチッ
プが開発されてきているが、これまでのところ、実際に
マイクロチップ内で抗原−抗体反応をさせた例はほとん
ど報告されていないのが実情である。
For this reason, conventionally, in the immunoassay method for biopolymers and the like, the reaction / separation / detection can be performed in a short time with high accuracy by simple means, and furthermore, the analysis does not damage the sample. The realization of the method was desired. Under such circumstances, an attempt to integrate a chemical system on a substrate such as glass (hereinafter referred to as a microchip) is expected to bring advantages such as simplification of operation and shortening of analysis time by automation. -TAS has been actively used in recent years. The inventor of the present application is also studying ultra-trace analysis using a thermal lens microscope and the fact that molecular diffusing force is effective for rapid molecular transport as a size effect of a minute space, and is studying its own integration.
However, as for immunoanalysis, it is expected as an important target of μ-TAS using electroosmosis and electrophoresis in the same manner as DNA analysis, and chips of various shapes with advanced structures have been developed. Until now, there have been few reports of cases in which an antigen-antibody reaction was actually performed in a microchip.

【0004】そこでこの出願の発明は、以上のとおりの
従来技術の限界を超えて、実際にマイクロチップ内にお
ける抗原−抗体反応を可能として免疫分析を実施するこ
とのできる新しい免疫分析装置と、これを用いた分析方
法を提供することを課題としている。そして、この出願
の発明は、このような新しい分析装置と新しい分析方法
によって、反応・分離検出を簡便な手段によって短時間
で高精度で行い、しかも試料にダメージを与えることも
ないようにする。
Therefore, the invention of this application is to overcome the limitations of the prior art as described above, and to provide a new immunoassay apparatus capable of performing an immunoassay by actually enabling an antigen-antibody reaction in a microchip. It is an object of the present invention to provide an analysis method using the method. The invention of this application uses such a new analyzer and a new analysis method to perform reaction / separation / detection in a short time with high accuracy by simple means, and to prevent damage to the sample.

【0005】[0005]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、反応固相とし
ての直径1mm以下の固体微粒子とともに、この固体微
粒子の径よりも大きい縦断面積を有するマイクロチャン
ネル反応槽部と、前記固体微粒子の径よりも小さい縦断
面積を有するマイクロチャンネル分離部と、抗原および
標識抗体を別々に前記反応槽部へと導く導入部もしくは
マイクロチャンネル流入部とを有しているマイクロチッ
プとを備えていることを特徴とする免疫分析装置を提供
する。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention of the present application firstly discloses a method in which, together with solid fine particles having a diameter of 1 mm or less as a reaction solid phase, the diameter of the solid fine particles is larger than that of the solid fine particles. A microchannel reactor having a vertical cross-sectional area, a microchannel separator having a vertical cross-sectional area smaller than the diameter of the solid fine particles, and an introduction section or a microchannel inflow section for separately leading an antigen and a labeled antibody to the reaction tank section. And a microchip having the following.

【0006】また、第2には、標識抗体とは別の抗体の
ためのマイクロチャンネル流入部を有している免疫分析
装置を、第3には、固体微粒子はガラスビーズもしくは
高分子ビーズである請求項1または2の免疫分析装置を
提供する。そして、この出願の発明は、第4には、前記
第1ないし第3のいずれかのマイクロチップによる免疫
分析方法であって、反応固相としての固体微粒子をマイ
クロチャンネル反応槽部に装入し、マイクロチャンネル
流入部より導入した抗原および標識抗体の固体微粒子上
での反応を行い、未反応物をマイクロチャンネル分離部
で分離し、光熱変換分析により分析することを特徴とす
るマイクロチップ免疫分析方法を提供し、第5には、第
一抗体とともに、第二抗体としての標識抗体を反応槽部
へと導く方法を、第6には、標識抗体を金コロイド標識
抗体とする方法を、第7には、光熱変換分析が2μm以
下の高空間分解能の熱レンズ顕微鏡、蛍光分析あるいは
化学発光による分析である分析方法も提供する。
[0006] Second, an immunoassay device having a microchannel inflow portion for an antibody different from the labeled antibody is used. Third, solid fine particles are glass beads or polymer beads. An immune analyzer according to claim 1 or 2 is provided. Fourthly, the invention of this application is, in a fourth aspect, an immunoassay method using any one of the first to third microchips, wherein solid fine particles as a reaction solid phase are charged into a microchannel reaction tank. A microchip immunoassay method comprising reacting an antigen and a labeled antibody introduced from a microchannel inflow section on solid fine particles, separating unreacted substances in a microchannel separation section, and analyzing them by photothermal conversion analysis. Fifth, a method of introducing a labeled antibody as a second antibody to a reaction tank together with a first antibody, sixth, a method of using a colloidal gold-labeled antibody as a labeled antibody, and a seventh method. Also provides an analysis method in which the photothermal conversion analysis is an analysis by a thermal lens microscope, fluorescence analysis or chemiluminescence with a high spatial resolution of 2 μm or less.

【0007】[0007]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴をもつものであるが、以下にその実施の形態につ
いて説明する。まず、この発明の免疫分析装置である
が、その構成はたとえば図1に沿って例示説明すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below. First, the immunoassay apparatus of the present invention will be described by way of example with reference to FIG.

【0008】たとえば図1に示したように、ガラス、シ
リコン等の基板、より好ましくは透明なガラス等の基板
(1)において、この発明の免疫分析マイクロチップの
場合には、反応固相としての直径1mm以下の固体微粒
子(2)とともに、この固体微粒子(2)の径よりも大
きい縦断面積を有するマイクロチャンネル反応槽部
(3)と、前記固体微粒子(2)の径よりも小さい縦断
面積を有するマイクロチャンネル分離部(4)とを備
え、抗原および標識抗体を別々に前記反応槽部へと導く
導入部もしくはマイクロチャンネル流入部(5)(6)
を有している。
For example, as shown in FIG. 1, in the case of the immunoassay microchip of the present invention, a substrate such as glass or silicon, more preferably a substrate (1) such as transparent glass, is used as a reaction solid phase. Along with the solid fine particles (2) having a diameter of 1 mm or less, a microchannel reactor (3) having a vertical sectional area larger than the diameter of the solid fine particles (2), and a vertical sectional area smaller than the diameter of the solid fine particles (2). A microchannel separation section (4), and an introduction section or a microchannel inflow section (5) (6) for separately leading the antigen and the labeled antibody to the reaction tank section.
have.

【0009】また、図1の例においては、第二抗体とし
ての標識抗体の反応槽部(3)への導入のためのマイク
ロチャンネル流入部(6)とともに、第一抗体の導入の
ためのマイクロチャンネル流入部(7)、並びにバッフ
ァー液や洗浄液の導入のためのマイクロチャンネル流入
部(8)を備えており、各々のマイクロチャンネル流入
部(5)(6)(7)(8)の端部には、抗原、標識抗
体(第二抗体)、第一抗体、そして洗浄液の注入穴部
(5A)(6A)(7A)(8A)が設けられてもい
る。
In the example shown in FIG. 1, the labeled antibody serving as the second antibody is introduced into the reaction vessel section (3) together with the microchannel inflow section (6) and the micro antibody for introducing the first antibody is introduced. A channel inflow section (7) and a microchannel inflow section (8) for introducing a buffer solution or a washing solution, and an end of each of the microchannel inflow sections (5), (6), (7) and (8). Are provided with injection holes (5A), (6A), (7A), and (8A) for an antigen, a labeled antibody (second antibody), a first antibody, and a washing solution.

【0010】そして、図1の例では、マイクロチャンネ
ル分離部(4)の端部には、廃液部(4A)が設けられ
ている。固体微粒子(2)は、免疫抗原−抗体反応のた
めの反応固相としての役割を果たすものであって、たと
えばガラスビーズ、あるいはポリスチレン等の高分子ビ
ーズ等が用いられることになる。この固体微粒子(2)
は、この発明のマイクロチップにおいては、直径が1m
m以下、たとえば15〜85μm、さらには直径40〜
65μmのものとして用いられる。
In the example of FIG. 1, a waste liquid part (4A) is provided at the end of the microchannel separation part (4). The solid fine particles (2) serve as a reaction solid phase for an immune antigen-antibody reaction. For example, glass beads or polymer beads such as polystyrene are used. This solid fine particle (2)
Has a diameter of 1 m in the microchip of the present invention.
m or less, for example, 15 to 85 μm, and further, a diameter of 40 to 85 μm.
Used as 65 μm.

【0011】マイクロチャンネル反応槽部(3)の大き
さは、その縦断面積、より具体的には、半球状、あるい
は湾曲状の穴部である場合、垂直方向の最大断面積が前
記の固体微粒子(2)の直径よりも大きく、一方、マイ
クロチャンネル分離部(4)の流路断面積、つまり図1
のα−α位置での断面積が固体微粒子(2)の直径より
も小さいことがこの発明においては要件となっている。
The size of the microchannel reaction tank (3) is determined by its vertical cross-sectional area, more specifically, in the case of a hemispherical or curved hole, the maximum cross-sectional area in the vertical direction is determined by the solid fine particles. 1 is larger than the diameter of (2), while the cross-sectional area of the flow channel of the microchannel separation part (4), that is, FIG.
It is a requirement of the present invention that the cross-sectional area at the α-α position is smaller than the diameter of the solid fine particles (2).

【0012】たとえば、より具体的には、マイクロチャ
ンネル反応槽部(3)の大きさは、半球状の穴部とした
場合には、たとえばその半径が100μm以上、より好
ましくは150μm以上とすることが考慮される。ま
た、マイクロチャンネル分離部(4)はたとえば、深さ
が10μm以下、幅10μm以下とすることが考慮され
る。このようにすることによって、反応固相としての固
体微粒子(2)は、マイクロチャンネル分離部(4)に
流入することはなく、せき止められることになる。そし
て未反応物だけが、マイクロチャンネル分離部(4)に
流入して分離されていることになる。また、必要に応じ
て、固体微粒子(2)から脱着された反応生成物のみが
分離されることになる。
For example, more specifically, when the size of the microchannel reaction tank (3) is a hemispherical hole, the radius thereof is, for example, 100 μm or more, and more preferably 150 μm or more. Is taken into account. In addition, it is considered that the microchannel separation section (4) has a depth of 10 μm or less and a width of 10 μm or less, for example. By doing so, the solid fine particles (2) as the reaction solid phase do not flow into the microchannel separation part (4) but are blocked. Then, only unreacted substances flow into the microchannel separation section (4) and are separated. If necessary, only the reaction product desorbed from the solid fine particles (2) is separated.

【0013】抗原の導入のためのマイクロチャンネル流
入部(5)は必ずしも図1のようである必要はなく、直
接的に抗原を反応槽部(3)に導入するようにしてもよ
いし、あるいは、あらかじめ抗原を吸着させた状態の固
体微粒子(2)をマイクロチャンネル反応槽部に導入す
るようにしてもよい。マイクロチャンネル流入部(5)
(6)(7)(8)については、たとえば、深さを15
0μm以下、幅を300μm以下程度のものとして構成
することができる。抗原や抗体がマイクロチャンネル反
応槽部(3)に流入できる大きさの断面積をもつものと
すればよい。
The microchannel inflow section (5) for introducing the antigen does not necessarily have to be as shown in FIG. 1, and the antigen may be directly introduced into the reaction tank section (3), or Alternatively, the solid fine particles (2) to which an antigen has been previously adsorbed may be introduced into the microchannel reaction tank. Micro channel inlet (5)
For (6), (7) and (8), for example, a depth of 15
It can be configured to have a width of about 0 μm or less and a width of about 300 μm or less. The cross-sectional area should be large enough to allow antigens and antibodies to flow into the microchannel reaction tank (3).

【0014】この発明の免疫分析マイクロチップは、基
板(1)の表面に対して以上の構成を形成したものとし
てもよいし、あるいは、多層構造として、たとえば図2
に、図1のα−α部の断面を例示したように、マイクロ
チャンネル分離部4等の形成した基板(1)の表面に保
護プレート(11)を、また、さらに必要に応じて裏面
に補強のための支持プレート(12)を積層した構造と
してもよい。この図2ような積層体の構造の場合には、
保護プレート(11)には、前記の反応槽部(3)、注
入穴部(5A)(6A)(7A)(8A)、廃液部(4
A)の相当位置に開口が設けられているものとする。
The immunoassay microchip of the present invention may have the above structure formed on the surface of the substrate (1), or may have a multi-layer structure, for example, as shown in FIG.
As shown in the cross section of the α-α portion in FIG. 1, a protection plate (11) is provided on the surface of the substrate (1) on which the microchannel separation portion 4 and the like are formed, and further, the back surface is further reinforced if necessary. The support plate (12) for this may be laminated. In the case of the structure of the laminate as shown in FIG. 2,
In the protection plate (11), the reaction tank (3), the injection holes (5A) (6A) (7A) (8A), and the waste liquid (4)
It is assumed that an opening is provided at a position corresponding to A).

【0015】いずれの場合においてもこの発明の免疫分
析マイクロチップによって、微量の試料等の使用によっ
て、簡便に短い反応時間で免疫分析が可能となる。免疫
分析の方法としては、この発明においては、反応固相と
しての固体微粒子(2)をマイクロチャンネル反応槽部
(3)に導入し、導入部もしくはマイクロチャンネル流
入部(5)(6)より導入した抗原および標識抗体、さ
らに必要によりマイクロチャンネル流入部(7)より導
入した抗体の固体微粒子(2)上での反応を行い、未反
応物をマイクロチャンネル分離部(4)で分離し、光熱
変換分析により分析することを可能としている。
In any case, the immunoassay microchip of the present invention enables an immunoassay with a short reaction time simply by using a small amount of a sample or the like. As an immunoassay method, in the present invention, the solid fine particles (2) as a reaction solid phase are introduced into the microchannel reaction tank section (3) and introduced from the introduction section or the microchannel inflow sections (5) and (6). The reacted antigen and labeled antibody, and if necessary, the antibody introduced from the microchannel inflow section (7) are reacted on the solid fine particles (2), and the unreacted substances are separated in the microchannel separation section (4). It is possible to analyze by analysis.

【0016】標識抗体としては、代表的には、金コロイ
ド標識抗体が適当なものとして例示される。反応物は、
固体微粒子(2)上に吸着され、未反応物のみがマイク
ロチャンネル分離部(4)にて分離されるか、反応生成
物は固体微粒子(2)より脱着されてマイクロチャンネ
ル分離部(4)にて分離されることになる。
As the labeled antibody, typically, a colloidal gold-labeled antibody is exemplified as a suitable one. The reactants are
Only the unreacted substances adsorbed on the solid fine particles (2) are separated in the microchannel separation section (4), or the reaction products are desorbed from the solid fine particles (2) and are transferred to the microchannel separation section (4). Will be separated.

【0017】光熱変換分析については、たとえばその代
表例としてはこの出願の発明者らがすでに提案している
熱レンズ顕微鏡による分析がある。より好ましくは、2
μm以下の高空間分解能の熱レンズ顕微鏡による分析で
ある。この分析は、反応生成物が吸着されている固体微
粒子(2)に対して行われもよいし、マイクロチャンネ
ル分離部(4)に対して行われるようにしてもよい。ま
た、熱レンズ顕微鏡による分析だけでなく蛍光分析でも
よいし、化学発光分析等が採用されてもよい。
As a typical example of the photothermal conversion analysis, there is an analysis using a thermal lens microscope which has already been proposed by the inventors of the present application. More preferably, 2
This is an analysis with a thermal lens microscope having a high spatial resolution of less than μm. This analysis may be performed on the solid fine particles (2) on which the reaction product is adsorbed, or may be performed on the microchannel separation unit (4). Further, not only analysis using a thermal lens microscope but also fluorescence analysis, chemiluminescence analysis, or the like may be employed.

【0018】以上のとおりのこの出願の発明によって、
反応・分離検出を簡便に、短時間で、しかも高精度で行
うことができ、しかも従来の方法のように、試料に対し
てダメージを与えることもない。そこで以下に実施例を
示し、さらに詳しくこの出願の発明について説明する。
According to the invention of this application as described above,
Reaction / separation detection can be performed easily, in a short time, and with high accuracy, and does not damage the sample unlike the conventional method. Therefore, examples will be shown below, and the invention of this application will be described in more detail.

【0019】[0019]

【実施例】(実施例1)モデル試料として局所免疫やス
トレス関連物質として知られるslgAを選定し、B/
F分離操作などの集積化について検討した。すなわち、
ヒトslgAを吸着させた直径43〜60μmのガラス
微粒子やポリスチレン微粒子をそれぞれマイクロチャン
ネル反応槽部内に導入して堰き止め、反応固相とした。
次に金コロイド標識抗体をマイクロチャンネル流入部を
通じて反応槽部に流入させ、抗原抗体反応を行った。そ
の後、リン酸バッファーをマイクロチャンネル流入部を
通じて送液し、未反応残さの分離(B/F分離)を行っ
た。検出には熱レンズ顕微鏡を用いた。
EXAMPLES (Example 1) slgA known as a local immunity and a stress-related substance was selected as a model sample, and B /
The integration such as F separation operation was studied. That is,
Glass microparticles and polystyrene microparticles having a diameter of 43 to 60 μm to which human slgA had been adsorbed were respectively introduced into the microchannel reaction tank, and blocked to form a reaction solid phase.
Next, the gold colloid-labeled antibody was allowed to flow into the reaction tank through the microchannel inflow portion, and an antigen-antibody reaction was performed. Thereafter, the phosphate buffer was fed through the microchannel inflow portion, and the unreacted residue was separated (B / F separation). A thermal lens microscope was used for detection.

【0020】実験では、深さ100μm、幅200μm
のマイクロチャンネル流入部を石英ガラス基板内に作製
し、FAB(Fast Atom Beam) で深さ5μmのさらに微
細なチャンネルを加工してマイクロチャンネル分離部を
形成し、また、半径約1mmの反応槽部を加工してマイ
クロチップとした。このマイクロチップでは、FAB加
工の部分だけチャンネル深さが浅く、反応固槽として用
いるビーズをせき止められる構造を意図したものであ
る。
In the experiment, a depth of 100 μm and a width of 200 μm
The microchannel inflow section is formed in a quartz glass substrate, and a finer channel with a depth of 5 μm is processed by FAB (Fast Atom Beam) to form a microchannel separation section. In addition, a reaction tank section having a radius of about 1 mm Was processed into a microchip. This microchip is intended to have a structure in which the channel depth is small only in the FAB processing portion and beads used as a reaction solid tank can be dammed.

【0021】なお、このマイクロチップにおいては多層
構造は採用していない。反応を行う、B/F分離等の条
件を最適化するための実験をパルク量で行った。次に最
適化した条件下でチャンネル内に堰き止め構造の反応槽
部分に微粒子を導入しておき、PBSバッファーを送液
してそのままB/F分離した。その後、この微粒子上に
結合した標識金コロイドを熱レンズ顕微鏡で測定した。
比較のため、通常用いられている方法でB/F分離した
微粒子を同じチップ内に導入して同様に測定した。その
結果、slgA濃度に対して信号強度に対する検量曲線
が得られ、マイクロチャンネル内でB/F分離を行った
ビーズと、通常法でB/F分離を行ったビーズとでは差
異がみられないことを確認した。以上より、マイクロチ
ャンネルの微小空調を利用した免疫分析が可能であるこ
とを示した。 (実施例2)実施例1において、ヒトslgAをマイク
ロチャンネル流入部より反応槽部に導入し、これをガラ
ス微粒子に吸着させ、次いで同様に反応を行わせ、熱レ
ンズ顕微鏡により分析した。
Note that this microchip does not employ a multilayer structure. Experiments for optimizing the conditions for carrying out the reaction, such as B / F separation, were carried out with the amount of parc. Next, under optimized conditions, fine particles were introduced into the reaction tank portion having a dam structure in the channel, and a PBS buffer was fed to carry out B / F separation as it was. Thereafter, the labeled gold colloid bound on the fine particles was measured with a thermal lens microscope.
For comparison, fine particles subjected to B / F separation by a commonly used method were introduced into the same chip and measured similarly. As a result, a calibration curve for the signal intensity was obtained with respect to the slgA concentration, and no difference was observed between the beads subjected to the B / F separation in the microchannel and the beads subjected to the B / F separation in the ordinary method. It was confirmed. From the above, it was shown that the immunoassay utilizing micro air conditioning of the microchannel is possible. (Example 2) In Example 1, human slgA was introduced into the reaction tank from the inlet of the microchannel, and was adsorbed on glass microparticles. Then, the reaction was carried out in the same manner, and analysis was performed using a thermal lens microscope.

【0022】その結果、通常のバルク量の分析に比べて
はるかに微量の試料で短時間で、同様のB/F分離が可
能であることを確認した。
As a result, it was confirmed that similar B / F separation was possible in a short time with a much smaller amount of sample as compared with the usual analysis of the bulk amount.

【0023】[0023]

【発明の効果】以上詳しく説明したとおり、この出願の
説明によって、従来技術の限界を超えて、実際にマイク
ロチップ内における抗原−抗体反応を可能として免疫分
析を実施することができる。そして、このような新しい
マイクロチップと新しい分析方法によって、反応、分離
検出を簡単な手段によって短時間で高精度で行い、しか
も試料にダメージを与えることもない分析が実現され
る。
As described in detail above, according to the description of this application, it is possible to carry out an antigen-antibody reaction in a microchip and to carry out an immunoassay, exceeding the limits of the prior art. With such a new microchip and a new analysis method, the reaction and separation / detection can be performed in a short time with high accuracy by simple means, and furthermore, an analysis without damaging the sample is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のマイクロチップを例示した斜視図で
ある。
FIG. 1 is a perspective view illustrating a microchip of the present invention.

【図2】多層構造のものを例示した断面図である。FIG. 2 is a cross-sectional view illustrating a multilayer structure.

【符号の説明】[Explanation of symbols]

1 基板 2 固体微粒子 3 マイクロチャンネル反応槽部 4 マイクロチャンネル分離部 4A 廃液部 5,6,7,8 マイクロチャンネル流入部 5A,6A,7A,8A 注入穴部 11 保護プレート 12 支持プレート DESCRIPTION OF SYMBOLS 1 Substrate 2 Solid fine particle 3 Microchannel reaction tank part 4 Microchannel separation part 4A Waste liquid part 5,6,7,8 Microchannel inflow part 5A, 6A, 7A, 8A Injection hole part 11 Protection plate 12 Support plate

フロントページの続き (72)発明者 佐藤 記一 東京都板橋区中台3−27−G−2103 Fターム(参考) 2G045 AA40 FA16 FB03 FB07 FB12 FB13 Continued on the front page (72) Inventor: Seiichi Sato 3-27-G-2103, Nakadai, Itabashi-ku, Tokyo F-term (reference) 2G045 AA40 FA16 FB03 FB07 FB12 FB13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反応固相としての直径1mm以下の固体
微粒子とともに、この固体微粒子の径よりも大きい縦断
面積を有するマイクロチャンネル反応槽部と、前記固体
微粒子の径よりも小さい縦断面積を有するマイクロチャ
ンネル分離部と、抗原および標識抗体を別々に前記反応
槽部へと導く導入部もしくはマイクロチャンネル流入部
とを有しているマイクロチップとを備えていることを特
徴とする免疫分析装置。
1. A microchannel reactor having a vertical cross-sectional area larger than the diameter of a solid fine particle having a diameter of 1 mm or less as a reaction solid phase, and a microchannel having a vertical cross-sectional area smaller than the diameter of the solid fine particle. An immunoanalyzer comprising: a channel separation section; and a microchip having an introduction section or a microchannel inflow section for separately guiding an antigen and a labeled antibody to the reaction tank section.
【請求項2】 標識抗体とは別の抗体のためのマイクロ
チャンネル流入部を有している請求項1の免疫分析装
置。
2. The immunoassay apparatus according to claim 1, further comprising a microchannel inlet for an antibody other than the labeled antibody.
【請求項3】 固体微粒子はガラスビーズもしくは高分
子ビーズである請求項1または2の免疫分析装置。
3. The immunoassay apparatus according to claim 1, wherein the solid fine particles are glass beads or polymer beads.
【請求項4】 請求項1ないし3のいずれかの装置によ
る免疫分析方法であって、反応固相としての固体微粒子
をマイクロチャンネル反応槽部に装入し、マイクロチャ
ンネル流入部より導入した抗原および標識抗体の固体微
粒子上での反応を行い、未反応物をマイクロチャンネル
分離部で分離し、光熱変換分析により分析することを特
徴とするマイクロチップ免疫分析方法。
4. An immunoassay method using the apparatus according to claim 1, wherein solid fine particles as a reaction solid phase are charged into a microchannel reaction tank, and the antigen and the antigen introduced from the microchannel inflow section are introduced. A microchip immunoassay method, comprising reacting a labeled antibody on solid fine particles, separating unreacted substances in a microchannel separation part, and analyzing the unreacted substances by photothermal conversion analysis.
【請求項5】 第一抗体とともに、第二抗体としての標
識抗体を反応槽部へと導く請求項4の分析方法。
5. The analysis method according to claim 4, wherein the labeled antibody as the second antibody is led to the reaction tank together with the first antibody.
【請求項6】 標識抗体を金コロイド標識抗体とする請
求項4または5の分析方法。
6. The analysis method according to claim 4, wherein the labeled antibody is a colloidal gold labeled antibody.
【請求項7】 光熱変換分析が2μm以下の高空間分解
能の熱レンズ顕微鏡、蛍光分析、あるいは化学発光によ
る分析である請求項4ないし6のいずれかの分析方法。
7. The analysis method according to claim 4, wherein the photothermal conversion analysis is an analysis by a thermal lens microscope, fluorescence analysis, or chemiluminescence with a high spatial resolution of 2 μm or less.
JP11173041A 1999-06-18 1999-06-18 Immunoassay and its method Pending JP2001004628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173041A JP2001004628A (en) 1999-06-18 1999-06-18 Immunoassay and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173041A JP2001004628A (en) 1999-06-18 1999-06-18 Immunoassay and its method

Publications (1)

Publication Number Publication Date
JP2001004628A true JP2001004628A (en) 2001-01-12

Family

ID=15953119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173041A Pending JP2001004628A (en) 1999-06-18 1999-06-18 Immunoassay and its method

Country Status (1)

Country Link
JP (1) JP2001004628A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326963A (en) * 2001-05-07 2002-11-15 Kanagawa Acad Of Sci & Technol Method of liquid-liquid interface reaction on microchip by charging electric field or magnetic field and the microchip therefor
WO2003062823A1 (en) * 2002-01-24 2003-07-31 Kanagawa Academy Of Science And Technology Chip and method for analyzing enzyme immunity
JP2004028589A (en) * 2002-06-21 2004-01-29 Hitachi Ltd Analytical chip and analytical device
JP2005334804A (en) * 2004-05-28 2005-12-08 Hitachi Industries Co Ltd Microfluidic system, and treatment method using the same
WO2006016617A1 (en) * 2004-08-11 2006-02-16 Japan Science And Technology Agency Method of quantifying substance and device for quantifying substance
JP2006208168A (en) * 2005-01-27 2006-08-10 Enplas Corp Fluid handling apparatus
JP2007003412A (en) * 2005-06-24 2007-01-11 Sekisui Chem Co Ltd Biological measuring method
JP2007024498A (en) * 2005-07-12 2007-02-01 Rohm Co Ltd Immunoassay method and biochip
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
JP2007040942A (en) * 2005-05-25 2007-02-15 Enplas Corp Fluid handling device and fluid handling unit used therein
WO2007026731A1 (en) * 2005-08-31 2007-03-08 Rohm Co., Ltd Biochip and immunological analysis method
JP2007524851A (en) * 2004-01-26 2007-08-30 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Fluid delivery system and method
JP2007279018A (en) * 2006-03-16 2007-10-25 Enplas Corp Fluid-handling device, and fluid-handling unit used therefor
WO2007138789A1 (en) * 2006-05-30 2007-12-06 Panasonic Corporation Immunoassay method and chip
WO2008010677A1 (en) * 2006-07-20 2008-01-24 Seoulin Bioscience Co., Ltd. Microchip for protein fixation
JP2008215960A (en) * 2007-03-01 2008-09-18 Research Institute Of Biomolecule Metrology Co Ltd Inspection kit
JP2008256701A (en) * 2008-04-25 2008-10-23 Fuji Electric Holdings Co Ltd Antigen separator, and antigen measuring method and device using antgen separator
EP1997557A1 (en) 2007-05-23 2008-12-03 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
JP2009002927A (en) * 2007-05-23 2009-01-08 Enplas Corp Fluid handling unit and fluid handling apparatus using same
JP2009175108A (en) * 2008-01-28 2009-08-06 Sharp Corp Assay-use micro-channel device
JP2009209094A (en) * 2008-03-04 2009-09-17 Sharp Corp Microchip for protein extraction, protein extraction apparatus, protein measurement apparatus, protein extraction method using them, and air conditioner
EP2106857A2 (en) 2008-04-04 2009-10-07 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
JP2010071827A (en) * 2008-09-19 2010-04-02 Fujifilm Corp Assay method
US7749450B2 (en) 2005-11-14 2010-07-06 Enplas Corporation Fluid handling apparatus and fluid handling unit for use therein
JPWO2009035061A1 (en) * 2007-09-10 2010-12-24 日本電気株式会社 Microchip sample processing equipment
WO2014106881A1 (en) * 2013-01-07 2014-07-10 パナソニック株式会社 Duct device
JP2015021906A (en) * 2013-07-22 2015-02-02 東亜ディーケーケー株式会社 Measuring method, cartridge for measurement, and measuring device
US9255866B2 (en) 2013-03-13 2016-02-09 Opko Diagnostics, Llc Mixing of fluids in fluidic systems
US10082507B2 (en) 2003-12-31 2018-09-25 President And Fellows Of Harvard College Assay device and method
US10279345B2 (en) 2014-12-12 2019-05-07 Opko Diagnostics, Llc Fluidic systems comprising an incubation channel, including fluidic systems formed by molding
US10458572B2 (en) 2014-11-14 2019-10-29 Enplas Corporation Liquid handling device
JP2020533560A (en) * 2018-05-04 2020-11-19 イラミーナ インコーポレーテッド Flow cell with integrated manifold

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504625A (en) * 1990-02-23 1993-07-15 アメリカ合衆国 Flow immunosensor method and apparatus
JPH07500191A (en) * 1992-08-03 1995-01-05 サピダイン・インコーポレーテッド Certification system
JPH07506430A (en) * 1992-05-01 1995-07-13 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Microfabricated detection structure
WO1996033412A1 (en) * 1995-04-20 1996-10-24 Perseptive Biosystems, Inc. Compositions, methods and apparatus for ultrafast electroseparation analysis
JPH09509498A (en) * 1994-11-14 1997-09-22 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Mesoscale sample pretreatment apparatus and system for determination and processing of analytes
WO1998000231A1 (en) * 1996-06-28 1998-01-08 Caliper Technologies Corporation High-throughput screening assay systems in microscale fluidic devices
JPH1026625A (en) * 1996-07-10 1998-01-27 Olympus Optical Co Ltd Compact analyzer and driving method thereof
JPH10507516A (en) * 1994-08-01 1998-07-21 ロッキード・マーチン・エナジー・システムズ・インク Microfluidic operation method and apparatus for chemical analysis
WO1999017100A1 (en) * 1997-09-26 1999-04-08 University Of Washington Multiple analyte diffusion-based chemical sensor
JP2000346842A (en) * 1999-04-12 2000-12-15 Hitachi Ltd Method and device for production of probe array using micro particles
JP2001518624A (en) * 1997-09-26 2001-10-16 ユニバーシティ・オブ・ワシントン Simultaneous particle separation and chemical reactions
JP2002507280A (en) * 1997-05-23 2002-03-05 リンクス セラピューティクス,インコーポレイテッド Systems and devices for sequential processing of analytes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504625A (en) * 1990-02-23 1993-07-15 アメリカ合衆国 Flow immunosensor method and apparatus
JPH07506430A (en) * 1992-05-01 1995-07-13 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Microfabricated detection structure
JPH07500191A (en) * 1992-08-03 1995-01-05 サピダイン・インコーポレーテッド Certification system
JPH10507516A (en) * 1994-08-01 1998-07-21 ロッキード・マーチン・エナジー・システムズ・インク Microfluidic operation method and apparatus for chemical analysis
JPH09509498A (en) * 1994-11-14 1997-09-22 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Mesoscale sample pretreatment apparatus and system for determination and processing of analytes
WO1996033412A1 (en) * 1995-04-20 1996-10-24 Perseptive Biosystems, Inc. Compositions, methods and apparatus for ultrafast electroseparation analysis
WO1998000231A1 (en) * 1996-06-28 1998-01-08 Caliper Technologies Corporation High-throughput screening assay systems in microscale fluidic devices
JPH1026625A (en) * 1996-07-10 1998-01-27 Olympus Optical Co Ltd Compact analyzer and driving method thereof
JP2002507280A (en) * 1997-05-23 2002-03-05 リンクス セラピューティクス,インコーポレイテッド Systems and devices for sequential processing of analytes
WO1999017100A1 (en) * 1997-09-26 1999-04-08 University Of Washington Multiple analyte diffusion-based chemical sensor
JP2001518624A (en) * 1997-09-26 2001-10-16 ユニバーシティ・オブ・ワシントン Simultaneous particle separation and chemical reactions
JP2000346842A (en) * 1999-04-12 2000-12-15 Hitachi Ltd Method and device for production of probe array using micro particles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLIN CHEM, vol. 44, no. 3, JPN7008003975, 1998, pages 591 - 598, ISSN: 0001039057 *
日本化学会講演予稿集, vol. 76, no. 2, JPN6008022009, 1999, pages 1386 - 2, ISSN: 0001039058 *
第60回分析化学討論会講演要旨集, JPN7008003974, 1 May 1999 (1999-05-01), pages 50 - 1, ISSN: 0001039056 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326963A (en) * 2001-05-07 2002-11-15 Kanagawa Acad Of Sci & Technol Method of liquid-liquid interface reaction on microchip by charging electric field or magnetic field and the microchip therefor
WO2003062823A1 (en) * 2002-01-24 2003-07-31 Kanagawa Academy Of Science And Technology Chip and method for analyzing enzyme immunity
JP2004028589A (en) * 2002-06-21 2004-01-29 Hitachi Ltd Analytical chip and analytical device
US8288156B2 (en) 2002-06-21 2012-10-16 Hitachi, Ltd. Analytical chip and analyzer
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
US10082507B2 (en) 2003-12-31 2018-09-25 President And Fellows Of Harvard College Assay device and method
JP2007524851A (en) * 2004-01-26 2007-08-30 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Fluid delivery system and method
JP4698613B2 (en) * 2004-01-26 2011-06-08 プレジデント アンド フェロウズ オブ ハーバード カレッジ Fluid delivery system and method
US9116148B2 (en) 2004-01-26 2015-08-25 President And Fellows Of Harvard College Fluid delivery system and method
US10048252B2 (en) 2004-01-26 2018-08-14 President And Fellows Of Harvard College Fluid delivery system and method
JP2011090009A (en) * 2004-01-26 2011-05-06 President & Fellows Of Harvard College System and method for fluid delivery
JP4551123B2 (en) * 2004-05-28 2010-09-22 株式会社日立プラントテクノロジー Microfluidic system and processing method using the same
JP2005334804A (en) * 2004-05-28 2005-12-08 Hitachi Industries Co Ltd Microfluidic system, and treatment method using the same
WO2006016617A1 (en) * 2004-08-11 2006-02-16 Japan Science And Technology Agency Method of quantifying substance and device for quantifying substance
JP4536536B2 (en) * 2005-01-27 2010-09-01 株式会社エンプラス Fluid handling equipment
JP2006208168A (en) * 2005-01-27 2006-08-10 Enplas Corp Fluid handling apparatus
US7556778B2 (en) 2005-05-25 2009-07-07 Enplas Corporation Fluid handling apparatus and fluid handling unit for use therein
JP2007040942A (en) * 2005-05-25 2007-02-15 Enplas Corp Fluid handling device and fluid handling unit used therein
JP2007003412A (en) * 2005-06-24 2007-01-11 Sekisui Chem Co Ltd Biological measuring method
JP2007024498A (en) * 2005-07-12 2007-02-01 Rohm Co Ltd Immunoassay method and biochip
WO2007026731A1 (en) * 2005-08-31 2007-03-08 Rohm Co., Ltd Biochip and immunological analysis method
US7749450B2 (en) 2005-11-14 2010-07-06 Enplas Corporation Fluid handling apparatus and fluid handling unit for use therein
JP2007279018A (en) * 2006-03-16 2007-10-25 Enplas Corp Fluid-handling device, and fluid-handling unit used therefor
US7662345B2 (en) 2006-03-16 2010-02-16 Enplas Corporation Fluid handling apparatus and fluid handling unit for use therein
US7670854B2 (en) 2006-05-30 2010-03-02 Panasonic Corporation Immunological assay and chip
WO2007138789A1 (en) * 2006-05-30 2007-12-06 Panasonic Corporation Immunoassay method and chip
WO2008010677A1 (en) * 2006-07-20 2008-01-24 Seoulin Bioscience Co., Ltd. Microchip for protein fixation
KR100862904B1 (en) * 2006-07-20 2008-10-13 주식회사 서린바이오사이언스 Microchip for Protein Fixation
JP2008215960A (en) * 2007-03-01 2008-09-18 Research Institute Of Biomolecule Metrology Co Ltd Inspection kit
US7901626B2 (en) 2007-05-23 2011-03-08 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
JP2009002927A (en) * 2007-05-23 2009-01-08 Enplas Corp Fluid handling unit and fluid handling apparatus using same
EP1997557A1 (en) 2007-05-23 2008-12-03 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
JP2015025818A (en) * 2007-09-10 2015-02-05 日本電気株式会社 Microchip sample treatment device
JPWO2009035061A1 (en) * 2007-09-10 2010-12-24 日本電気株式会社 Microchip sample processing equipment
JP5641184B2 (en) * 2007-09-10 2014-12-17 日本電気株式会社 Microchip sample processing equipment
JP2009175108A (en) * 2008-01-28 2009-08-06 Sharp Corp Assay-use micro-channel device
JP2009209094A (en) * 2008-03-04 2009-09-17 Sharp Corp Microchip for protein extraction, protein extraction apparatus, protein measurement apparatus, protein extraction method using them, and air conditioner
US7842245B2 (en) 2008-04-04 2010-11-30 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
EP2106857A2 (en) 2008-04-04 2009-10-07 Enplas Corporation Fluid handling unit and fluid handling apparatus using same
JP2008256701A (en) * 2008-04-25 2008-10-23 Fuji Electric Holdings Co Ltd Antigen separator, and antigen measuring method and device using antgen separator
US8663910B2 (en) 2008-09-19 2014-03-04 Fujifilm Corporation Assay method
JP2010071827A (en) * 2008-09-19 2010-04-02 Fujifilm Corp Assay method
WO2014106881A1 (en) * 2013-01-07 2014-07-10 パナソニック株式会社 Duct device
US10684201B2 (en) 2013-03-13 2020-06-16 Opko Diagnostics, Llc Mixing of fluids in fluidic systems
US9255866B2 (en) 2013-03-13 2016-02-09 Opko Diagnostics, Llc Mixing of fluids in fluidic systems
US9588027B2 (en) 2013-03-13 2017-03-07 UPKO Diagnostics, LLC Mixing of fluids in fluidic systems
JP2015021906A (en) * 2013-07-22 2015-02-02 東亜ディーケーケー株式会社 Measuring method, cartridge for measurement, and measuring device
US10458572B2 (en) 2014-11-14 2019-10-29 Enplas Corporation Liquid handling device
US10279345B2 (en) 2014-12-12 2019-05-07 Opko Diagnostics, Llc Fluidic systems comprising an incubation channel, including fluidic systems formed by molding
US11253853B2 (en) 2014-12-12 2022-02-22 Opko Diagnostics, Llc Fluidic systems comprising an incubation channel, including fluidic systems formed by molding
JP2020533560A (en) * 2018-05-04 2020-11-19 イラミーナ インコーポレーテッド Flow cell with integrated manifold
JP7001716B2 (en) 2018-05-04 2022-01-20 イラミーナ インコーポレーテッド Flow cell with integrated manifold
US11376584B2 (en) 2018-05-04 2022-07-05 Illumina, Inc. Flow cell with integrated manifold
US11951477B2 (en) 2018-05-04 2024-04-09 Illumina, Inc. Flow cell with integrated manifold

Similar Documents

Publication Publication Date Title
JP2001004628A (en) Immunoassay and its method
Sato et al. Microchip‐based immunoassay system with branching multichannels for simultaneous determination of interferon‐γ
Teste et al. A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets
US20160237110A1 (en) Acoustic microreactor and methods of use thereof
JP4884361B2 (en) Chemical reaction equipment using microbeads
JP4850072B2 (en) Microchip
Shirai et al. A single-molecule ELISA device utilizing nanofluidics
Teste et al. Microchip integrating magnetic nanoparticles for allergy diagnosis
US20090053732A1 (en) Microfluidic devices, methods and systems for detecting target molecules
US10024849B2 (en) Systems, devices, and methods for agglutination assays using sedimentation
CN101317086A (en) Microfluidic detection of analytes
JPWO2005090972A1 (en) Biological substance analysis kit, analysis device, and analysis method
Dunbar et al. Microsphere-based multiplex immunoassays: development and applications using Luminex® xMAP® technology
US20060292641A1 (en) Immunoassay method
GB2392977A (en) A fluidic dielectrophoretic system and method for analysing biomolecules
EP2631007A1 (en) Device for parallelization and performance increase in microarray-immunoassays with solid, non-porous capture-zone
Lacharme et al. Magnetic beads retention device for sandwich immunoassay: comparison of off-chip and on-chip antibody incubation
US20090054255A1 (en) Microfluidic devices and methods
CN108169194B (en) Microfluid chip based on big blue flash butterfly and manufacturing method thereof
JPWO2019098301A1 (en) Target molecule detection method
Yang et al. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays
KR20090064942A (en) Method of multiplex detecting on microfluidic chip
Hu et al. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay
Satoa et al. Integration of an immunoassay system into a microchip for high-throughput assay
Kojima et al. Integration of immunoassay into extended nanospace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106