JP2001003733A - Exhaust emission control device - Google Patents

Exhaust emission control device

Info

Publication number
JP2001003733A
JP2001003733A JP11170567A JP17056799A JP2001003733A JP 2001003733 A JP2001003733 A JP 2001003733A JP 11170567 A JP11170567 A JP 11170567A JP 17056799 A JP17056799 A JP 17056799A JP 2001003733 A JP2001003733 A JP 2001003733A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nox
active metal
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11170567A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Shinya Sato
信也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP11170567A priority Critical patent/JP2001003733A/en
Publication of JP2001003733A publication Critical patent/JP2001003733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispose of exhaust emission at high efficiency over a long period of time by combining a NOx decomposition stage with a catalyst regenerating stage in a suitable time pattern. SOLUTION: An active metal-containing catalyst (catalyst) 7 decomposes NOx when an engine is operated under the lean condition of an air-fuel ratio, so that NOx is contained in the exhaust emission, and the catalyst 7 is gradually oxidized to form an oxide film on the surface of the catalyst 7, so that the NOx decomposition activity of the catalyst 7 is gradually decreased. Such activity decrease is detected by a NOx sensor NS2 installed at an outlet side of the catalyst 7, and when it is known from the NOx concentration that the catalyst activity is unsuitably low or lowered, the air-fuel ratio is put in the rich state. In this state, the oxide film on the surface of the catalyst 7 is removed by reaction and the catalyst 7 is regenerated. The regeneration of the catalyst 7 is determined by monitoring the HC concentration by hydrocarbon sensors CS1, CS2 installed upper-and downstream. When the catalyst is once regenerated the air-fuel ratio is returned to the lean state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気ガス
のNOxを活性金属含有触媒を用いて浄化処理する方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for purifying NOx in exhaust gas of an internal combustion engine using an active metal-containing catalyst.

【0002】[0002]

【従来の技術】内燃機関、例えばディ−ゼルエンジンの
排気ガスのNOxを処理するために種々の触媒が使用さ
れてきている。ところがNOx発生温度範囲と個々の触
媒の有効活性温度範囲との調和を図ることは難しく、運
転の際の排気ガス中の広い温度範囲に亘って単一の触媒
手段によって、効率良く、長期間にわたり満足なNOx
浄化を達成する排気ガス処理技術の開発が要求されてい
る。排気ガスの浄化のために、例えば銅−ゼオライト触
媒が研究、検討されてきているが、触媒活性が低く、ま
た耐久性が低いため実用化に至っていない。特開平6−
50139号には、NOx吸収剤を採用して、流入排気
ガスの空燃比をリ−ンとリッチとで切換える技術が開示
されている。そのNOx吸収剤としては、アルカリ金
属、アルカリ土類及び希土類から選択される少なくとも
1種と白金とを担体(例えばアルミナ)に担持させたも
のが開示されている。特許第2600492号には、内
燃機関の運転中に常時NOx吸収剤に排気ガスを流通さ
せておき、排気ガスの空燃比がリ−ンのときをNOx吸
収相そして酸素濃度低下時をNOx放出相とする排気浄
化装置が記載されている。この装置の下流側で、放出N
Ox含有排気ガスをさらに例えば三元触媒で処理して残
留NOxの浄化向上をなすことが示唆されている。
2. Description of the Related Art Various catalysts have been used to treat NOx in exhaust gas of internal combustion engines, for example, diesel engines. However, it is difficult to harmonize the NOx generation temperature range with the effective activation temperature ranges of the individual catalysts, and a single catalyst means efficiently and for a long time over a wide temperature range in the exhaust gas during operation. Satisfactory NOx
Development of exhaust gas treatment technology to achieve purification is required. For purification of exhaust gas, for example, a copper-zeolite catalyst has been studied and studied, but has not been put to practical use due to low catalytic activity and low durability. JP-A-6
No. 50139 discloses a technique in which an air-fuel ratio of inflowing exhaust gas is switched between lean and rich by employing a NOx absorbent. As the NOx absorbent, a material in which at least one selected from alkali metals, alkaline earths and rare earths and platinum are supported on a carrier (for example, alumina) is disclosed. Japanese Patent No. 2600492 discloses that the exhaust gas is always circulated through the NOx absorbent during the operation of the internal combustion engine, and the NOx absorption phase is used when the air-fuel ratio of the exhaust gas is lean, and the NOx release phase is used when the oxygen concentration is low. An exhaust gas purifying device is described. Downstream of this device, the release N
It has been suggested that the Ox-containing exhaust gas is further treated, for example, with a three-way catalyst to improve the purification of residual NOx.

【0003】[0003]

【発明が解決しようとする課題】本発明者等は、排気ガ
ス中のNOxをより効率的に、より長期間にわたって浄
化しうる実用化価値のある排気ガス浄化手段を考究、検
討、研究してきた。その一つの結果として、NOxの分
解に対して活性を示す金属含有触媒を用いる場合に、排
気ガス中にNOxが発生する条件と、排気ガス中に炭化
水素(未燃物あるいは外部添加したもの)もしくは一酸
化炭素のような含酸素化合物、水素等の還元剤が存在す
る条件とを、適切に組み合わせることにより、NOxの
分解駆逐と、失活したもしくは失活しつつある活性金属
含有触媒の再生とがバランスよく行われることを見出
し、この知見に基ずき上記の如き実用性ある排気ガス浄
化手段をここに提供するものである。本発明は、このよ
うな排気ガス浄化手段のために有用な活性金属含有触媒
及び方法(方式)をも提供する。本発明は、排気ガス再
循環(一般にEGRと称される。)システムを備えたエ
ンジンにおいて、あるいは活性金属含有触媒の上流側に
還元剤を供給する装置を備えたエンジンにおいて、更に
は燃料主噴射の前もしくは後あるいは前後の時期に主噴
射よりも少量の燃料を噴射することにより排気ガスのリ
ッチ状態を発現させることができるようにしたエンジン
において都合よく具体化される。
DISCLOSURE OF THE INVENTION The present inventors have studied, studied and studied exhaust gas purifying means of practical value that can purify NOx in exhaust gas more efficiently and for a longer period of time. . One result is that when using a metal-containing catalyst that is active against the decomposition of NOx, the conditions under which NOx is generated in the exhaust gas and the hydrocarbons (unburned or externally added) in the exhaust gas Alternatively, by appropriately combining the conditions in which an oxygen-containing compound such as carbon monoxide and a reducing agent such as hydrogen are present, the destruction of NOx and the regeneration of a deactivated or deactivated active metal-containing catalyst can be achieved. The present inventors have found that the above-mentioned processes are performed in a well-balanced manner, and based on this finding, provide here a practical exhaust gas purifying means as described above. The present invention also provides an active metal-containing catalyst and a method (system) useful for such an exhaust gas purifying means. The present invention relates to an engine provided with an exhaust gas recirculation (generally referred to as EGR) system, or an engine provided with a device for supplying a reducing agent upstream of an active metal-containing catalyst, and furthermore a fuel main injection. This is conveniently embodied in an engine in which a richer state of exhaust gas can be developed by injecting a smaller amount of fuel than the main injection before, after, or before or after.

【0004】[0004]

【課題を解決するための手段】かくして本発明は、排気
ガスを活性金属含有NOx触媒で処理するディーゼルエ
ンジンにおいて、排気ガスがリーン状態の時に排気ガス
に含まれてくるNOxを触媒中の活性金属と反応させる
ことにより窒素及び酸素に分解し、この状態が進行して
触媒活性が不適当に低くなること、または低くなったこ
とが判明した時に、排気ガスをリッチ状態にさせ、かく
してNOx触媒の酸化被膜あるいはそこに随伴、存在す
ることがある酸素分及び/または硫黄分を除去すること
によりNOx触媒を再生しそのNOx分解活性を回復さ
せた後、上記のリーン状態下でのNOx分解段階へ切り
替えることを特徴とし、これらのNOx分解段階と触媒
再生段階とを適宜な時間パターンで組み合わせて排気ガ
スを長期にわたり高効率で処理し得る排気ガス浄化装置
を提供する。本発明の上記排気ガス浄化装置の実施に当
たって、排気ガスをリッチおよびリーン状態にさせる手
段、方式として、以下に記載されるように種々のものが
採用されうる。すなわち、本発明はその一態様として、
排気ガス再循環(EGR)システムを備え、最終排出前
に排気ガスを活性金属含有触媒で処理するディ−ゼルエ
ンジンにおいて、EGRシステムをオフにすることによ
り排気ガスのリ−ン状態を形成させ、EGRシステムを
オンにすることにより排気ガスのリッチ状態を形成させ
る前記排気ガス浄化装置も提供する。本発明は、別の態
様の排気ガス浄化装置をも提供するものであり、それ
は、ディ−ゼルエンジンからの排気管系内に活性金属含
有NOx触媒を配置し、還元剤供給装置を備え、エンジ
ンの吸気側及び/または排気側で還元剤を供給すること
により排気ガスのリッチ状態を形成させる前記排気ガス
浄化装置も提供する。
Thus, the present invention provides a diesel engine in which exhaust gas is treated with an active metal-containing NOx catalyst. In a diesel engine, when the exhaust gas is in a lean state, NOx contained in the exhaust gas is converted into active metal in the catalyst. And decomposes into nitrogen and oxygen by this reaction, and when it is found that this state has progressed and the catalyst activity has become inappropriately low, or when it has become low, the exhaust gas is made rich and thus the NOx catalyst After the NOx catalyst is regenerated and its NOx decomposing activity is recovered by removing the oxide film or the oxygen and / or sulfur that may be present in the oxide film, the process proceeds to the above-mentioned NOx decomposing step under a lean state. It is characterized by switching, and by combining these NOx decomposition stage and catalyst regeneration stage with an appropriate time pattern, To provide an exhaust gas purifying apparatus which may be treated with efficiency. In implementing the exhaust gas purifying apparatus of the present invention, various means and methods for causing the exhaust gas to be in a rich and lean state as described below can be adopted. That is, the present invention, as one aspect thereof,
In a diesel engine having an exhaust gas recirculation (EGR) system, wherein the exhaust gas is treated with an active metal-containing catalyst before final exhaust, a lean state of the exhaust gas is formed by turning off the EGR system; The exhaust gas purifying device for forming an exhaust gas rich state by turning on an EGR system is also provided. The present invention also provides an exhaust gas purifying apparatus according to another aspect, which includes an active metal-containing NOx catalyst disposed in an exhaust pipe system from a diesel engine, a reducing agent supply device, and an engine. The exhaust gas purifying apparatus for forming a rich state of exhaust gas by supplying a reducing agent on an intake side and / or an exhaust side of the exhaust gas is also provided.

【0005】この還元剤として適当なものの例は、水
素、一酸化炭素のような含酸素化合物、炭化水素、軽油
などであるが、これらに限定されるものではない。本発
明は、更には、ディーゼルエンジンの燃料主噴射の前も
しくは後あるいは前後の時期に主噴射よりも少量の燃料
を噴射することにより排気ガスのリッチ状態を形成させ
る前記排気ガス浄化装置を提供する。本発明において、
活性金属含有触媒は、活性金属としての銅、コバルト、
ロジウム及びイリジウムから選択される少なくとも1種
を、担体としての金属酸化物の上に担持してなる構成で
ある。金属酸化物担体としては、アルミナ、ジルコニ
ア、チタニア、酸化鉄等を挙げることができる。この触
媒は、公知の耐火性ハニカム構造体、例えばコ−ジェラ
イト製モノリスの形のハニカム構造体の表面に、例えば
適当なバインダ−を含むスラリ−として、ディップコ−
ト法で被覆され、エンジンからの排気管系中に配置され
る。この触媒は、エンジンが空燃比リ−ン条件下で運転
され、その結果として排気ガス中にNOxが含まれてく
る様な状態のときには、NOxを典型的には、NOx⇒
2 +O2 で示される様に分解し、このときに活性金属
は、徐々に酸化されて触媒表面に酸化被膜が形成され、
触媒のNOx分解活性が次第に低減してくる。その様な
活性低減は、触媒の出口側におけるNOx濃度から検知
される。触媒の入り口側及び出口側の適当な位置の排気
管内にNOx濃度を測定、検出するためのNOxセンサ
が設けられ、それらの検出デ−タ信号は電子制御装置
(ECU)に入力され、本発明のリ−ン及びリッチ状態
の切り替え信号が出力される。上記の活性低減が進行し
て、前記の如きNOxセンサによって得られるデ−タ、
殊に触媒出口側のNOx濃度値から触媒活性が不適当に
低くなること、または低くなることが判明したときに
は、空燃比リッチ状態を発現させる。この状態は、例え
ば前記ECUからの信号により、排気ガス再循環(EG
R)システムをオンとすることにより;、または還元剤
供給装置を介して還元剤を触媒の上流側に供給すること
により;またはディーゼルエンジンの燃料主噴射の前も
しくは後あるいは前後の時期に主噴射よりも少量の燃料
を噴射することにより;得られる。このリッチ状態のと
きには、排気ガス中に炭化水素分(HC)、含酸素化合
物分(CO等),水素が未燃残留物として、あるいは還
元剤供給装置を介しての添加物として存在するので、活
性金属含有触媒の表面に付着ないし結合している酸素ま
たは酸化被膜(これらをここでは仮に”O2”と表
す。)は、HC+O2⇒CO 2+H2O;CO+O2⇒CO
2;H2+O2⇒H2O;の如き反応によって除去され、従
って触媒活性が回復することとなり、触媒が再生され
る。触媒の再生は、その上流側及び下流側に設けられた
炭化水素センサにより、HC濃度をモニタリングし、前
記ECUでのデ−タプロセッシングにより判定すること
ができる。一旦、触媒が再生されたならば、排気ガスの
空燃比をリ−ン状態に戻して、すなわちEGRシステム
をオフとし、あるいは還元剤供給を停止(場合によって
は低減)し、あるいは燃料主噴射の前及び/または後の
時期の追加的な少量燃料噴射を停止して、再びNOxが
分解される段階とすることができる。これらの切り替え
制御はECUによって行うことができる。上記のよう
に、本発明では活性金属含有触媒によるNOx分解(浄
化)段階と失活触媒の再生段階とを適宜な時間パタ−ン
で組み合わせて、排気ガスを長期にわたり高効率で処理
可能とする。本発明の一態様例の概略を図1に例示、説
明する。図1に示されるディ−ゼルエンジン1は、エア
フィルタ−2から延在する吸気管3の途中に、排気マニ
ホルドのところから排気ガスを再循環させるためのEG
Rパイプ4を備えている。このEGRパイプ4には、再
循環される排気ガスの流れのオン(再循環実施)及びオ
フ(再循環停止)ならびに再循環排気ガス量調節の機能
を備えたEGRバルブ5が備えられてあり、その作動は
ECUからの信号によって制御できる。また排気マニホ
ルドからの排気管6の途中に活性金属含有触媒を被覆し
た耐火性ハニカム構造体7(以下、簡便のためこれを触
媒7と称することがある。)を収容した直径膨大部分が
備えられている。触媒7の入り口側の排気管内には、エ
ンジン排気マニホルドからの排気ガス温度を測定するた
めの温度センサTS、炭化水素分(HC)濃度測定のた
めの炭化水素センサCS1、NOx濃度測定のためのNO
xセンサNS1が設置され、そして触媒7の出口側の排
気管内には、処理済の排気ガスの炭化水素分濃度測定の
ための炭化水素センサCS2、NOx濃度測定のための
NOxセンサNS2が設置されている。これらのセンサ
の検出デ−タ信号は、ECUへ入力され、デ−タプロセ
ッシングにより空燃比リ−ン状態(NOx分解段階)及
びリッチ状態(活性金属含有触媒再生段階)を生じさせ
る決定がなされ、そこからの信号出力をEGRバルブ5
へ送り、EGRバルブ5を作動させて、オン、オフ、及
び排気ガス再循環流量の制御が行われる。図2は、本発
明の別の態様例の概念を例示、説明するためのものであ
る。この具体例においては、図1のものと異なりEGR
システムは採用されておらず、触媒7の入り口側に還元
剤供給装置を設置して、排気ガスに対して還元剤を噴射
供給し、失活した、または著しく失活した触媒をその還
元剤の作用により再生する。還元剤供給装置は還元剤タ
ンク11、還元剤供給ポンプ10、還元剤供給バルブ
9、還元剤噴射ノズル8から構成されている。図2の場
合にも、還元剤噴射ノズル8よりも上流の位置に排気ガ
ス温度センサが、そして還元剤噴射ノズル8と触媒7と
の間の位置に炭化水素センサ及びNOxが、そしてさら
には触媒7の出口側に別の炭化水素センサ、NOxセン
サが設置され、それぞれの検出デ−タ信号をECUへ送
り、それに基ずき還元剤供給ポンプ10及びバルブ9を
作動させ、触媒再生に必要とされる量の還元剤が必要な
時間、ノズル8から噴射されるようにする。但し図2で
は、センサやECUは簡明のため省略してあり、図示さ
れていない。適当な還元剤の例は、炭化水素類、殊に軽
油、尿素等である。図2の場合、通常は触媒7中の活性
金属の作用によりNOxを窒素及び酸素に分解し、やが
て触媒表面が活性金属酸化被膜で覆われ、NOx分解活
性が失われてくる。この状態はNOxセンサからの信号
によりECUで判定され、ECUから還元剤供給ポンプ
10及びバルブ9ヘ向けて信号が送られ、適量の還元剤
を適切な時間ノズル8から噴射して失活触媒を再生す
る。触媒再生の進行の度合いは、触媒7の入り口側及び
出口側の炭化水素センサからのデ−タをECUで比較し
て判定される。触媒再生が終了したときには、ECUか
ら還元剤の噴射を停止する信号が還元剤供給ポンプ10
及びバルブ9へ送られ、還元剤の供給が停止される。こ
のようにして再生された触媒7は、再びNOx分解段階
でNOxを分解するために使用できるようになる。上記
のNOx分解段階と触媒再生段階とを適宜に繰り返すこ
とにより、排気ガス中のNOxを長期間にわたり高効率
に分解除去できる。図3は、本発明の排気ガス浄化のた
めに還元剤を導入して排気ガスをリッチ状態にしてNO
x触媒再生段階をもたらすのに、還元剤をエンジンのイ
ンテークマニホルドのところ(Rinjで示す)で導入
する方式を例示している。この場合に、図1および2に
関して述べたように、種々のセンサからの情報に基づき
ECUが還元剤の供給を制御し、適時に供給−停止の切
り替えがなされ、また供給量の調節がなされる。図4
は、本発明の排気ガス浄化のためにエンジンの燃料主噴
射の前及び/または後の時期に主噴射量よりも少量の追
加的な燃料噴射を行って排気ガスのリッチ状態をもたら
す方式を示している。この場合も、前記と同様に種々の
センサからの情報に基づき追加燃料噴射の信号(In
j)がECUからエンジンの噴射システムへタイミング
良く伝えられ、実行される。本発明で使用する活性金属
含有触媒は、前記の構成であるが、その調製法は公知で
ある。例えば次のような方法により調製する。即ち、
銅、コバルト、ロジウムまたはイリジウムの活性金属の
水溶性塩を含む溶液中に、担体をなす金属酸化物粉末
(あるいは微粒子)を混入攪拌して、担体表面及びその
近傍に活性金属化合物を被着させ、濾過、乾燥し、必要
に応じて解砕し、次いでこの活性金属担持触媒粉末を適
当なバインダ−、例えばアルミナゾルと共に水に懸濁さ
せて均質スラリ−とし、これに耐火性ハニカム構造体を
浸漬し、引き上げ、余剰付着スラリ−を空気ジェットで
吹き払い、乾燥し、必要に応じて金属化合物を還元性気
体雰囲気中で還元して、賦活触媒を得ることができる。
An example of a suitable reducing agent is water.
Oxygen, oxygenated compounds such as carbon monoxide, hydrocarbons, light oil
However, the present invention is not limited to these. Departure
Akira, and even before the main injection of diesel engine fuel
Or a smaller amount of fuel than after the main injection
To form a rich state of exhaust gas by injecting
The exhaust gas purifying apparatus. In the present invention,
Active metal-containing catalysts include copper, cobalt,
At least one selected from rhodium and iridium
Is supported on a metal oxide as a carrier.
is there. Metal oxide carriers include alumina and zirconium.
A, titania, iron oxide and the like. This touch
The medium is a known refractory honeycomb structure, for example,
On the surface of a honeycomb structure in the form of a monolith made of
As a slurry containing a suitable binder, a dip-co
Covered in the exhaust method and placed in the exhaust system from the engine
You. This catalyst is used when the engine is operated under lean air-fuel ratio conditions.
As a result, NOx is contained in the exhaust gas.
In such a state, NOx is typically reduced to NOx ⇒
NTwo+ OTwoDecomposes as shown by
Is gradually oxidized to form an oxide film on the catalyst surface,
The NOx decomposition activity of the catalyst gradually decreases. Such
Activity reduction is detected from the NOx concentration at the catalyst outlet
Is done. Exhaust at appropriate locations on the inlet and outlet sides of the catalyst
NOx sensor for measuring and detecting NOx concentration in pipe
Are provided, and the detected data signals are supplied to an electronic control unit.
(ECU), the lean and rich states of the present invention
Is output. The activity reduction described above progresses
The data obtained by the NOx sensor as described above,
In particular, the catalyst activity is inappropriate due to the NOx concentration value at the catalyst outlet side.
Low, or when it turns out to be low
Causes the air-fuel ratio rich state to be developed. This state, for example,
For example, the exhaust gas recirculation (EG
R) by turning on the system; or reducing agent
Supplying the reducing agent upstream of the catalyst via a supply device
Or before the main injection of the diesel engine
Or a smaller amount of fuel than after the main injection
By injecting; In this rich state
The exhaust gas contains hydrocarbons (HC) and oxygenated compounds
Material (CO, etc.) and hydrogen are returned as unburned residues or returned
Since it exists as an additive through the base agent supply device,
Oxygen attached or bound to the surface of the
Or oxide film (these are referred to here as "O"TwoAnd the table
You. ) Is HC + OTwo⇒CO Two+ HTwoO; CO + OTwo⇒CO
TwoHTwo+ OTwo⇒HTwoO;
As a result, the catalyst activity is restored, and the catalyst is regenerated.
You. Regeneration of the catalyst was provided on its upstream and downstream sides
HC concentration is monitored by hydrocarbon sensor
Judgment by data processing in ECU
Can be. Once the catalyst has been regenerated, the exhaust gas
Returning the air-fuel ratio to the lean state, that is, the EGR system
Or turn off the reductant supply (possibly
Is reduced) or before and / or after the main fuel injection.
Stop additional small amount fuel injection at the time, and NOx
It can be a stage of decomposition. Switching between these
The control can be performed by the ECU. As above
In the present invention, NOx decomposition (purification) using an active metal-containing catalyst is carried out.
) Stage and the regeneration stage of the deactivated catalyst are appropriately patterned in time.
To efficiently treat exhaust gas over a long period of time
Make it possible. An example of an embodiment of the present invention is schematically illustrated in FIG.
I will tell. The diesel engine 1 shown in FIG.
In the middle of the intake pipe 3 extending from the filter 2, an exhaust manifold is provided.
EG for recirculating exhaust gas from Hold
An R pipe 4 is provided. This EGR pipe 4 has
Turn on (recirculate) and turn on the exhaust gas
(Recirculation stop) and recirculation exhaust gas control
An EGR valve 5 provided with
It can be controlled by a signal from the ECU. Also exhaust manifold
The middle of the exhaust pipe 6 from the catalyst is coated with an active metal-containing catalyst.
Fired honeycomb structure 7 (hereinafter referred to for convenience)
It may be referred to as a medium 7. ) Containing a huge part of the diameter
Provided. In the exhaust pipe on the inlet side of the catalyst 7,
To measure the exhaust gas temperature from the engine exhaust manifold
Temperature sensor TS for measuring hydrocarbon concentration (HC) concentration
Hydrocarbon sensor CS1, NO for NOx concentration measurement
x sensor NS1Is installed, and the exhaust side of the catalyst 7 is exhausted.
In the trachea, there is a measurement of the hydrocarbon concentration of the treated exhaust gas.
Sensor CS forTwoFor NOx concentration measurement
NOx sensor NSTwoIs installed. These sensors
The detected data signal is input to the ECU, and the data
The air-fuel ratio lean state (NOx decomposition stage)
And rich state (regeneration stage of active metal-containing catalyst)
And the signal output therefrom is transmitted to the EGR valve 5.
To operate the EGR valve 5 to turn on, off, and
And the exhaust gas recirculation flow rate is controlled. Fig. 2
It is intended to illustrate and explain the concepts of another aspect of the invention.
You. In this specific example, unlike in FIG.
The system is not used and is reduced to the entrance side of the catalyst 7
Injecting reducing agent to exhaust gas by installing agent supply device
Supply and deactivate or significantly deactivate the catalyst
It is regenerated by the action of the base agent. The reducing agent supply device is
Ink 11, reducing agent supply pump 10, reducing agent supply valve
9, a reducing agent injection nozzle 8. Fig. 2
Also in this case, the exhaust gas is located at a position upstream of the reducing agent injection nozzle 8.
Temperature sensor, and the reducing agent injection nozzle 8 and the catalyst 7
Between the hydrocarbon sensor and NOx, and
Another hydrocarbon sensor, NOx sensor
The sensor is installed and sends each detection data signal to ECU.
And the reducing agent supply pump 10 and the valve 9
Operation and the amount of reductant required for catalyst regeneration is required.
It is made to eject from nozzle 8 for time. However, in FIG.
Indicates sensors and ECUs for simplicity.
Not. Examples of suitable reducing agents are hydrocarbons, especially light
Oil, urea and the like. In the case of FIG. 2, the activity in the catalyst 7 is usually
NOx is decomposed into nitrogen and oxygen by the action of metal,
The catalyst surface is covered with an active metal oxide film,
Sex is lost. This state is a signal from the NOx sensor
And the reducing agent supply pump
A signal is sent to 10 and valve 9 and an appropriate amount of reducing agent
Is injected from the nozzle 8 for an appropriate time to regenerate the deactivated catalyst.
You. The degree of progress of the catalyst regeneration depends on the entrance side of the catalyst 7 and
Compare the data from the hydrocarbon sensor on the outlet side with the ECU.
Is determined. When catalyst regeneration is completed,
From the reducing agent supply pump 10
And the valve 9 and the supply of the reducing agent is stopped. This
The catalyst 7 regenerated as described above is again in the NOx decomposition stage.
Can be used to decompose NOx. the above
NOx decomposition step and catalyst regeneration step
And high efficiency of NOx in exhaust gas for a long time
Can be decomposed and removed. FIG. 3 shows an exhaust gas purification system according to the present invention.
In order to make the exhaust gas rich by introducing a reducing agent
x Add a reducing agent to the engine
Introduced at intake manifold (indicated by Rinj)
FIG. In this case, FIGS.
As mentioned earlier, based on information from various sensors
The ECU controls the supply of the reducing agent, and switches between supply and stop when appropriate.
Replacement is made and supply is adjusted. FIG.
Is the main fuel injection of the engine for purifying the exhaust gas of the present invention.
Before and / or after firing, add a smaller amount than the main injection amount.
Performs additional fuel injection, resulting in rich exhaust gas
This shows the method. In this case as well, various
Based on the information from the sensor, the signal of the additional fuel injection (In
j) is the timing from the ECU to the engine injection system
Well communicated and executed. Active metal used in the present invention
The contained catalyst has the above-mentioned constitution, but its preparation method is known.
is there. For example, it is prepared by the following method. That is,
Copper, cobalt, rhodium or iridium active metals
Metal oxide powder as a carrier in a solution containing a water-soluble salt
(Or fine particles) and stir to mix the carrier surface and its
Apply active metal compound in the vicinity, filter, dry, and
And then pulverize the active metal-supported catalyst powder.
A suitable binder, for example, suspended in water with alumina sol
To make a homogeneous slurry, to which a refractory honeycomb structure
Immerse, pull up, and remove excess adhesive slurry with air jet
Blow off and dry.
It can be reduced in a body atmosphere to obtain an activated catalyst.

【0006】[0006]

【実施例】触媒の調製例 金属として計算して2.5gのロジウムを含むように定
めた量の硝酸ロジウムを水300mlに入れ良く混合攪
拌し、さらに150gのアルミナ粉末を加え、均質にな
るように充分に混合した。この水性混合物から余分の水
性相を流去させ、残留物を約100〜110゜Cの乾燥
炉中で4時間にわたって乾燥した。次いで、約560〜
580゜Cの水素含有窒素ガス流(容積基準1%H2
99%N2)中で3時間加熱処理し、ロジウム担持触媒
を得た。これを軽く解砕、粉砕して粒度150〜100
メッシュの粉体とした。水、アルミナゾルバインダ−及
びこのロジウム担持触媒粉末を重量比70:20:50
で混合し、充分に攪拌して均一なスラリ−とし、これに
コ−ジェライト製ハニカム担体を浸漬し、引き上げ、空
気ジェットで余剰付着物を吹き払い、大気中で600°
Cで10時間焼成し、放冷し、実装用触媒(A)を得
た。上記の調製操作に従って、活性金属成分としてイリ
ジウム(Ir),担体としてアルミナを含む触媒
(B);活性金属成分としてイリジウム(Ir),担体
としてチタニアを含む触媒(C);及び活性金属成分と
して銅(Cu),担体としてジルコニアを含む触媒
(D)を得た。NOx処理の実施例1 図1に示したEGRシステム付きエンジン及びNOx触
媒処理装置に上記実装用触媒(A)を装填し、ECUに
より制御して、NOx分解段階と触媒再生段階を適宜に
行った。触媒の出口側における平均NOx排出量デ−タ
(相対値表示)をプロットしたグラフを図5に示す。図
5の横軸に沿って示めされれている矢印は触媒再生を実
施したことを表しており、幾秒かのタイムラグを伴なっ
て触媒活性が回復することが判る。図5では、60秒間
に同間隔で3回の再生が行われたことを示しているが、
実際の運転時には、エンジンの負荷に応じて、再生間隔
が短くなり、あるいは長くなるように変動制御(通常
は、ECUのデータプロセッシングにより)される。NOx処理の実施例2 実施例1のエンジン及び触媒装置の代わりに図2に示し
た態様の触媒装置を備えたエンジン(但しEGRシステ
ムなし)を用いて、ECUにより制御して実施例1のよ
うに排出NOx濃度のデ−タを記録したところ図5に示
されるものとほぼ同じ傾向が認められた。NOx処理の実施例3 前記調製例で得た触媒A(Rh/アルミナ)、B(Ir
/アルミナ)、C(Ir/チタニア)、及びD(Cu/
ジルコニア)を用いて、実施例1のディーゼルエンジン
装置に装着し、排気ガス(同一運転条件下;350℃)
についてのNOx低減率を測定し、図6のグラフのよう
な相対測定値を得た。この場合、比較対照のために触媒
無しで得られた場合のNOx排出量を基準として、各触
媒の達成した平均NOx低減率は、Aが62%、Bが6
0%、Cが57%、そしてDが48%であった。以上の
ように本発明では空燃比をリッチとリ−ンに適宜切り替
え触媒の機能の利用及び再生を首尾よく調和させつつ、
排気ガスを浄化することを可能にする。
EXAMPLES Preparation Example of Catalyst A predetermined amount of rhodium nitrate calculated to contain 2.5 g of rhodium as a metal was placed in 300 ml of water, mixed and stirred well, and 150 g of alumina powder was further added to make the mixture homogeneous. Mix well. The excess aqueous phase was drained from the aqueous mixture and the residue was dried in a drying oven at about 100-110 ° C for 4 hours. Then, about 560
580 ° C. hydrogen-containing nitrogen gas flow (1% H 2 /
Heat treatment was performed in 99% N 2 ) for 3 hours to obtain a rhodium-supported catalyst. This is lightly crushed and pulverized to a particle size of 150 to 100.
A mesh powder was used. Water, alumina sol binder and this rhodium-supported catalyst powder were mixed in a weight ratio of 70:20:50.
, And sufficiently stirred to form a uniform slurry. The honeycomb carrier made of cordierite was immersed in the slurry, pulled up, and excess deposits were blown off with an air jet.
C was baked for 10 hours and allowed to cool to obtain a mounting catalyst (A). According to the above-mentioned preparation operation, a catalyst (B) containing iridium (Ir) as an active metal component and alumina as a carrier; a catalyst (C) containing iridium (Ir) as an active metal component and titania as a carrier; and copper as an active metal component A catalyst (D) containing (Cu) and zirconia as a carrier was obtained. Example 1 of NOx Treatment The mounting catalyst (A) was loaded into the engine with an EGR system and the NOx catalyst treatment device shown in FIG. 1 and controlled by the ECU to appropriately perform the NOx decomposition step and the catalyst regeneration step. . FIG. 5 is a graph plotting the average NOx emission amount data (relative value display) at the outlet side of the catalyst. The arrow shown along the horizontal axis in FIG. 5 indicates that the catalyst regeneration was performed, and it can be seen that the catalyst activity was recovered with a time lag of several seconds. FIG. 5 shows that reproduction was performed three times at the same interval in 60 seconds.
At the time of actual operation, fluctuation control is performed (usually by data processing of the ECU) so that the regeneration interval becomes shorter or longer according to the load of the engine. Example 2 of NOx treatment As in Example 1, control was performed by an ECU using an engine (without an EGR system) equipped with the catalyst device of the embodiment shown in FIG. 2 instead of the engine and catalyst device of Example 1. When the data of the concentration of exhausted NOx was recorded, the same tendency as that shown in FIG. 5 was observed. Example 3 of NOx treatment Catalysts A (Rh / alumina) and B (Ir) obtained in the above preparation examples
/ Alumina), C (Ir / titania), and D (Cu /
Zirconia) and mounted on the diesel engine device of Example 1 and exhaust gas (under the same operating conditions; 350 ° C.)
The NOx reduction rate was measured for, and relative measurement values as shown in the graph of FIG. 6 were obtained. In this case, the average NOx reduction achieved by each catalyst is 62% for A and 6% for B, based on the NOx emission obtained without a catalyst for comparison.
0%, C was 57%, and D was 48%. As described above, in the present invention, while appropriately switching the air-fuel ratio between rich and lean, the use and regeneration of the function of the catalyst are successfully harmonized,
Enables purification of exhaust gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気ガス浄化方式を実施するための装
置の一態様(EGR方式)の概念図。
FIG. 1 is a conceptual diagram of one embodiment (EGR system) of an apparatus for implementing an exhaust gas purification system of the present invention.

【図2】本発明の排気ガス浄化方式(還元剤導入)を実
施するための装置の別の態様の概念図。
FIG. 2 is a conceptual diagram of another embodiment of an apparatus for implementing the exhaust gas purifying method (introducing a reducing agent) of the present invention.

【図3】本発明の排気ガス浄化のための還元剤導入をエ
ンジンのインテークマニホルドのところで行う方式の概
念図。
FIG. 3 is a conceptual diagram of a system of the present invention in which a reducing agent for purifying exhaust gas is introduced at an intake manifold of an engine.

【図4】本発明の排気ガス浄化のために燃料主噴射の前
及び/または後の時期に少量の燃料噴射によりリッチ状
態を生じさせる方式の概念図。
FIG. 4 is a conceptual diagram of a system for producing a rich state by a small amount of fuel injection before and / or after fuel main injection for purifying exhaust gas according to the present invention.

【図5】本発明の浄化方式を実施した場合の排出ガスの
NOx濃度の変化の様子を示すグラフ。
FIG. 5 is a graph showing how the NOx concentration of exhaust gas changes when the purification method of the present invention is implemented.

【図6】本発明による相対的NOx低減率成績を示すグ
ラフ。
FIG. 6 is a graph showing relative NOx reduction rate performance according to the present invention.

【符号の説明】[Explanation of symbols]

1ディ−ゼルエンジン 2エアフィルタ− 3吸気管 4EGRパイプ 5EGRバルブ 6排気管 7触媒 8還元剤噴射ノズル 11還元剤タンク CS1,CS2 炭化水素センサ NS1,NS2 NOxセンサ1 diesel engine 2 air filter 3 intake pipe 4 EGR pipe 5 EGR valve 6 exhaust pipe 7 catalyst 8 reducing agent injection nozzle 11 reducing agent tank CS 1 , CS 2 hydrocarbon sensor NS 1 , NS 2 NOx sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/10 ZABA 4G069 3/10 ZAB 3/24 S 3/24 3/28 301C 3/28 301 F02D 21/08 301H F02D 21/08 301 41/04 355 41/04 355 41/38 B 41/38 43/00 301G 43/00 301 301N B01D 53/36 104A Fターム(参考) 3G084 AA01 AA03 AA04 BA05 BA13 BA20 BA24 DA10 DA22 DA27 EA11 FA28 3G091 AA11 AA18 AA28 AB04 AB05 BA11 BA14 BA33 CA13 CA18 CA19 CB02 CB03 DA02 DA03 DB10 EA30 EA33 FB10 FB12 FC02 GA06 GB01W GB01X GB05W GB10X GB15X HA36 HA37 HA42 HB03 HB05 3G092 AA01 AA02 AA06 AA09 AA13 AA17 AB02 AB03 AB04 BA01 BA04 BA07 BB01 BB06 DC08 DC15 DE03S DE03Y EA01 EA02 EA05 EA07 EA08 3G301 HA01 HA02 HA04 HA06 HA13 HA15 JA25 JA33 JB09 LA01 LB11 MA01 MA11 MA18 NA08 NE13 NE15 PD01B PD01Z 4D048 AA06 AB02 AB03 AC02 BA03X BA07X BA08X BA33X BA35X BA37Y BA41X BB02 BD03 CC38 DA01 DA02 DA10 4G069 AA10 BA01B BA04B BA05B BC31A BC31B BC67A BC71A BC71B BC74A BC74B CA03 CA08 CA10 CA13 DA06 EA18──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F01N 3/08 F01N 3/10 ZABA 4G069 3/10 ZAB 3/24 S 3/24 3/28 301C 3 / 28 301 F02D 21/08 301H F02D 21/08 301 41/04 355 41/04 355 41/38 B 41/38 43/00 301G 43/00 301 301N B01D 53/36 104A F term (reference) 3G084 AA01 AA03 AA04 BA05 BA13 BA20 BA24 DA10 DA22 DA27 EA11 FA28 3G091 AA11 AA18 AA28 AB04 AB05 BA11 BA14 BA33 CA13 CA18 CA19 CB02 CB03 DA02 DA03 DB10 EA30 EA33 FB10 FB12 FC02 GA06 GB01W GB01X GB05W GB10X GB15A HAA HAA HAA HAA HAA HAB HAA AB03 AB04 BA01 BA04 BA07 BB01 BB06 DC08 DC15 DE03S DE03Y EA01 EA02 EA05 EA07 EA08 3G301 HA01 HA02 HA04 HA06 HA13 HA15 JA25 JA33 JB09 LA01 LB11 MA01 MA11 MA18 NA08 NE13 NE15 PD01B PD01Z 4D048 AA06 AB02 AB03 AC02 BA03X BA07X BA08X BA33X BA35X BA37Y BA41X BB02 BD03 CC38 DA01 DA02 DA10 4G069 AA10 BA01B BA04B BA05B BC31ABC31ABCBC BC BC

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】排気ガスを活性金属含有NOx触媒で処理
するディーゼルエンジンにおいて、排気ガスがリーン状
態の時に排気ガスに含まれてくるNOxを触媒中の活性
金属と反応させることにより窒素及び酸素に分解し、こ
の状態が進行して触媒活性が不適当に低くなること、ま
たは低くなったことが判明したときに、排気ガスのリッ
チ状態を形成することによりNOx触媒の酸化被膜ある
いはそこに随伴、存在することがある酸素分及び/また
は硫黄分を除去することによりNOx触媒を再生しその
NOx分解活性を回復させた後、上記のリ−ン状態下で
のNOx分解段階へ切り替えることを特徴とし、これら
のNOx分解段階と触媒再生段階とを適宜な時間パタ−
ンで組み合わせて排気ガスを長期にわたり高効率で処理
しうる排気ガス浄化装置。
In a diesel engine in which exhaust gas is treated with an active metal-containing NOx catalyst, NOx contained in the exhaust gas when the exhaust gas is in a lean state is reacted with an active metal in the catalyst to produce nitrogen and oxygen. Decomposes, and when this state progresses and the catalyst activity becomes inappropriately low or is found to have become low, by forming a rich state of the exhaust gas, the oxide film of the NOx catalyst or accompanying it, The method is characterized in that the NOx catalyst is regenerated by removing oxygen and / or sulfur which may be present and the NOx decomposition activity is restored, and then the operation is switched to the NOx decomposition stage under the above-mentioned lean condition. The NOx decomposition stage and the catalyst regeneration stage are appropriately time-patterned.
Exhaust gas purifier that can process exhaust gas with high efficiency over a long period of time by combining the components.
【請求項2】排気ガス再循環(EGR)システムを備
え、最終排出前に排気ガスを活性金属含有NOx触媒で
処理するディーゼルエンジンにおいて、EGRシステム
をオフにすることにより排気ガスのリーン状態を形成
し、EGRシステムをオンにすることにより排気ガスの
リッチ状態を形成する請求項1記載の排気ガス浄化装
置。
2. In a diesel engine having an exhaust gas recirculation (EGR) system in which exhaust gas is treated with an active metal-containing NOx catalyst before final emission, a lean state of the exhaust gas is formed by turning off the EGR system. The exhaust gas purifying apparatus according to claim 1, wherein a rich state of the exhaust gas is formed by turning on the EGR system.
【請求項3】デイ−ゼルエンジンからの排気管系内に活
性金属含有NOx触媒を配置し、還元剤供給装置を備
え、還元剤をエンジンの吸気側及び/または排気側で供
給することにより排気ガスのリッチ状態を形成する請求
項1記載の排気ガス浄化装置。
3. An exhaust system comprising an active metal-containing NOx catalyst disposed in an exhaust pipe system from a diesel engine, a reducing agent supply device, and a reducing agent supplied on an intake side and / or an exhaust side of the engine. 2. The exhaust gas purifying apparatus according to claim 1, wherein a rich state of the gas is formed.
【請求項4】水素、一酸化炭素のような含酸素化合物、
炭化水素、軽油などの還元剤を添加することにより排気
ガスのリッチ状態を形成する請求項1記載の排気ガス浄
化装置。
4. An oxygen-containing compound such as hydrogen or carbon monoxide,
The exhaust gas purifying apparatus according to claim 1, wherein a rich state of the exhaust gas is formed by adding a reducing agent such as a hydrocarbon or light oil.
【請求項5】ディーゼルエンジンの燃料主噴射の前もし
くは後あるいは前後の時期に主噴射よりも少量の燃料を
噴射することにより排気ガスのリッチ状態を形成する請
求項1記載の排気ガス浄化装置。
5. The exhaust gas purifying apparatus according to claim 1, wherein a rich state of the exhaust gas is formed by injecting a smaller amount of fuel than the main injection before, after or before or after the main fuel injection of the diesel engine.
【請求項6】触媒が銅、コバルト、ロジウム及びイリジ
ウムから選択される少なくとも1種の活性金属を金属酸
化物担体に担持した構成である請求項1〜5のいずれか
に記載の排気ガス浄化装置。
6. The exhaust gas purifying apparatus according to claim 1, wherein the catalyst has a structure in which at least one active metal selected from copper, cobalt, rhodium and iridium is supported on a metal oxide carrier. .
【請求項7】触媒が耐火性ハニカム構造体上に被覆され
た形で使用される請求項6記載の排気ガス浄化装置。
7. The exhaust gas purifying apparatus according to claim 6, wherein the catalyst is used in a form coated on a refractory honeycomb structure.
JP11170567A 1999-06-17 1999-06-17 Exhaust emission control device Pending JP2001003733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11170567A JP2001003733A (en) 1999-06-17 1999-06-17 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11170567A JP2001003733A (en) 1999-06-17 1999-06-17 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2001003733A true JP2001003733A (en) 2001-01-09

Family

ID=15907241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11170567A Pending JP2001003733A (en) 1999-06-17 1999-06-17 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2001003733A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429664A (en) * 2005-08-30 2007-03-07 Ford Global Tech Llc Fuelling control of a diesel engine
WO2012137051A1 (en) 2011-04-08 2012-10-11 Toyota Jidosha Kabushiki Kaisha Catalyst and catalytic apparatus for nox reduction
WO2012164379A2 (en) 2011-06-01 2012-12-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
WO2013011597A1 (en) 2011-07-15 2013-01-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2013124619A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Exhaust emission control system for purifying nox in exhaust gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2429664A (en) * 2005-08-30 2007-03-07 Ford Global Tech Llc Fuelling control of a diesel engine
WO2012137051A1 (en) 2011-04-08 2012-10-11 Toyota Jidosha Kabushiki Kaisha Catalyst and catalytic apparatus for nox reduction
WO2012164379A2 (en) 2011-06-01 2012-12-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
US9005558B2 (en) 2011-06-01 2015-04-14 Toyota Jidosha Kabushiki Kaisha Method and apparatus for exhaust gas control of an internal combustion engine
WO2013011597A1 (en) 2011-07-15 2013-01-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9297288B2 (en) 2011-07-15 2016-03-29 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2013124619A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Exhaust emission control system for purifying nox in exhaust gas

Similar Documents

Publication Publication Date Title
JP4478368B2 (en) Exhaust gas treatment
KR101060125B1 (en) Exhaust system for lean burn IC engines
KR101513120B1 (en) Exhaust system comprising exotherm-generating catalyst
US7721532B2 (en) Method and system for regeneration of a catalyst
JP5035704B2 (en) System for improved exhaust control of internal combustion engines
US8752367B2 (en) Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
JP4618563B2 (en) System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
JP4075292B2 (en) Particulate purification catalyst
JP4686547B2 (en) Engine-driven vehicle with exhaust gas purification
JP2001073748A (en) Methods and devices for cleaning and regeneration of particulates filter for exhaust gas of diesel engine
JPH10151348A (en) Oxidation catalyst
JP2003536011A (en) Diesel exhaust system including NOx trap
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
JP2000199423A (en) Exhaust emission control device for diesel engine
WO2008082464A1 (en) Filter regeneration using ultrasonic energy
JP2002089240A (en) Exhaust emission control device and exhaust emission control method using this
JP2001003733A (en) Exhaust emission control device
JP2019203487A (en) Fuel reforming device and control method therefor
EP1999346B1 (en) Device for purification of exhaust gas
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JPH06319953A (en) Purification of nitrogen oxide
KR101040346B1 (en) System for emission reduce line of diesel vehicle and second injection control method thereof
JP4309978B2 (en) Exhaust gas purification method, exhaust gas purification device, and exhaust gas purification catalyst
JP2000130216A (en) Denitration system of diesel engine
JP3815236B2 (en) Exhaust gas purification system and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060615